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ABSTRACT

Background
Diagnostic pathology depends on complex, structured reasoning to interpret clinical, histologic, and
molecular data. Replicating this cognitive process algorithmically remains a significant challenge. As
large language models (LLMs) gain traction in medicine, it is critical to determine whether they have
clinical utility by providing reasoning in highly specialized domains such as pathology.
Methods
We evaluated the performance of four reasoning LLMs (OpenAI o1, OpenAI o3-mini, Gemini 2.0
Flash Thinking Experimental, and DeepSeek-R1 671B) on 15 board-style open-ended pathology
questions. Responses were independently reviewed by 11 pathologists using a structured framework
that assessed language quality (accuracy, relevance, coherence, depth, and conciseness) and seven
diagnostic reasoning strategies. Scores were normalized and aggregated for analysis. We also
evaluated inter-observer agreement to assess scoring consistency. Model comparisons were conducted
using one-way ANOVA and Tukey’s Honestly Significant Difference (HSD) test.
Results
Gemini and DeepSeek significantly outperformed OpenAI o1 and OpenAI o3-mini in overall rea-
soning quality (p < 0.05), particularly in analytical depth and coherence. While all models achieved
comparable accuracy, only Gemini and DeepSeek consistently applied expert-like reasoning strate-
gies, including algorithmic, inductive, and Bayesian approaches. Performance varied by reasoning
type: models performed best in algorithmic and deductive reasoning and poorest in heuristic and
pattern recognition. Inter-observer agreement was highest for Gemini (p < 0.05), indicating greater
consistency and interpretability. Models with more in-depth reasoning (Gemini and DeepSeek) were
generally less concise.
Conclusion
Advanced LLMs such as Gemini and DeepSeek can approximate aspects of expert-level diagnostic
reasoning in pathology, particularly in algorithmic and structured approaches. However, limitations
persist in contextual reasoning, heuristic decision-making, and consistency across questions. Address-
ing these gaps, along with trade-offs between depth and conciseness, will be essential for the safe and
effective integration of AI tools into clinical pathology workflows.

Keywords Generative AI · Reasoning Large Language Models · Pathology · Clinical Reasoning · AI Evaluation

1 Introduction

Anatomical pathologists draw upon years of training and accumulated clinical experience to develop a range of diagnostic
reasoning strategies for interpreting histopathologic findings in the context of patient presentation. This interpretive
process requires not only deep visual pattern recognition but also the ability to synthesize clinical, morphologic, and
molecular data using a broad array of reasoning approaches [1]. These include algorithmic workflows, deductive and
inductive (hypothetico-deductive) reasoning, Bayesian and heuristic inference, mechanistic understanding of disease
processes, and pattern recognition—each contributing to the integrative synthesis of visual, clinical, and contextual
cues [1].

With the advent of generative artificial intelligence (AI), large language models (LLMs) such as ChatGPT, Gemini,
and DeepSeek have garnered interest for their potential to support pathology workflows [2, 3]. These models generate
responses by leveraging probabilistic associations across vast biomedical corpora [4, 5]. Early applications in pathology
have focused on clinical summarization [6], education, and simulation; however, most evaluations have assessed only
the factual accuracy or superficial plausibility of outputs, without examining the structure or soundness of the underlying
reasoning processes [7, 8, 9, 10].

Although LLMs have shown strong performance on general medical benchmarks, their ability to replicate the nuanced,
domain-specific reasoning required in diagnostic pathology remains unclear [11, 12, 13]. Pathology demands more than
knowledge retrieval—it requires the contextual application of varied reasoning strategies across morphologic, molecular,
and clinical dimensions. Given that board licensing examinations emphasize reasoning beyond factual recall [14], a
critical question emerges: can LLMs generate responses that are not only accurate but also reflect expert-like diagnostic
reasoning?

To address this question, we developed a novel, structured evaluation framework grounded in clinical practice. Eleven
expert pathologists evaluated responses generated by four LLMs to 15 open-ended diagnostic questions. Each response
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Figure 1: Evaluation Framework for Assessing Diagnostic Reasoning in Large Language Models. Fifteen open-
ended diagnostic pathology questions, reflecting the complexity of board licensing examinations, were independently
submitted to four LLMs: OpenAI o1, OpenAI o3-mini, Gemini 2.0 Flash-Thinking Experimental (Gemini), and
DeepSeek-R1 671B (DeepSeek). Each response was evaluated by 11 expert pathologists using a structured rubric
comprising 12 metrics across two domains: (1) language quality and response structure (relevance, coherence, ac-
curacy, depth, and conciseness) and (2) diagnostic reasoning strategies (pattern recognition, algorithmic, deductive,
inductive/hypothetico-deductive, heuristic, mechanistic, and Bayesian reasoning). Pathologists were blinded to model
identification. Evaluation scores were aggregated and normalized to account for missing data and served as the basis for
both model performance comparisons and inter-observer agreement analysis.

was scored across five language quality metrics and seven clinically relevant reasoning strategies [1, 14]. The models,
OpenAI o1, OpenAI o3-mini, Gemini 2.0 Flash Thinking Experimental (Gemini), and DeepSeek-R1 671B (DeepSeek),
were compared across all evaluation criteria. Inter-observer agreement analysis was conducted to assess consistency
among expert reviewers. Together, these findings offer a comprehensive assessment of clinical reasoning in LLMs and
establish a scalable, domain-specific framework for evaluating AI systems in diagnostic pathology.

2 Materials and Methods

In this study, a structured evaluation framework was developed to assess the capacity of LLMs to generate clinically
relevant, well-reasoned answers to open-ended pathology questions. Our focus was on both language quality and
diagnostic reasoning, with expert review by pathologists. Based on the study by Wang et al. [14], a set of 15 open-ended
diagnostic questions, listed in Supplementry Table 1, was selected to reflect the complexity and format of board licensing
examinations.

