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Abstract: The application of precision medicine in cancer treatment has partly succeeded in

reducing the side effects of unnecessary chemotherapeutics and in improving the survival

rate of patients. However, with the long-term use of therapy, the dynamically changing

intratumoral and intertumoral heterogeneity eventually gives rise to therapeutic resistance. In

recent years, a novel testing technology (termed liquid biopsy) using circulating tumor DNAs

(ctDNAs) extracted from peripheral blood samples from patients with cancer has brought

about new expectations to the medical community. Using ctDNAs, clinicians can trace the

heterogeneity pattern to duly adjust individual therapy and prolong overall survival for

patients with cancer. Technological advances in detecting and characterizing ctDNAs (eg,

development of next-generation sequencing) have provided clinicians with a valuable tool

for genotyping tumors individually and identifying genetic and epigenetic alterations of the

entire tumor to capture mutations associated with therapeutic resistance.

Keywords: cancer, heterogeneity, drug resistance, targeted therapies, sequencing

technologies

Introduction
Cancer is a leading cause of death worldwide in both developed and developing

countries. Based on GLOBOCAN estimates, in 2012, approximately 14.1 million

new cancer cases and 8.2 million cancer-induced deaths occurred globally.1 Cancer

is a genetic disease characterized by years of progressive accumulation of genomic

aberrations that are occasionally augmented by predisposing germline mutations.2

In 1976, Nowell proposed that this accumulation of mutations is caused by a

process of diversification and selection of beneficial mutations promoting tumor

cell proliferation and survival.3 This process also occurs during long-term targeted

therapy, causing changing mutations within tumor cells and eventually inducing

intratumoral and intertumoral heterogeneity. This reduces the efficacy of therapeutic

regimens, a phenomenon referred to as development of therapeutic resistance. The

identification of selected genomic aberrations that target clinically relevant signal-

ing pathways in patients, especially those giving rise to drug tolerance, remains a

fundamental challenge.4 Malignant tumors occasionally release fragments of

nucleic acids into peripheral blood. Therefore, a noninvasive blood test detecting

circulating tumor DNAs (ctDNAs) in the bloodstream (termed liquid biopsy) can

inform clinicians regarding changes in the clonal composition of tumor tissues over

time, thus allowing dynamic stratification of treatment.5 Recent technological

advances in isolating and analyzing ctDNAs bring about hope that liquid biopsies
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performed at different time points may be useful in tracing

heterogeneous changes during treatment. Based on this

concept, more precise therapeutic schedules can be formu-

lated for patients with cancer of different stages.

This review focuses on the biological and technical

aspects of ctDNAs and their valuable clinical applications

in monitoring therapeutic resistance and improving out-

comes in patients with cancer, as well as perspectives and

challenges for future use.

Underlying Reasons For Therapeutic
Resistance: Intratumoral And
Intertumoral Heterogeneity
Clonal mutations are detected in the majority of neoplastic

cells in tumors. Beyond that, subclonal mutations resulting

in heterogeneity within tumors also play an important role

in tumor evolution, which must be considered when mak-

ing individualized treatment decisions. The newly arisen

concept of precision medicine aims to stratify patients into

novel subgroups based on their individual information (eg,

genetic, biomarker, phenotypic, or psychosocial character-

istics) and offer personalized treatment strategies to each

patient.6 The application of targeted medicine offers an

opportunity to improve patient care without the use of

unnecessary chemotherapy or radiotherapy and reduce

the side effects caused by these therapeutic modalities.

An example which has shown remarkable clinical success

to some extent is the administration of breakpoint cluster

region-Abelson murine leukemia tyrosine kinase inhibitor

(TKI) imatinib for the treatment of chronic myeloid

leukemia.7 However, tumor heterogeneity may give rise

to differences in treatment responses and lead to the devel-

opment of treatment resistance in patients with cancer.

Tumor heterogeneity has two meanings: 1) intratumor

heterogeneity, occurring within an individual tumor and

2) intertumor heterogeneity, appearing across several dif-

ferent tumors.8 Explanations for the origin of intratumor

heterogeneity fall into two categories. The cancer stem cell

hypothesis proposes that a subset of cells with stem cell

properties of indefinite self-renewal drive tumor initiation

and progression. The differentiation of these cells may

generate intratumor heterogeneity prior to or after treat-

ment. In contrast, the clonal evolution model suggests that

premalignant or malignant cells accumulate various her-

editary changes over time, and those acquired advanta-

geous genetic changes are selected according to natural

selection. The accumulation of continuous mutations in

cancer cells ultimately contributes to the diversification

of the tumor and emergence of further genetic and epige-

netic alterations. These changes confer more aggressive,

invasive, and drug-resistant phenotypes, thus resulting in

intratumor heterogeneity.9,10 Although surgical resection

can remove the primary tumor along with a large propor-

tion of the trunk mutations in them, a fraction of the

residual branch heterogeneous mutation may cause tumor

metastasis or relapse. In addition, the changing heteroge-

neity may reduce the initial efficacy of treatment.

Mechanisms of drug resistance that have been identified

thus far include the following: prevention of drug entry

into the cells; extrusion of drugs out of cells; induction of

enzymatic inactivation of drugs; prevention of drug activ-

ity by mutation or altered expression of the target and

defects in apoptosis, senescence and repair mechanisms,

etc.11 Clinicians must consider this aspect in diagnosis and

treatment planning to achieve optimal therapeutic efficacy.

When selecting optimized therapy approaches, it is neces-

sary to obtain an in-depth characterization of the clonal

composition of each tumor.12

Andor et al found a link between individuals with

intermediate copy number variation burdens detected in

their primary tumor prior to receiving treatment and their

worst overall survival (OS) across several types of

tumors.13 However, the strength of this association varies

depending on the different types of therapies the patients

receive. Islam et al conducted a study involving patients

with high-grade diffuse large B-cell lymphomas treated

with the aurora kinase inhibitor alisertib. They found that

the generation of drug-induced aneuploid/polyploid cells,

which are thought to be responsible for treatment resis-

tance owing to their capability of re-entering the cell cycle

during off-therapy periods, are commonly induced by anti-

diffuse large B-cell lymphoma therapies.14 The factors

underlying the contribution of drug-induced aneuploid/

polyploid cells to therapeutic resistance are the following:

amplifying receptor tyrosine kinase or T-cell receptor sig-

naling, or MYC-mediated dysregulation of three spindle

assembly checkpoints Ran GTPase-activating protein 1

(RanGAP1), TPX2, and karyopherin alpha 2 (KPNA2).

These factors can be targeted in combination with the

administration of aurora kinase inhibitors to reduce the

occurrence of therapeutic resistance. Goodall et al recently

reported an analysis of targeted and whole-exome sequen-

cing of serial circulating-free DNA samples collected dur-

ing a Phase II clinical trial (TOPARP-A) of the poly

(ADP)-ribose polymerase inhibitor olaparib in metastatic
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prostate cancer. As disease progressed following response

to olaparib, they detected multiple sub-clonal aberrations

reverting the reading frame of mutated homologous

recombination genes in tumors harboring germline and

somatic loss of DNA repair mutations (eg, BRCA2,

PALB2). These aberrations emerged as mechanisms of

therapeutic resistance.15 Collectively, these discoveries

suggest that drug resistance may be induced by the long-

term use of a single chemotherapeutic drug. Hence, it is of

great importance to monitor the alterations occurring in

tumor cells during the course of treatment and duly adjust

the therapeutic strategies.

The Definition And
Characterization Of ctDNA
The tumor molecular landscape is continuously altered

during treatment with targeted drugs. Thus, the genomic

profiles of patients with cancer ought to be repeatedly

evaluated during the course of therapy.16 The repeated

use of tissue biopsies is hindered by the inherent risk of

complications and limited availability of samples. As a

result, this approach cannot reveal all subclone oncogenic

mutations caused by tumor heterogeneity, which are con-

cealed in primary or metastasized tumor tissue. In

response to this limitation, a new technology for the ana-

lysis of ctDNAs (termed liquid biopsy) has emerged.

ctDNA is a small fraction of cell-free DNA, which

refers to DNA fragments released from cells, presenting

in body fluids (eg, plasma, cerebrospinal fluid, and urine).

In plasma, most of the circulating-free DNA originates

from leukocytes. A small proportion of this DNA, termed

ctDNA, is derived from tumor cells.17 However, the quan-

tity of ctDNA ranges from 3% to 93% of all circulating

DNA. The source of ctDNA in the peripheral blood of

patients with cancer is disintegrating cancer cells due to

apoptosis and/or necrosis, like other circulating DNA

which is released from normal dying cells.18 This brings

difficulty in distinguishing ctDNAs from other cell-free

DNAs through the detection of apoptotic or necrosis-

related markers. Therefore, the development of accurate

and specific technologies for isolating ctDNAs is war-

ranted. The detection of ctDNA can identify somatic geno-

mic alterations missed in biopsy studies on account of

tumor heterogeneity or lesions in distant sites.

Apart from ctDNAs, liquid biopsies include other cir-

culating molecular indices, such as circulating tumor cells

(CTCs), exosomes, tumor-specific proteins, and several

kinds of non-coding RNAs. The clinical applications of

these molecular indicators rely on advantages that distin-

guish them from other factors (Table 1). Among them,

CTCs are most frequently investigated and compared

with ctDNAs.19 CTCs are a type of tumor cells derived

from the multicellular groupings of a primary tumor, enter-

ing the hematogenous or lymphatic circulation to initiate

metastasis.20 The vast majority of CTCs floating in the

bloodstream die during circulation. However, a small clus-

ter of surviving CTCs are capable of migrating to a distant

site and initiate the invasion of another organ. Among all

molecules containing genetic information in the blood,

CTCs are the first to be approved for use as a biomarker

of metastatic cancer by the Food and Drug Administration

(USA).21 Owing to intratumor heterogeneity, CTCs offer

whole tumor cell-derived materials to noninvasively pro-

vide a better representation of the invasive clones for serial

analysis during treatment compared with traditional surgi-

cal biopsies.