2.1 Model Selection and Response Generation

Four state-of-the-art LLMs were evaluated: OpenAI o1, OpenAI o3-mini, Gemini, and DeepSeek. Each model was
prompted independently to respond to all 15 questions in a zero-shot setting. To simulate a high-stakes clinical reasoning
task, each question was preceded by the instruction: “This is a pathology-related question at the level of licensing
(board) examinations”. No additional context or few-shot examples were provided. Model responses were collected
between February and March 2025 using publicly accessible web interfaces or Application Programming Interface (API)
endpoints. Each output included both a direct answer and explanatory reasoning. No fine-tuning or post-processing was
applied to model responses.

2.2 Evaluation by Pathologists

Eleven expert pathologists (qualifications provided in Supplementary Table 2) independently evaluated the reasoning
outputs generated by each LLM across 15 diagnostic questions. To mitigate potential bias, all evaluations were
conducted in a blinded manner, and inter-observer agreement was analyzed to ensure consistency among evaluators.
The evaluation assessed two complementary dimensions: the linguistic quality of the responses and the application of
pathology-specific diagnostic reasoning strategies. The evaluation focused on the following two primary criteria:

1. Natural Language Quality Metrics: Assessments were conducted on the clarity, coherence, depth, accuracy,
and conciseness of the responses. These metrics are commonly employed in evaluating LLM outputs to
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ensure that generated content is not only factually correct but also well-structured and comprehensible. Such
evaluation frameworks have been discussed in studies analyzing LLM performance in medical contexts [15].

2. Application of Pathology-Specific Reasoning Strategies: Evaluators examined the extent to which LLMs ap-
propriately utilized various diagnostic reasoning approaches integral to pathology practice. These approaches
include pattern recognition, algorithmic reasoning, inductive hypothetico-deductive reasoning, mechanistic
insights, deductive reasoning, heuristic reasoning, and probabilistic (Bayesian) reasoning (details provided
in Supplemental Table 3). The framework for these reasoning strategies is grounded in the cognitive pro-
cesses outlined by Pena and Andrade-Filho, who describe the diagnostic process as encompassing cognitive,
communicative, normative, and medical conduct domains [1, 16].

2.3 Statistical Analysis

Scores (on a 1–5 Likert scale) were first normalized to a 0–1 range using linear scaling (score divided by 5). Following
normalization, average scores were computed across raters for each combination of model, question, and evaluation
criterion. These aggregated values were used to evaluate model-level and criterion-specific performance. One-way
analysis of variance (ANOVA) was used to assess differences in mean scores across models for each evaluation
metric, including cumulative scores. When statistically significant, pairwise comparisons were conducted using
Tukey’s Honestly Significant Difference (HSD) test (α = 0.05). Analyses were conducted using Python (v3.11)
with standard statistical libraries. To assess inter-observer reliability, the percent agreement was calculated for each
Question–Model–Criterion (Q-M-C) combination, which was defined as the proportion of raters who selected the most
common score. Ratings ranged from 7 to 11 per Q-M-C (mean = 9.9). Model-level differences in percent agreement
were tested using the Kruskal–Wallis H test. When significant, post hoc pairwise comparisons were performed using
Dunn’s test with Bonferroni correction for multiple testing. Additional analyses, including normalization procedures,
missing data summaries, and full pairwise comparison results, are available in Supplementary Tables 4, 5, 6, 7, 8, and 9
and Figures 6 and 7.
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Figure 2: Comparative Performance of LLMs Across Language Quality and Diagnostic Reasoning Domains.
Radar plots summarize the normalized mean scores (range: 0 to 1) assigned by 11 pathologists for each model across
12 evaluation criteria. Panel A: Language quality metrics, including accuracy, relevance, analytical depth, coherence,
conciseness, and cumulative scores. Panel B: Diagnostic reasoning strategies, including pattern recognition, algorithmic
reasoning, deductive reasoning, inductive/hypothetico-deductive reasoning, heuristic reasoning, mechanistic insights,
and Bayesian reasoning. Gemini consistently outperformed other models across both domains, particularly in analytical
depth and structured reasoning. OpenAI o1 showed the greatest variability in performance across metrics.

3 Results

We evaluated the performance of four LLMs (Gemini, DeepSeek, OpenAI o1, and OpenAI o3-mini) on 15 expert-
generated diagnostic pathology questions using our structured evaluation framework. Responses were assessed across
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Figure 3: LLM Performance on Language Quality Metrics. Normalized average scores (range: 0 to 1) across
five core language quality dimensions—accuracy, relevance, coherence, analytical depth, and conciseness—based on
ratings from 11 pathologists across 15 pathology questions. Panels A–F: Overall average performance (A), followed by
Accuracy (B), Relevance (C), Coherence (D), Analytical Depth (E), and Conciseness (F). Gemini consistently achieved
the highest scores across all metrics, with the greatest variability observed in coherence and analytical depth.

two primary domains: Language Quality and Response Structure, focused on NLP-oriented metrics (e.g., relevance,
coherence, accuracy); and Diagnostic Reasoning Strategies, capturing clinically grounded reasoning styles (e.g., pattern
recognition, algorithmic reasoning, mechanistic insight). Each domain includes a cumulative score and multiple
sub-metrics, yielding twelve evaluation criteria overall.

Fig. 2 summarizes model performance across these criteria using radar plots. Gemini clearly outperforms all other
models on language quality metrics (Fig. 2a), with the largest margins in “depth” and “coherence”. DeepSeek ranks
second overall, while the two OpenAI reasoning models show similar performance, particularly on accuracy and
relevance. Fig. 2b visualizes pathology-oriented reasoning strategies. Gemini again leads across most dimensions,
especially algorithmic and inductive reasoning. DeepSeek demonstrates competitive performance, whereas the OpenAI
models score lower in mechanistic, heuristic, and Bayesian reasoning, suggesting less robust clinical reasoning
capabilities. These overarching trends are explored in greater detail in the subsequent sections.

3.1 Evaluation of Language Quality and Response Structure

Fig. 3 presents normalized model performance across five language-focused evaluation metrics—relevance, coherence,
analytical depth, accuracy, and conciseness—along with a cumulative average score. Fig. 3A shows cumulative
scores across all 15 questions, while Figs. 3B–F display model-specific performance on individual metrics. Across all
dimensions, Gemini consistently achieved the highest average scores. In cumulative performance (Fig. 3A), Gemini
significantly outperformed OpenAI o1, OpenAI o3-mini, and DeepSeek (p < 0.05). DeepSeek also significantly
outperformed both OpenAI models (p < 0.05), while there was no significant difference between OpenAI o1 and
OpenAI o3-mini (p > 0.05).

For accuracy (Fig. 3B), Gemini significantly outperformed both DeepSeek and OpenAI o1 (p < 0.05). All other pairwise
differences were not statistically significant (p > 0.05). In relevance (Fig. 3C), all models maintained relatively high
scores, with Gemini significantly outperforming all others (p < 0.05). No significant differences were observed among
DeepSeek, OpenAI o1, and OpenAI o3-mini (p > 0.05). For coherence (Fig. 3D), Gemini significantly outperformed all
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Figure 4: Diagnostic Reasoning Performance by Reasoning Type. Normalized mean scores (range: 0 to 1) for
each LLM across seven diagnostic reasoning strategies based on expert evaluation of pathology-related questions.
Panels A–H: Cumulative reasoning performance (A), Pattern Recognition (B), Algorithmic Reasoning (C), Deductive
Reasoning (D), Inductive/Hypothetico-Deductive Reasoning (E), Bayesian Reasoning (F), Heuristic Reasoning (G), and
Mechanistic Insights (H). Gemini and DeepSeek consistently outperformed the OpenAI models across most reasoning
types, with particularly strong performance in algorithmic, inductive, and mechanistic reasoning. Heuristic and Bayesian
reasoning yielded the lowest scores across all models, reflecting challenges with uncertainty-driven and experiential
inference.

three other models (p < 0.05), while no statistically significant differences were observed between DeepSeek and either
OpenAI model (p > 0.05).

Analytical depth (Fig. 3E) showed more variation; Gemini significantly outperformed all other models (p < 0.05), and
DeepSeek significantly outperformed both OpenAI o1 and OpenAI o3-mini (p < 0.05). No significant difference was
observed between the two OpenAI models (p > 0.05). Lastly, conciseness (Fig. 3F) showed comparable performance
across all models. Although Gemini had slightly higher average scores, no statistically significant differences were
observed across any pairwise comparisons (p > 0.05). Overall, these results suggest that LLMs varied most on metrics
requiring deeper interpretive judgment (e.g., analytical depth and coherence), with more consistent performance
observed on factual dimensions like relevance and accuracy.

3.2 Evaluation of Diagnostic Reasoning Strategies

Fig. 4 shows model performance across seven clinically relevant diagnostic reasoning strategies: pattern recognition,
algorithmic reasoning, deductive reasoning, inductive/hypothetico-deductive reasoning, Bayesian reasoning, heuristic
reasoning, and mechanistic insights. Fig. 4A presents cumulative reasoning scores averaged across all strategies
and questions, while Fig. 4B–H display model-specific performance on each individual reasoning type. In overall
performance (Fig. 4A), Gemini achieved the highest cumulative score, followed by DeepSeek, with both OpenAI
models scoring lower. Pairwise comparisons showed statistically significant differences between Gemini and all other
models (p < 0.05), as well as between DeepSeek and both OpenAI variants (p < 0.05). No significant difference was
found between OpenAI o1 and OpenAI o3-mini (p > 0.05).

In pattern recognition (Fig. 4B), Gemini significantly outperformed all other models (p < 0.05), while differences
between DeepSeek and the OpenAI models were not statistically significant (p > 0.05). For algorithmic reasoning (Fig.
4C), which yielded the highest scores among all reasoning types, Gemini and DeepSeek both significantly outperformed
OpenAI o1 and OpenAI o3-mini (p < 0.05), though no difference was observed between Gemini and DeepSeek (p
> 0.05). In deductive reasoning (Fig. 4D), Gemini significantly outperformed both OpenAI models (p < 0.05), and
DeepSeek also significantly outperformed both OpenAI o1 and OpenAI o3-mini (p < 0.05). No significant difference
was observed between Gemini and DeepSeek or between the two OpenAI models. For inductive/hypothetico-deductive
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reasoning (Fig. 4E), both Gemini and DeepSeek significantly outperformed the OpenAI models (p < 0.05), with no
difference observed between Gemini and DeepSeek (p > 0.05).

Bayesian (probabilistic) reasoning scores (Fig. 4F) were generally lower across all models. However, all pairwise
comparisons were statistically significant (p < 0.05), with Gemini outperforming all others and DeepSeek significantly
outperforming both OpenAI models. In heuristic reasoning (Fig. 4G), Gemini and DeepSeek significantly outperformed
both OpenAI models (p < 0.05) but did not significantly differ from each other (p > 0.05). No significant difference
was observed between OpenAI o1 and o3-mini (p > 0.05). In mechanistic insights (Fig. 4H), all pairwise comparisons
were statistically significant (p < 0.05). Gemini significantly outperformed DeepSeek and both OpenAI models, while
DeepSeek significantly outperformed both OpenAI variants.