Nevertheless, a few limitations hinder the investigation

of CTCs. In recent years, advances in detection technolo-

gies and devices have optimized the methods of CTC

enrichment and isolation, rendering the analysis of this

measurement index achievable. Both ctDNAs and CTCs

show great value in temporally and spatially tracing muta-

tion profiles. However, ctDNAs have the preponderance of

superior sensitivity to CTCs, larger quantities in the blood-

stream, and greater dynamic range that are in accord with

changes in tumor burden.22 Hence, ctDNA is the preferred

source for molecular diagnosis, especially in patients with

early stage cancer.

Current Sequencing Techniques
Applied To The Analysis Of ctDNA
In Clinical Cancer Research
Recent advances in sequencing techniques provide new

opportunities for analyzing ctDNAs (Table 2). These

developments provide clinicians with a more valuable

tool for monitoring tumor burden and treatment response

based on molecular profiles. Here, we present a portion of

these newly developed techniques.

Digital Droplet Polymerase Chain

Reaction (ddPCR) And Next-Generation

Sequencing
Genotyping of ctDNA provides a chance to probe into

heterogeneity during the evolution of cancer, monitor
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cancer development, and potentially detect the emergence

of therapeutic resistance. However, the development of

new technologies, such as ddPCR and next-generation

sequencing (NGS), is required for the identification of

valuable variants to be targeted when making clinical

decisions. Plasma ddPCR is capable of rapidly detecting

mutations, such as epidermal growth factor receptor

(EGFR) and Kirsten rat sarcoma viral oncogene homolog

(KRAS) mutations, with a low rate of false-positive test

results and the required robustness for real-world testing.

Sacher AG et al conducted a plasma ddPCR assay on 180

patients with non-small cell lung cancer (NSCLC) and

showed a sensitivity of 82% for EGFR 19 del, 77% for

T790M, 74% for L858R, and 64% for KRAS. It also

exhibited a positive predictive value of 100% for EGFR

19 del, L858R, and KRAS; of note, this value was lower

for T790M (79%).23 This evidence indicated the ability of

ddPCR to rapidly and sensitively detect EGFR and KRAS

mutations. This approach offers the advantage of absolute

quantification and sample differentiation with tiny concen-

tration distinction, highlighting its potential for application

in the clinical setting. Nevertheless, ddPCR is limited by

its inability to detect unknown genotypes or rearrange-

ments and difficulty in multiplexing to determine the

amounts of genetic variants. The breakthrough concept

for the detection of circulating genomic subclones through

Table 1 Comparison Of Strengths And Limitations Between ctDNAs And Other Circulating Biomarkers

Strengths Limitations References

Similarities -Noninvasive

-High specificity for multiple types of cancer

-Vital function in the diagnosis, progression monitoring,

and prognosis of cancer

-Lack of standardization in isolation, enrichment, or

detection techniques

-Combined application is necessary for a more

comprehensive insight into cancer specificity

19,68,69

ctDNAs -Allowing for early detection and high sensitivity

-Relatively higher detection rates

-Tracing tumor heterogeneity temporally and spatially

-Analysis limited to segments of DNA

-Functional genomic testing cannot be performed

-No co-localization of signal

70–73

CTCs -Fully showing the molecular profile of RNAs and

proteins

-Achievable structural evaluation of intact tumor cells

-Show alterations in the whole genome

-Co-localization of signal

-Available for ex-vivo functional studies

-Influence of heterogeneity on selection methods

-Low signal-to-noise rate, especially in early stage cancer

-Detection limited to metastasis period

74–76

Exosomes -Extractable from many biological fluids

-Allowing for early detection and stable

-mRNA and miRNAs enriched from exosomes, as well

as lipids and metabolites, can serve as reliable

biomarkers

-Lack of large scale in vivo studies

-Function in immune response and interplay with the

tumor environment require further research into the

mechanism

77–80

miRNAs -Exist in different biological fluids and benefit the early

detection of cancer

-More stable and resistant to storage and handling

-Detectable in low quantity of sample with high

specificity

-Hemolysis causing specific miRNAs mixed with ruptured

erythrocytes containing miRNAs

-Difficulty in accurately measuring the expression level

81–83

Proteins -Easy detection and quantification

-Proved efficiency in the prediction of recurrence and

monitoring of therapeutic efficacy

-Low accuracy for early clinical diagnosis 68

lncRNAs -Stable and levels indicative of severity

-Wide range of expression patterns in various cancers

-Low quantity and quality resulting in low signal-to-noise

ratios

-Development of efficient detection technologies is

required

-Lack of clinical trials

84–86

Abbreviations: CTC, circulating tumor cell; ctDNA, circulating tumor DNA; lncRNA, long non-coding RNA; miRNA, microRNA.
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Table 2 Sequencing Technologies For ctDNA Analysis