3.3 Inter-observer Percent Agreement Across Models

Percent agreement was analyzed for 720 unique Q-M-C combinations across four models: Gemini, DeepSeek, OpenAI
o1, and OpenAI o3-mini. The overall mean percent agreement was 0.49 (range: 0.25-0.91). Fig. 5A shows a full
distribution of percent agreement, with model-specific distributions shown in Fig. 5B. Percent agreement significantly
differed across models (Kruskal-Wallis H = 76.798, p < 0.001). Post-hoc pairwise Dunn’s tests revealed that Gemini had
significantly higher percent agreement than all other models (p < 0.001 for all comparisons). No significant differences
were found among DeepSeek, OpenAI o1, and OpenAI o3-mini (p > 0.05).
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Figure 5: Percent agreement across 720 unique combinations of question, model, and evaluation criterion (Q–M–C),
reflecting the proportion of raters who selected the most common score. Panel A: Distribution of percent agreement
across all Q–M–C combinations. Panel B: Model-specific distributions of agreement. Gemini achieved significantly
higher inter-observer agreement compared to all other models (p < 0.001), suggesting greater consistency and inter-
pretability of its outputs. No statistically significant differences were observed in pair-wise testing between DeepSeek,
OpenAI o1, and OpenAI o3-mini.

4 Discussion

This study evaluated the ability of four state-of-the-art LLMs to perform pathology-specific diagnostic reasoning
using expert assessments of both language quality and clinical reasoning strategies. While all models produced
generally relevant and accurate responses, only Gemini and DeepSeek demonstrated consistent strength across multiple
reasoning dimensions, particularly analytical depth, coherence, and algorithmic reasoning. Moreover, Gemini achieved
the highest inter-observer agreement among expert pathologists, suggesting greater clarity and interpretability in its
responses. These findings highlight the need to move beyond accuracy-focused evaluation and toward models that
generate clinically coherent and contextually intelligible reasoning, especially in high-stakes diagnostic domains such
as pathology. This analysis also revealed substantial variation in the reasoning performance of LLMs when applied to
pathology-focused diagnostic questions. Among the four evaluated models, Gemini consistently achieved the highest
scores across both evaluation domains (language quality and diagnostic reasoning). DeepSeek followed closely in
most categories, while the OpenAI variants (o1 and o3-mini) generally performed lower compared to the other LLMs,
particularly in analytical depth, coherence, and advanced reasoning types.

In the language quality domain, all models produced broadly relevant responses. Gemini and DeepSeek distinguished
themselves in analytical depth, coherence, and cumulative performance. Gemini also significantly outperformed other
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models in accuracy, suggesting more robust and precise responses. While the OpenAI models tended to be more concise,
these differences were not statistically significant and often came at the expense of analytical depth and interpretability.
In the diagnostic reasoning domain, all models performed best on algorithmic and deductive reasoning tasks. Gemini
consistently outperformed all others across most reasoning types. DeepSeek also performed well in several categories,
though its advantage over the OpenAI models was less pronounced in pattern recognition. Performance dropped
markedly for all models in nuanced reasoning types such as heuristic, mechanistic, and Bayesian reasoning. These
areas typically require integrating implicit knowledge, clinical judgment, and experience-based decision-making.

Notably, inter-observer agreement was highest for Gemini, indicating that its responses were more consistently
interpreted and rated by expert pathologists. This suggests that Gemini’s outputs may be not only more complete or
coherent but also more reliably understandable to clinical end-users. Such consistency is essential for downstream
applications of LLMs in real-world diagnostic settings, where human-AI collaboration depends on shared reasoning
clarity.

The prior evaluations of LLMs in medicine have focused on factual correctness, clinical acceptability, or performance
on standardized assessments such as the USMLE and other multiple-choice examinations [11, 12, 13, 17]. While these
studies demonstrate that advanced models can retrieve and generate clinically accurate information, they typically
frame evaluation in binary terms, right or wrong, without assessing the structure, context, or interpretability of the
underlying reasoning processes. However, recent studies have begun to explore how generative AI might support
medical reasoning in pathology and related domains. Waqas et al. have outlined the promise of LLMs and FMs for
digital pathology applications such as structured reporting, clinical summarization, and educational simulations [8, 9].
Brodsky et al. emphasized the importance of interpretability and reasoning traceability in anatomic pathology, noting
that AI outputs must not only be accurate but also reflect logical, clinically meaningful reasoning patterns [7]. However,
these studies primarily describe use cases or propose conceptual frameworks rather than empirically evaluating whether
LLMs demonstrate structured reasoning aligned with human diagnostic strategies. Few studies have assessed whether
model outputs reflect the types of reasoning, such as algorithmic, heuristic, or mechanistic, that are integral to expert
pathology practice.

Histologic diagnosis is a cognitively demanding task that requires the integration of diverse information sources,
ranging from visual features on tissue slides to clinical history and disease biology. As part of this decision-making
process, pathologists rely on a broad set of reasoning strategies, including pattern recognition, algorithmic workflows,
hypothetico-deductive reasoning, Bayesian inference, and heuristics, often applied fluidly based on experience and
context [1, 18]. Despite their central role in diagnostic workflows, these reasoning approaches are rarely formalized in
LLM evaluation studies. While prior cognitive and educational research has documented these strategies in pathology
and clinical decision-making [19, 20, 21], few studies have translated them into a structured framework for evaluating
AI systems in this domain. This study addresses this gap by developing and applying a structured evaluation framework
that operationalizes seven clinically grounded reasoning strategies, i.e., pattern recognition, algorithmic reasoning,
deductive and inductive reasoning, Bayesian reasoning, mechanistic insights, and heuristic reasoning. In contrast to
prior work that has focused on factual accuracy or subjective plausibility, we used expert raters to assess whether model
responses actually reflected reasoning types that pathologists would apply during their decision-making process. We
also included five language quality metrics to assess the structure and interpretability of responses, features that are
critical for clinical adoption but often overlooked in model evaluation. This approach builds on prior conceptual work
in generative AI for pathology [7, 8, 9], but moves beyond descriptive analysis to provide a domain-specific, empirically
tested benchmark for reasoning assessment.