Categories Of

Sequencing

Technologies

Type Of

Alterations

Cancer Types References Advantages Limitations

PCR-based

Nested real-time PCR Genomic

rearrangements

Breast cancer,

osteosarcoma

87 -Ease of use

-Lowest cost

-Lower sensitivity

-Only detect limited genomic

loci
ARMS-Scorpion PCR PIK3CA mutation Breast cancer 88

PAP-A amplification TP53 mutation Breast cancer 89

EGFR deletion Non-small cell lung

cancer

Digital PCR-based

BEAMing NRAS, KRAS

mutation

Colorectal cancer 90 -Ease of use -Only detect limited genomic

loci or single

nucleotide variants
KRAS mutation Pancreatic cancer 91

EGFR mutation Non-small cell lung

cancer

92

Droplet-based digital PCR NPY methylation Colorectal cancer 93 -High sensitivity

Microfluidic digital PCR TP53 and PTEN

mutation

Ovarian, pancreatic

cancer

94 -Clinically validated

Targeted deep sequencing

Safe-SeqS KIT mutation Gastrointestinal

stromal tumor

95 -High sensitivity

-Relatively inexpensive

For selected alterations

across targeted regions

TAm-Seq TP53 mutation Ovarian cancer 96

EGFR mutation Non-small cell lung

cancer

CAPP-Seq KRAS, APC, and TP53

mutation

Ovarian cancer 97

Ion-AmpliSeq TP53, KRAS, and

EGFR mutation

Non-small cell lung

cancer

98,99

Whole-genome

sequencing (with NGS)

Copy number

aberrations

Non-small cell lung

cancer

100 -Broad application -Expensive

-Low sensitivity

Alterations in DNA

repair deficiency genes

and biallelic

inactivation

Prostate cancer 101

KRAS and BRAF

mutation

Colorectal cancer 102

Whole-exome sequencing

(with NGS)

SNVs and copy

number aberrations

Wilms’ tumor,

neuroblastoma

103,104 -Broad application -Expensive

-Low sensitivity -Lack of

standardization
EGFR mutation Non-small cell lung

cancer

105

Abbreviations: ARMS, amplification refractory mutation system; BEAMing, beads, emulsion, amplification, magnetics; CAPP-seq, cancer personalized profiling by deep

sequencing; NGS, next generation sequencing; PAP-A, pyrophosphorolysis-activated polymerization allele-specific-amplification; PCR, polymerase chain reaction; Safe-SeqS,

safe-sequencing system; SNV: single-nucleotide variants; TAm-Seq, tagged amplicon deep sequencing.
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ctDNA-NGS has recently been investigated as a formid-

able platform to develop noninvasive blood tests. The

purpose of this approach is to complement and further

enhance the currently available screening and diagnostic

strategies. With similar sensitivity to ddPCR, plasma NGS

can compensate for the disadvantage of ddPCR by detect-

ing a wide range of driver and resistance mutations in

NSCLC, such as anaplastic lymphoma kinase (ALK),

ROS1, and RET rearrangements, mesenchymal–epithelial

transition (MET) amplification, and human epidermal

growth factor receptor 2 (HER2) insertions, with 100%

specificity.24 NGS mainly consists of three specific tech-

niques, namely whole-genome sequencing (WGS), whole-

exome sequencing, and targeted region sequencing. Single

ctDNA samples are inadequate to reveal subclonal popula-

tions or their responses to therapy. Therefore, the com-

bined application of whole-exome sequencing and targeted

longitudinal monitoring of the ctDNA can reveal both the

presence of individual subclones with their genetic consti-

tution and distinct responses to therapy.25 Compared with

WGS, exomic analyses exhibit markedly higher sequence

coverage, with generally more than 100-fold versus just

approximately 30-fold of WGS. Nevertheless, whole-gen-

ome plasma DNA sequencing enables the identification of

novel mutant clones and potentially facilitates early adjust-

ments of clinical therapies that may delay or prevent the

progression of cancer.26

Deep Sequencing Of ctDNA
Diehn et al developed a new strategy based on NGS, termed

CAncer Personalized Profiling by deep Sequencing (CAPP-

seq), for the analysis of ctDNA. This strategy involves the

design of a “selector” consisting of labeled DNA oligonu-

cleotides that target recurrently mutated regions in ctDNAs

of interest for their quantification. This methodology is the

first to achieve ctDNA analysis with an ultralow detection

limit and broad patient coverage (ie, early or advanced stages

of humanmalignancy with available recurrent mutation data)

at a reasonable cost.27 Integrated digital error suppression

(iDES) was developed to further improve the performance of

CAPP-seq by eliminating most artifacts observed in ctDNA

sequencing data and simultaneously maximizing the recov-

ery of ctDNA molecules. As a result, the iDES-enhanced

CAPP-seq can sensitively and precisely facilitate the nonin-

vasive detection of variants across hundreds of kilobases. For

example, when applied to ctDNAs obtained from a cohort of

patients with NSCLC, this approach enabled the profiling of

mutations in the EGFR kinase domain. At the variant level,

the sensitivity and specificity were 92% and nearly 100%,

respectively. At the patient level, these values were almost

90% and 96%, respectively.28

Safe-Sequencing System (Safe-SeqS) And

Simple, Multiplexed, PCR-Based

Barcoding Of DNA
Compared with conventional digital PCR methods, mas-

sively parallel sequencing can sequentially and easily ana-

lyze hundreds of millions of template molecules and

multiple bases in an automated fashion. However, this

sequencing technique cannot be used for the detection of

rare variants (ie, variant alleles with fractions ≤0.1% in

ctDNA), owing to the high error rate associated with the

sequencing process. Vogelstein described that Safe-SeqS

can substantially increase the sensitivity of massively par-

allel sequencing by assigning a unique identifier (UID) to

each amplified template molecule to create UID families,

followed by implementation of redundant sequencing of

the amplification products. In this method, the presence of

an identical mutation in ≥95% of the PCR fragments with

the same UID indicates mutation (“supermutants”).29

Although Safe-SeqS has considerably improved massively

parallel sequencing, this technology has not been widely

used probably due to its complex protocol and the require-

ment of a gel purification step. In a laboratory in Boston,

Tony E. Godfrey et al developed a method based on Safe-

SeqS termed Simple, Multiplexed, PCR-based barcoding

of DNA for Sensitive mutation detection using Sequencing

(SiMSen-Seq). This approach employed a molecular hair-

pin serving as the UID to protect the barcode sequences

from polymerase-induced errors for a more efficient iden-

tification of true mutations during the preparation of a

PCR-based NGS library. Moreover, it involves a standard

multiplex preamplification approach using lower primer

concentrations as well as an elongated PCR extension

time.30 The strengths of the SiMSen-Seq methodology

are as follows: 1) facilitates the detection of sequence

variants at an allele frequency ≤0.1%; 2) requires <50 ng

of DNA input; and 3) can be applied to interrogate multi-

ple genome loci covering >1000 kb of a target sequence.

Assessment Of Epigenetic Heterogeneity

Using DREAMing (Discrimination Of Rare

EpiAlleles By Melt)
The ever-growing number of genes that show epigenetic

alterations in cell biology and tissue physiology in the
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course of human disease emphasizes the crucial role of

these epigenetic alterations, especially DNA methylation,

in future diagnosis, prognosis, and prediction of response

to therapies. Epigenetic drugs which target mutated mod-

ifying enzymes, such as DNA methyltransferase, improve

to some extent the outcome of various patients with cancer

whose methylation profiles had been analyzed. Thus, com-

prehensive DNA methylation profiling presents a valid

tool for the analysis of regions offering a possibility of

therapeutic intervention.31 High-resolution data can serve

as a source of cancer subtype-specific profiles at various

stages of disease. This is achieved by performing analyses

of alterations in methylation profiles using convenient and

noninvasive methods with powerful technologies, such as

ctDNAs. Wang at Johns Hopkins University (Baltimore,

MD, USA) discussed a method termed DREAMing for

ultrasensitive assessment of locus-specific epigenetic het-

erogeneity in specimens obtained from liquid biopsies.

This approach applies semi-limiting dilution and precise

melt curve analysis to discriminate and enumerate indivi-

dual copies of epiallelic variants at single-CpG-site resolu-

tion, with fractions as low as 0.005%, while using only a

single 96-well microtiter plate.32 This technique is parti-

cularly suitable for the ultrasensitive assessment of epige-

netic heterogeneity in specimens with low abundance of

epialleles and may be utilized for the evaluation of methy-

lation dynamics in ctDNAs during progression of cancer.