The results of this study show that LLMs perform relatively well in algorithmic and deductive reasoning, likely reflecting
their ability to retrieve structured clinical knowledge from training data and guidelines [12, 22, 23, 24]. However, model
performance was markedly lower in reasoning types that rely more heavily on experience, context, and uncertainty,
such as heuristic reasoning, Bayesian inference, and mechanistic understanding [25, 26]. These findings align with
previous observations that current LLMs struggle with nuanced clinical reasoning, particularly in settings that require
adaptive judgment [27,28,29,30]. Moreover, our analysis highlights the lack of metacognitive regulation in LLMs, their
inability to recognize uncertainty, self-correct, or reconcile conflicting information, challenges that have been noted in
other domains as well [31]. By incorporating expert adjudication, reasoning taxonomies, and inter-observer agreement,
our study offers a new model for evaluating clinical reasoning in generative AI that extends beyond correctness to assess
the fidelity and structure of reasoning itself.

It is also important to interpret lower scores in certain reasoning categories in the context of clinical relevance and
question content. For example, pattern recognition may be inapplicable to questions focused solely on molecular
alterations or classification schemes, where visual cues are absent. Similarly, while heuristic reasoning was consistently
rated low across models, some pathologists noted that this may reflect an appropriate aversion to premature conclusions
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based on past experience alone, an approach discouraged in modern diagnostic workflows that emphasize comprehensive
differential diagnosis. These nuances underscore the importance of context when evaluating reasoning strategies.

Our findings have important implications for the safe and effective integration of LLMs into clinical workflows,
particularly in diagnostic fields such as pathology, where interpretability, trust, and domain-specific reasoning are
paramount. While all four models evaluated in this study produced largely relevant and accurate responses, only Gemini,
and to a slightly lesser extent DeepSeek, demonstrated reasoning structures that aligned with real-world diagnostic
approaches. These models also achieved higher inter-observer agreement among expert pathologists, suggesting that
their outputs were not only well-structured but also consistently interpretable across users. This consistency is critical
in clinical environments where diagnostic decisions are collaborative and where AI-generated insights must be readily
understood, validated, and acted upon by human experts. In contrast, models with lower coherence and reasoning
clarity may increase cognitive burden, introduce ambiguity, or erode trust, especially when deployed in high-stakes or
time-constrained settings. By highlighting variation in reasoning quality across models and across different types of
diagnostic logic, our results suggest that LLM evaluation should go beyond factual correctness and consider reasoning
fidelity as a core requirement. This is particularly relevant for educational, triage, or decision support applications
in pathology, where nuanced reasoning is essential, and automation must complement, rather than obscure, human
expertise.

We acknowledge that this study has some limitations. Although a diverse set of reasoning strategies was evaluated,
this analysis was limited to 15 open-ended questions. While these were curated by expert pathologists, they may
not fully capture the range of diagnostic challenges encountered in practice. Future iterations of this benchmark
should include a broader array of cases, including rare and diagnostically complex scenarios. We focused solely on
text-based LLMs and did not assess multimodal models that incorporate pathology images. The use of expert raters
(i.e., pathologists) adds clinical realism but also introduces subjectivity. We also did not measure downstream clinical
impact, such as improvements in diagnostic accuracy or workflow efficiency. Future studies should explore these
outcomes prospectively. In addition, the effects of prompting strategies, fine-tuning, and domain adaptation on reasoning
performance deserve further investigation. Reasoning-aligned LLMs may hold promise for educational use, simulation,
and decision support, applications that require careful validation in real-world settings.

5 Conclusion

This study presents a structured evaluation of advanced reasoning LLMs in pathology, focusing not only on factual
accuracy but also on diagnostic reasoning quality. By assessing model outputs across five language metrics and seven
clinically grounded reasoning strategies, we provide a nuanced benchmark that goes beyond traditional correctness-
based evaluations. These findings demonstrate that while all models produce largely relevant and accurate responses,
substantial differences exist in their ability to emulate expert diagnostic reasoning. Gemini and DeepSeek outperformed
other models in both reasoning fidelity and inter-observer agreement, suggesting greater alignment with clinical
expectations. Conversely, current limitations in heuristic, mechanistic, and probabilistic reasoning highlight areas
for model improvement. To our knowledge, this is the first study to systematically evaluate the diagnostic reasoning
capabilities of LLMs in pathology using expert-annotated criteria grounded in clinical practice. As generative AI tools
continue to evolve, clinically meaningful evaluation frameworks, such as the one introduced here, will be essential for
guiding safe and effective integration into diagnostic practice. This work lays the foundation for future studies that seek
to assess not just whether models are right but whether they reason like clinicians.
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Supplementary 1: Details of Evaluated Large Language Models

Gemini 2.0 Flash Thinking Experimental

Gemini 2.0 Flash Thinking Experimental is an advanced AI model developed by Google DeepMind. This model is
designed to balance reasoning capabilities with speed by employing an internal "thinking process" during response
generation. This approach enhances the model’s ability to handle complex tasks, particularly in mathematics, science,
and multimodal reasoning. Benchmark evaluations have demonstrated significant improvements over previous models,
showcasing enhanced performance and explainability. Developers can access this experimental model through the
Gemini API in Google AI Studio. Key features include: (1) Enhanced Reasoning: Utilizes an internal "thinking process"
to improve problem-solving capabilities. (2) Speed and Efficiency: Optimized to balance complex reasoning with rapid
response generation. (3) Multimodal Capabilities: Excels in tasks involving text, code, and images. Details are available
at: https://deepmind.google/technologies/gemini/flash-thinking/

DeepSeek-R1 671B

DeepSeek-R1 671B is an LLM developed by the Chinese AI startup DeepSeek. Released in January 2025, it features a
Mixture-of-Experts (MoE) architecture with a total of 671 billion parameters, of which 37 billion are activated per token
during inference. This design enhances resource efficiency without compromising performance. DeepSeek-R1 has
demonstrated capabilities comparable to leading models in tasks such as mathematics, coding, and complex reasoning.
Key features include: (1) Mixture-of-Experts Architecture: Efficiently utilizes a subset of parameters during inference
for optimized performance. (2) High Parameter Count: Among the largest open-source LLMs, facilitating advanced
reasoning tasks. (3) Open-Source Availability: Supports the research community with accessible model weights and
code. Further details are available at: https://huggingface.co/deepseek-ai/DeepSeek-R1

OpenAI o1

OpenAI o1 is a reasoning-focused AI model developed by OpenAI, officially released on December 5, 2024. It is
designed to allocate additional processing time before generating responses, thereby improving performance on complex
tasks, including science, coding, and mathematics. The model supports chain-of-thought prompting and multi-step
reasoning, enhancing its interpretability and accuracy. Key features include: (1) Deliberative Processing: Spends
more time "thinking" before responding to enhance reasoning quality. (2) Chain-of-Thought Prompting: Capable of
breaking down complex problems into intermediate steps. (3) Versatile Applications: Excels in tasks requiring deep
understanding and logical analysis. Further details are available at: https://openai.com/o1/

OpenAI o3-mini

OpenAI o3-mini is a compact reasoning model introduced by OpenAI on January 31, 2025. It aims to provide enhanced
reasoning capabilities with reduced computational requirements, making it suitable for applications where resources are
limited. Despite its smaller size, o3-mini can outperform o1 in coding and other reasoning tasks, offering a balance
between performance and efficiency. Key features include: (1) Resource Efficiency: Optimized for lower computational
overhead without significant performance trade-offs. (2) Adjustable Reasoning Effort: Offers settings to balance speed
and depth of reasoning. (3) Specialized Domains: Particularly adept in STEM-related tasks, including coding and
mathematics. Further details are available: https://openai.com/index/openai-o3-mini/
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Supplementary 2. Pathology Board-Style Questions and Qualifications of Pathologists

Table 1: Diagnostic pathology questions used in the evaluation.
Q# Question
Q1 What is the most common resistance mechanism to first-generation EGFR inhibitors in lung cancer?
Q2 How specific is TTF-1 as a marker of lung cancer differentiation?
Q3 Describe the histologic features of adult-type fibroadenoma of the breast.
Q4 What is the approach to diagnosis of papillary lesions of the breast?
Q5 What is the name of the disease that can present with jaundice, Kayser-Fleischer rings, and neurologi-

cal symptoms, and causes increased copper accumulation in hepatocytes?
Q6 What are the clinical and histopathological differences between HPV-positive and HPV-negative

oropharyngeal squamous cell carcinoma?
Q7 What is the most common molecular alteration in classic papillary thyroid carcinoma?
Q8 Peutz-Jeghers syndrome is caused by a gene named ___.
Q9 What are the histologic features of usual interstitial pneumonia?

Q10 An adenocarcinoma is positive for TTF-1, napsin A, and PAX-8. What are the possible sites of origin?
Q11 What are the criteria for conventional uterine leiomyosarcoma?
Q12 Excluding the GI tract, list four body sites that are at risk for development of carcinoma in patients

with Peutz-Jeghers syndrome.
Q13 What is the recent antibody implicated in primary podocytopathy?
Q14 What is the molecular classification of breast carcinomas?
Q15 What are the immunohistochemical and molecular characteristics of mesonephric-like adenocarci-

noma of the uterus?
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Supplementary 3. Qualifications of Pathologists

Table 2: Summary of Pathologist Qualifications, Experience, and Subspecialties
Pathologist
ID

Degrees & Certifications Years of
Experi-
ence

Primary Expertise / Subspecialty

P1 MBBS, M.Phil. (Anatomical Pathology),
PhD (Biomedical Science/Informatics)

12 years Anatomical Pathology, Healthcare Manage-
ment

P2 MBBS, FCPS (Clinical Chemistry) 4 years Clinical Chemistry
P3 Board Certified Pathologist (USA) 17 years Anatomic and Clinical Pathology, Onco-

logic Surgical Pathology
P4 MD (Pathology) 5 years Thoracic Pathology, Molecular Pathology
P5 American Board of Pathology Certified;

PhD (Immunology and Molecular Pathol-
ogy)

20 years General Surgical Pathology, Cytopathology,
Bone and Soft Tissue Pathology, Tumor
Biomarkers

P6 MD; ABP Certified in Anatomic Pathology;
Fellowship in Digital and Molecular Pathol-
ogy

7/20 years Molecular Pathology, Digital Pathology,
Machine Learning

P7 ABP Certified in Anatomic Pathology 7 years Breast Pathology
P8 ABP Certified in Pathology and Der-

matopathology
15 years Dermatopathology

P9 MD, PhD, FRCPath (UK) 22 years Anatomic Pathology
P10 MD; ABP Certified in Anatomic Pathology 9 years Thoracic / Pulmonary Pathology
P11 MD (Consultant Pathologist) 16 years General Pathology
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Supplementary 4. Definitions of Diagnostic Reasoning Strategies in Pathology

Table 3: Definitions of Diagnostic Reasoning Strategies in Pathology
Reasoning Strategy Definition in the Context of Pathology
Pattern Recognition The immediate identification of a diagnosis based on visual familiarity with

histologic patterns. Common in routine diagnoses (e.g., basal cell carcinoma).
Relies on accumulated experience and intuitive visual memory.

Algorithmic Reasoning Stepwise application of decision trees or diagnostic algorithms. Each pathologic
finding triggers a specific follow-up question or test, narrowing toward a final
diagnosis (e.g., using immunostain panels for tumor typing).

Inductive Hypothetico-
Deductive Reasoning

Formulating multiple diagnostic hypotheses based on initial findings and pro-
gressively narrowing them through targeted data gathering (e.g., special stains,
clinical correlation). Involves both generating and testing diagnostic hypotheses.

Bayesian/Probabilistic Rea-
soning

Applying probabilistic thinking to estimate diagnostic likelihoods based on
observed findings and known disease prevalence. Incorporates clinical evidence,
test sensitivity/specificity, and prior probability.

Deductive and Inductive
Reasoning

Deductive: applying general principles or rules to a specific case (e.g., if all
tumors of type X express marker Y, a tumor that expresses Y may be type X).
Inductive: building generalizations from specific observations (e.g., recognizing
a new tumor variant).