Clinical Implication Of ctDNAs As A
Monitoring Tool Of Drug Resistance
According to the time of development, drug resistance can

be divided as follows: present at the time of initial treat-

ment (ie, primary resistance) or arising during the course

of treatment (ie, acquired resistance).33 Thus far, four main

strategies employed by cancer cells to induce drug resis-

tance have been found: 1) direct reactivation of small-

molecule targets; 2) activation of signaling nodes upstream

or downstream of oncogenes; 3) engagement of parallel

oncogenic signaling pathways; and 4) adaptive survival

mechanisms.34 An important commonality of all four stra-

tegies is the persistent activation of the drug target itself or

its critical signaling pathway.35 ctDNAs can reveal the

tremendous heterogeneity and genetic composition of pri-

mary or metastatic tumors; thus, they can also reflect

mutations associated with changes in the activation state.36

Based on this, the isolation, purification, and analysis of

ctDNAs can expound the reasons for the generation and

development of primary or acquired resistance after che-

motherapy and guide the administration of drugs in the

clinical setting.37 Thus far, numerous mutations resulting

in resistance to different kinds of targeted medicines have

been found in ctDNAs. Here, we discuss some of these

mutations according to the classification of cancer types

and targeted medicine.

Resistance To EGFR-Targeted Therapies
Anti-EGFR Therapy With The Monoclonal

Antibodies In Colorectal Cancer (CRC)

Overexpression of EGFR has been associated with more

aggressive clinical progression and acts as a factor of poor

prognosis in a wide variety of cancers. In CRC, the EGFR

gene is frequently amplified and overexpressed at the RNA

and protein levels.38 Thus, EGFR-targeted therapies may

improve the OS and progression-free survival (PFS) of

patients with CRC. Cetuximab and panitumumab are

monoclonal antibodies binding to EGFR, which are routi-

nely used in the treatment of metastatic CRC (mCRC).

However, these drugs show clinical benefits in only a

portion of patients with mCRC owing to molecular altera-

tions in EGFR pathway effectors.39 The EGFR effector

KRAS is frequently mutated in CRC, resulting in activa-

tion of the downstream RAS-RAF-mitogen-activated pro-

tein kinase (RAS-RAF-MAPK) signaling pathway,

regardless of EGFR activation or blockade. Therefore,

KRAS mutations may predict the development of resis-

tance to anti-EGFR antibodies and are consistently corre-

lated with reduced OS and PFS.40

RAS testing has become mandatory for patients with

mCRC to identify the specific tumor genotype for treatment

decision. Diaz et al traced KRAS mutations in ctDNAs

obtained from patients with CRC who received monother-

apy with anti-EGFR drugs.41 They found that 38% of the

patients had a detectable conversion from KRAS wild type

to KRAS mutant type in their ctDNAs under EGFR block-

ade. According to the KRAS type tested through allele-

specific real-time PCR, clinicians decide to further analyze

all RAS through Sanger sequencing (if KRAS ex2 wild-

type is mutated) or treat patients with standard chemother-

apy (if KRAS ex2 is mutated). Standard chemotherapy is

required for patients with identified RAS mutations. Only

all RAS wild-type patients receive targeted treatment with

an anti-EGFR monoclonal antibody.42

Apart from RAS mutations, amplification of the MET

protooncogene is also associated with acquired resistance

in patients treated with anti-EGFR therapy. Amplification
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of the MET locus can be present in ctDNA before relapse

becomes clinically evident, and timely administration of

MET kinase inhibitors can overcome the induced resis-

tance to EGFR blockade.43 Low-abundance somatic muta-

tions, such as phosphoinositide-3-kinase, catalytic, alpha

polypeptide (PIK3CA), can also be detected through a

targeted amplicon ultra-deep sequencing method in

ctDNAs collected from blood of patients with mCRC.44

As the PIK3CA mutation may result in acquired resistance

to cetuximab in patients with mCRC, ctDNA sequencing

can provide a reference for adjusting the clinical therapeu-

tic approach.

EGFR-TKI In NSCLC

EGFR-TKI have been introduced into the first-line treat-

ment of patients with NSCLC harboring an EGFR mutation,

improving PFS and OS to various degrees.45 Nevertheless,

almost all patients with EGFR-mutant NSCLC ultimately

develop clinically progressive disease, as a result of resis-

tance to treatment with an EGFR-TKI (ie, gefitinib or

erlotinib). Thus far, two main mechanisms underlying

acquired resistance to TKI have been identified.

Secondary EGFR T790M mutation is a major mechanism,

accounting for half of all reported resistance cases. Using

the ddPCR method, T790M ctDNA can be detected in

plasma as a poor prognostic factor and an indicator for

modifying therapeutic strategies.46 MET amplification is

another cause of resistance to gefitinib, which can be

detected in approximately 20% of the patients.

Amplification of MET can drive ERBB3 (HER3) sustained

phosphorylation in the presence of gefitinib. In addition,

upregulation of the ERBB3/PI3K/Akt signaling pathway

impedes the induction of apoptosis by gefitinib in EGFR-

mutant cells.47 In a CAPP-Seq ctDNA analysis, researchers

found that MET amplification was the most frequent

mechanism of resistance in patients with NSCLC receiving

the third-generation EGFR inhibitor rociletinib.48 Those

results indicated that ctDNA analysis is capable of noninva-

sively presenting resistance mechanisms and defining pat-

terns of resistance to targeted therapies.