Heuristic Reasoning Use of mental shortcuts or experience-based rules to quickly arrive at likely
diagnoses. While efficient, this approach may bypass systematic evaluation
and can introduce bias. Appropriate caution is needed in modern diagnostic
workflows.

Mechanistic Insights Reasoning based on the underlying biological, molecular, or pathophysiological
mechanisms of disease (e.g., linking KRAS mutation to mucinous colorectal
adenocarcinoma phenotype). Enhances interpretation of complex or ambiguous
findings.
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Supplementary 5. Model Performance Across All Questions

This section presents per-question performance scores for each LLM, visualized separately for (1) language quality
and structure and (2) diagnostic reasoning strategies. Each point represents the average normalized score from expert
ratings across the four models on a single diagnostic question.
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Figure 6: Pathologist Ratings of LLMs Across Language Quality Metrics. Normalized average scores (scale: 0–1)
assigned by 11 pathologists across five natural language quality metrics: Accuracy, Relevance, Coherence, Conciseness,
and Depth. Each point represents the mean score for a specific model on a single question. Gemini shows consistently
strong performance, while other models exhibit greater variability across questions and metrics.
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Figure 7: Pathologist Ratings of LLMs Across Diagnostic Reasoning Strategies. Normalized average scores
(scale: 0–1) assigned across seven reasoning strategy criteria: Algorithmic, Pattern Recognition, Deductive, Inductive,
Bayesian, Heuristic, and Mechanistic. Models vary in their use of domain-specific reasoning, with Gemini achieving
higher and more consistent ratings across questions.
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Supplementary 6. Tukey’s Honestly Significant Difference (HSD) Pairwise Comparisons

Table 4: Pairwise Comparisons for Language Quality and Response Structure metrics.
Metric Comparison p-value Significant

1 Relevance Gemini vs DeepSeek < 0.0001 Yes
2 Relevance Gemini vs OpenAI o1 < 0.0001 Yes
3 Relevance Gemini vs OpenAI o3-mini < 0.0001 Yes
4 Relevance DeepSeek vs OpenAI o1 0.2054 No
5 Relevance DeepSeek vs OpenAI o3-mini 0.1935 No
6 Relevance OpenAI o1 vs OpenAI o3-mini > 0.9999 No
7 Coherence Gemini vs DeepSeek < 0.0001 Yes
8 Coherence Gemini vs OpenAI o1 < 0.0001 Yes
9 Coherence Gemini vs OpenAI o3-mini < 0.0001 Yes

10 Coherence DeepSeek vs OpenAI o1 0.0847 No
11 Coherence DeepSeek vs OpenAI o3-mini 0.8825 No
12 Coherence OpenAI o1 vs OpenAI o3-mini 0.3408 No
13 Depth Gemini vs DeepSeek < 0.0001 Yes
14 Depth Gemini vs OpenAI o1 < 0.0001 Yes
15 Depth Gemini vs OpenAI o3-mini < 0.0001 Yes
16 Depth DeepSeek vs OpenAI o1 0.0108 Yes
17 Depth DeepSeek vs OpenAI o3-mini 0.0009 Yes
18 Depth OpenAI o1 vs OpenAI o3-mini 0.8415 No
19 Accuracy Gemini vs DeepSeek 0.0046 Yes
20 Accuracy Gemini vs OpenAI o1 0.0076 Yes
21 Accuracy Gemini vs OpenAI o3-mini 0.001 Yes
22 Accuracy DeepSeek vs OpenAI o1 0.9982 No
23 Accuracy DeepSeek vs OpenAI o3-mini 0.9579 No
24 Accuracy OpenAI o1 vs OpenAI o3-mini 0.9057 No
25 Conciseness Gemini vs DeepSeek 0.9804 No
26 Conciseness Gemini vs OpenAI o1 0.8648 No
27 Conciseness Gemini vs OpenAI o3-mini 0.4136 No
28 Conciseness DeepSeek vs OpenAI o1 0.9794 No
29 Conciseness DeepSeek vs OpenAI o3-mini 0.6494 No
30 Conciseness OpenAI o1 vs OpenAI o3-mini 0.8648 No
31 Cumulative Gemini vs DeepSeek 0.0212 Yes
32 Cumulative Gemini vs OpenAI o1 < 0.0001 Yes
33 Cumulative Gemini vs OpenAI o3-mini < 0.0001 Yes
34 Cumulative DeepSeek vs OpenAI o1 < 0.0001 Yes
35 Cumulative DeepSeek vs OpenAI o3-mini < 0.0001 Yes
36 Cumulative OpenAI o1 vs OpenAI o3-mini 0.9901 No
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Table 5: Pairwise Comparisons for Diagnostic Reasoning Strategies.
Metric Comparison p-value Significant

1 Pattern Recognition Gemini vs DeepSeek 0.0054 Yes
2 Pattern Recognition Gemini vs GPT-o1 < 0.0001 Yes
3 Pattern Recognition Gemini vs GPT-o3m < 0.0001 Yes
4 Pattern Recognition DeepSeek vs GPT-o1 0.0738 No
5 Pattern Recognition DeepSeek vs GPT-o3m 0.2573 No
6 Pattern Recognition GPT-o1 vs GPT-o3m 0.9243 No
7 Algorithmic Reasoning Gemini vs DeepSeek 0.2558 No
8 Algorithmic Reasoning Gemini vs GPT-o1 < 0.0001 Yes
9 Algorithmic Reasoning Gemini vs GPT-o3m < 0.0001 Yes