According to the T790M-mutation status shown in

ctDNA analysis through multiplexed deep sequencing,

52% of the patients with NSCLC who were T790M-muta-

tion positive and received treatment with osimertinib ulti-

mately achieved a 62.5% response rate and a 12-month

PFS.49 Another trial showed that even in patients with

NSCLC with unknown tumor mutation status, but merely

harboring T790M mutation detected through ctDNA

analysis, treatment with osimertinib resulted in favorable

efficacy.50 Similarly, crizotinib is a common targeted med-

icine used to counter MET amplification, and ctDNA can

reveal a number of genetic mutations which contribute to

resistance to crizotinib and progression of cancer (eg, multi-

ple secondary MET mutations, increase of fibroblast growth

factor receptor 2 gene relative copy number, etc).51 Thus,

ctDNA analysis may illustrate the complex and heteroge-

neous molecular mechanisms of drug resistance, and allow

personalized selection of therapies in response to resistance.

Resistance To anti-HER2 Therapies In

Breast Cancer
Amplification of the HER2/neu oncogene occurs relatively

frequently in breast cancer and correlates with disease

relapse and OS.52 With the development of HER2-targeted

agents (eg, trastuzumab, pertuzumab, and other small

molecule TKI of HER2), addition of these drugs to che-

motherapy can prolong the time to disease progression and

lengthen patient survival.53 Although the efficacy of

anti-HER2 therapy is obvious, therapeutic resistance pre-

vents patients from achieving sustained clinical remission

with this treatment strategy. The ctDNA assay can reveal

markers of resistance to HER2 blockade, such as muta-

tions in TP53 and genes implicated in the PI3K/mTOR

pathway.54 In a longitudinal follow-up study analyzing

ctDNAs collected from 42 patients with metastatic breast

cancer, it was demonstrated that ctDNA can show more

dynamic changes to mutations and gene amplification than

cancer antigen 15-3. Thus, ctDNA carries the potential of

monitoring response to treatment, analyzing dynamic

tumor heterogeneity, and stratifying targeted therapies.55

Resistance To BRAF And MEK Inhibitor

Therapies In Melanoma And CRC
BRAF inhibitors (eg, dabrafenib and vemurafenib) in com-

bination with a MEK inhibitor (eg, trametinib) can

improve the OS of patients with previously untreated

BRAF V600-mutant metastatic melanoma.56 However,

drug resistance may cause progression of disease within

a year, which usually involves MAPK reactivation, com-

monly via BRAF amplification and mutations affecting

NRAS or MEK2.57 Gray et al analyzed the ctDNAs

extracted from melanoma patients with progressive disease

who initially responded to treatment with dabrafenib/

trametinib.58 They found that NRAS mutations, such as

NRASQ61K and NRASQ61R, can be detected in ctDNAs.
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In addition, the number of these mutations was consis-

tently lower than that of the BRAF mutation, possibly

owing to their origin from a subset of tumor cells.

Daniele et al reported a case of CRC relapse after com-

bined treatment with BRAF and MEK inhibitors, with a

KRAS G12C mutation and an amplification of mutant

BRAF V600E shown through ctDNA analysis. They sys-

tematically assessed the efficacy of several candidate

therapies across a panel of resistant cell lines. The results

revealed that most resistant cells remain sensitive to sup-

pression of the MAPK pathway after combination of extra-

cellularly regulated kinase, BRAF, and EGFR inhibitors.59

Resistance To Other Therapies In Various

Cancers
Patients with castration-resistant prostate cancer demon-

strated improved clinical efficacy and OS following the

application of abiraterone acetate and enzalutamide; how-

ever, the inevitable occurrence of resistance impedes long-

term therapeutic benefit. Genomic profiling of ctDNAs

collected from 65 patients with metastatic castration-resis-

tant prostate cancer receiving enzalutamide showed that

aberrations associated with primary resistance include

androgen receptor (AR) amplification, multiple AR muta-

tions, and RB1 loss. Acquired resistance can also be identi-

fied in ctDNAs, such as AR-L702H, AR-T878A, and

catenin beta 1 mutations, and PI3K pathway alterations.60

ctDNAs can also be used as an identifier for patients with

breast cancer who have become resistant to endocrine thera-

pies. The detection of estrogen receptor 1 mutations in

ctDNAs correlates with resistance to aromatase inhibitors

(AIs) and may point to the application of more efficient

treatments in such patients.61 Through utilization of a tar-

geted ctDNA NGS test, mechanisms of resistance to ALK

inhibitors (eg, kinase domain mutations, alternative onco-

genic mutations, and amplifications) have been found in

patients with NSCLC.62 ctDNAs were detected in all

patients with metastatic gastrointestinal stromal tumors,

and their levels were associated with tumor size. The muta-

tions resulting in resistance to treatment with imatinib clus-

tered in the region of the adenosine triphosphate-binding

pocket or the activation loop; both could be detected in

ctDNAs.63 Furthermore, a study of four patients who under-

went resection of imatinib-resistant gastrointestinal stromal

tumor identified secondary C-KIT exon 13 or 18 mutations

in ctDNAs with a mutation fraction range of 0.010–

9.385%.64 Consequently, the application of liquid biopsy

is a promising option to comprehensively determine the

mutational profiles of various heterogeneous tumors and

guide therapeutic decisions in drug-resistant cancers.

Clinical Trials Demonstrating The Role Of

ctDNAs In Treatment Monitoring
Based on the great potential value of ctDNAs in demon-

strating mutations underlying primary or acquired resis-

tance, researchers worldwide have conducted clinical trials

to prove the practicability of this approach. The phase I/II

multi-cohort eXalt2 trial (NCT01625234) employed hybrid-

capture NGS to analyze ctDNAs in plasma collected from

76 patients with ALK+ NSCLC. The results showed serial

changes in ALK mutation allelic frequencies while receiv-

ing treatment with ensartinib, demonstrating the clinical

utility of ctDNAs in serially tracking genetic determinants

of resistance.65 A prospective, multicancer, biomarker trial

applied Safe-SeqS to analyze plasma ctDNAs in 42 patients

with early stage operable pancreatic adenocarcinoma

(Australia New Zealand Clinical Trials registry number

ACTRN12612000763842). The analysis revealed a KRAS

mutation in 23 patient samples pre-operatively. Although 18

patients received standard therapy, 19 of the 23 patients

relapsed at a median of 38.4 months, probably due to

resistance. The researchers suggested to explore the use of

neoadjuvant therapy strategies in these patients rather than

immediately proceeding to surgery.66 Using plasma samples

collected from 83 patients with advanced breast cancer, a

prospective plasma DNA AI study (CCR3297, London-

Bromley Research Ethics Committee, REC 10/H0808/50)

also demonstrated the potential value of ctDNA analysis in

describing the mutant genetics of drug-resistant disease.

ddPCR and enhanced tagged-amplicon sequencing of

ctDNA samples showed high levels of genetic heterogene-

ity, such as estrogen receptor 1 mutations and sub-clonal

KRAS mutations, with cancers progressing after first-line

treatment with AI. The genetic diversity of AI-resistant

cancers shown by ctDNAs may limit the effectiveness of

subsequent targeted therapy approaches which target only

one of the clones.67 Thus, ctDNA analysis is essential for

establishing clinical therapeutic strategies, as well as tracing

their levels and changes in genetic heterogeneity during

treatment to adjust or combine medications.

Conclusions
Surgical techniques and targeted drugs are rapidly devel-

oping. However, the prognosis of a proportion of patients
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with cancer remains poor owing to the development of

resistance to chemotherapeutic and targeted agents during

long-term use. The primary or mutant selection-induced

intratumoral and intertumoral heterogeneity renders the

adjustment of the therapeutic schedule essential for

improving the outcomes of patients and effectively

prolonging their survival. Liquid biopsy, such as ctDNAs

analysis, is likely to play a complementary role as a cancer

biomarker to show the mutation status in tumor cells and

guide clinical practice. As plasma is easy to collect and

there is no need to enrich or isolate a rare cluster of cells,

ctDNA analysis is more appealing for clinical application.

However, it can only provide information regarding gen-

omes and has a limitation in detecting mutations occurring

in the RNA or protein levels. Thus, CTC analysis is also

useful, as it can compensate for the shortcomings of

ctDNAs. Improvements in sequencing techniques, such

as NGS and other sequencing techniques, have promoted

the study of ctDNAs and CTCs, and offer the possibility of

clinical application in the future. Nonetheless, obstacles

continue to hinder the extensive use of liquid biopsies. For

example, the sensitivity and specificity of ctDNA or CTC

detection warrant further verification. It is currently

unclear whether all alterations in tumor cells contribute

equally to changes in the composition of CTCs or ctDNAs

in different stages of cancer. In addition, the concentration

of ctDNAs and CTCs in plasma is low. Hence, the devel-

opment of more specific techniques for their isolation and

detection is necessary. Another problem that impedes

widespread clinical application of this method is the rela-

tively high cost of sequencing. A number of prospective

clinical trials have been conducted to detect genetic het-

erogeneity in several common cancers. However, whether

ctDNAs can detect mutations in rare cancers warrants

further clinical investigation. In spite of these difficulties,

we firmly believe that liquid biopsies hold great promise

for future genetic studies concerned with monitoring muta-

tions in tumor cells. This method has the capacity to

conveniently and noninvasively offer a wealth of informa-

tion over the course of treatment, which is not possible

with traditional tissue biopsies. Future advances in tech-

nologies will make ctDNA and CTC analysis essential in

precision medicine.
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