10 Algorithmic Reasoning DeepSeek vs GPT-o1 < 0.0001 Yes
11 Algorithmic Reasoning DeepSeek vs GPT-o3m < 0.0001 Yes
12 Algorithmic Reasoning GPT-o1 vs GPT-o3m 0.8060 No
13 Deductive Reasoning Gemini vs DeepSeek 0.1556 No
14 Deductive Reasoning Gemini vs GPT-o1 < 0.0001 Yes
15 Deductive Reasoning Gemini vs GPT-o3m < 0.0001 Yes
16 Deductive Reasoning DeepSeek vs GPT-o1 0.0001 Yes
17 Deductive Reasoning DeepSeek vs GPT-o3m < 0.0001 Yes
18 Deductive Reasoning GPT-o1 vs GPT-o3m 0.9532 No
19 Inductive Hypothetico-Deductive Reasoning Gemini vs DeepSeek 0.0823 No
20 Inductive Hypothetico-Deductive Reasoning Gemini vs GPT-o1 < 0.0001 Yes
21 Inductive Hypothetico-Deductive Reasoning Gemini vs GPT-o3m < 0.0001 Yes
22 Inductive Hypothetico-Deductive Reasoning DeepSeek vs GPT-o1 < 0.0001 Yes
23 Inductive Hypothetico-Deductive Reasoning DeepSeek vs GPT-o3m < 0.0001 Yes
24 Inductive Hypothetico-Deductive Reasoning GPT-o1 vs GPT-o3m 0.9982 No
25 Bayesian Reasoning Gemini vs DeepSeek 0.0261 Yes
26 Bayesian Reasoning Gemini vs GPT-o1 < 0.0001 Yes
27 Bayesian Reasoning Gemini vs GPT-o3m < 0.0001 Yes
28 Bayesian Reasoning DeepSeek vs GPT-o1 0.0003 Yes
29 Bayesian Reasoning DeepSeek vs GPT-o3m < 0.0001 Yes
30 Bayesian Reasoning GPT-o1 vs GPT-o3m 0.6647 No
31 Heuristic Reasoning Gemini vs DeepSeek 0.8092 No
32 Heuristic Reasoning Gemini vs GPT-o1 < 0.0001 Yes
33 Heuristic Reasoning Gemini vs GPT-o3m < 0.0001 Yes
34 Heuristic Reasoning DeepSeek vs GPT-o1 0.0002 Yes
35 Heuristic Reasoning DeepSeek vs GPT-o3m 0.0003 Yes
36 Heuristic Reasoning GPT-o1 vs GPT-o3m 0.9993 No
37 Mechanistic Insights Gemini vs DeepSeek 0.0139 Yes
38 Mechanistic Insights Gemini vs GPT-o1 < 0.0001 Yes
39 Mechanistic Insights Gemini vs GPT-o3m < 0.0001 Yes
40 Mechanistic Insights DeepSeek vs GPT-o1 < 0.0001 Yes
41 Mechanistic Insights DeepSeek vs GPT-o3m < 0.0001 Yes
42 Mechanistic Insights GPT-o1 vs GPT-o3m 0.9665 No
43 Cumulative Gemini vs DeepSeek 0.0212 Yes
44 Cumulative Gemini vs GPT-o1 < 0.0001 Yes
45 Cumulative Gemini vs GPT-o3m < 0.0001 Yes
46 Cumulative DeepSeek vs GPT-o1 < 0.0001 Yes
47 Cumulative DeepSeek vs GPT-o3m < 0.0001 Yes
48 Cumulative GPT-o1 vs GPT-o3m 0.9901 No
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Supplementary 7. Inter-observer Agreement Analysis

Table 6: Summary of Percent Agreement Across Models. Question-Model-Criteria (Q-M-C)
Model Mean Percent Agreement (SD) Q-M-C with Percent Agreement < 0.4
Gemini 0.65 (0.12) 15
DeepSeek 0.43 (0.09) 37
OpenAI o1 0.42 (0.10) 38
OpenAI o3-mini 0.41 (0.08) 29
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Supplementary 8. Missing Score Analysis and Normalization Approach

To assess data completeness, we quantified the number of missing evaluations per pathologist across all ques-
tion–model–criterion (Q–M–C) combinations. The distribution of missing scores was highly skewed, with the majority
originating from two evaluators: Pathologist-10 (341 missing entries) and Pathologist-8 (339). All other evaluators
contributed near-complete data, with fewer than 35 missing values each. Seven of the eleven evaluators had fewer than
20 missing scores, and three (Pathologists 3, 9, and 11) each had only a single missing entry.

To ensure fair comparison across models, we normalized scores for each Q–M–C combination by computing the mean
of available ratings only. This approach prevents penalizing models for missing evaluations and ensures that aggregate
scores reflect only completed assessments. Importantly, all Q–M–C combinations had a minimum of seven independent
evaluations, with a mean of 9.9 ratings per combination, supporting the robustness of model-level comparisons despite
occasional missing data.

Table 7: Missing score counts and percentages by model.
Model Total Scores Missing Count Missing %
Gemini 1980 177 8.94%
DeepSeek 1980 179 9.04%
OpenAI o1 1980 198 10.00%
OpenAI o3-mini 1980 218 11.01%
Total 7920 772 9.75%

Table 8: Missing score counts and percentages by question.
Question Total Scores Missing Count Missing %
Q1 528 61 11.55
Q2 528 61 11.55
Q3 528 70 13.26
Q4 528 54 10.23
Q5 528 36 6.82
Q6 528 39 7.39
Q7 528 56 10.61
Q8 528 71 13.45
Q9 528 52 9.85
Q10 528 32 6.06
Q11 528 37 7.01
Q12 528 56 10.61
Q13 528 36 6.82
Q14 528 53 10.04
Q15 528 58 10.98

Table 9: Missing score counts and percentages by evaluation criterion.
Criterion Total Entries Missing Count Missing %
Clarity 660 4 0.61
Coherence 660 2 0.30
Depth 660 3 0.45
Accuracy 660 5 0.76
Conciseness 660 3 0.45
Pattern Recognition 660 151 22.88
Algorithmic Reasoning 660 46 6.97
Inductive Reasoning 660 94 14.24
Mechanistic Reasoning 660 103 15.61
Deductive Reasoning 660 117 17.73
Heuristic Reasoning 660 120 18.18
Probabilistic Reasoning 660 124 18.79
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