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ABSTRACT

Objective: Postpartum hemorrhage (PPH) remains a leading cause of preventable maternal mortality in the

United States. We sought to develop a novel risk assessment tool and compare its accuracy to tools used in cur-

rent practice.

Materials and Methods: We used a PPH digital phenotype that we developed and validated previously to iden-

tify 6639 PPH deliveries from our delivery cohort (N¼70 948). Using a vast array of known and potential risk fac-

tors extracted from electronic medical records available prior to delivery, we trained a gradient boosting model

in a subset of our cohort. In a held-out test sample, we compared performance of our model with 3 clinical risk-

assessment tools and 1 previously published model.

Results: Our 24-feature model achieved an area under the receiver-operating characteristic curve (AUROC) of

0.71 (95% confidence interval [CI], 0.69-0.72), higher than all other tools (research-based AUROC, 0.67 [95% CI,

0.66-0.69]; clinical AUROCs, 0.55 [95% CI, 0.54-0.56] to 0.61 [95% CI, 0.59-0.62]). Five features were novel, includ-

ing red blood cell indices and infection markers measured upon admission. Additionally, we identified inflection

points for vital signs and labs where risk rose substantially. Most notably, patients with median intrapartum sys-

tolic blood pressure above 132 mm Hg had an 11% (95% CI, 8%-13%) median increase in relative risk for PPH.

Conclusions: We developed a novel approach for predicting PPH and identified clinical feature thresholds that

can guide intrapartum monitoring for PPH risk. These results suggest that our model is an excellent candidate

for prospective evaluation and could ultimately reduce PPH morbidity and mortality through early detection

and prevention.
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INTRODUCTION

Postpartum hemorrhage (PPH) remains a leading preventable cause

of maternal morbidity and mortality in the United States and world-

wide.1–4 Recent trends in the United States suggest rates of PPH are

rising, with reported increase in prevalence from 2.9% in 2010 to

3.2% in 2014, which constitutes a 13.0% increase.5,6 Though the

risk of maternal mortality has remained stable,4,7,8 PPH still repre-
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sents 11.2% of maternal deaths in the United States,9 highlighting

the need for accurate risk prediction and prevention.

PPH is most commonly defined using blood loss and clinical

signs of hemodynamic compromise, though specific criteria vary.10

The American College of Obstetricians and Gynecologists reVITAL-

ize program defines obstetric hemorrhage as a cumulative estimated

blood loss �1000 mL or blood loss associated with signs or symp-

toms of hypovolemia within 24 hours of delivery.11 The World

Health Organization defines postpartum hemorrhage as a cumula-

tive blood loss of �500 mL within 24 hours after birth.12 Differen-

ces and inconsistencies in definitions complicate identification and

subsequent prediction of PPH.13

Nonetheless, stratification tools based on known risk factors are

used to identify women at high risk of obstetric hemorrhage, pro-

moting clinical awareness and prompting measures to mitigate

risk.11,14 The California Maternal Quality Care Collaborative

(CMQCC)15; Association of Women’s Health, Obstetric and Neo-

natal Nurses (AWHONN)16; and New York Safety Bundle for Ob-

stetric Hemorrhage (NYSBOH)17 are widely used in the United

States at admission and during labor. These guidelines stratify

women into low-, medium-, and high-risk groups based on charac-

teristics such as low platelet count, multiple gestation, prior cesarean

delivery or uterine surgery, and prior history of PPH to determine

the need for pretransfusion testing.18,19

Evaluation of these risk-stratification tools revealed that they have

limited clinical utility.18,20 Assessments of the CMQCC have shown a

statistically significant difference in risk for PPH between women in

low-, medium-, and high-risk groups. However, this same tool has

consistently classified more than 40% of PPH cases as low risk be-

cause they had no risk factors upon admission.18,21,22 The tool under-

estimates risk for various definitions of severe PPH, as well as PPH

defined as >1000 mL cumulative blood loss. An assessment of the

CMQCC, AWHONN, and NYSBOH toolkits for predicting severe

PPH (blood transfusion of �4 units of blood) in women undergoing

cesarean delivery reported better performance with only 4% to 17%

of cases misclassified as low risk.20 While these cases are among the

most critical to detect, they account for a relatively small proportion

of total PPH cases. Despite these limitations, modified versions of the

CMQCC provide guidance nationally for pretransfusion testing.11

To improve the accuracy of PPH risk prediction, novel

approaches to predict PPH have utilized large datasets to identify

more specific risk factors for PPH. Venkatesh et al23 found that ma-

chine learning and statistical models utilizing data available at time

of labor admission accurately predict PPH. However, these types of

models have not been systemically compared with risk stratification

tools currently being used as part of standard of care.

Previously, we developed and validated an accurate digital phe-

notyping algorithm to ascertain PPH from comprehensive electronic

medical record (EMR) data that incorporates not only cumulative

blood loss, but also other important diagnostic and treatment-

related features indicating PPH, such as use of uterotonics and hem-

orrhage-related procedures.24 The combination of machine learning

methods and EMR data allows for the construction of predictive

models based on population-scale analyses that involve more pre-

cisely defined outcomes and exposures. We hypothesized that EMR

data from our large, diverse health system may provide for a richer

feature set to construct more predictive models for prospectively

identifying those at risk for PPH. Our aim was to create a compre-

hensive predictive tool to determine risk of PPH prior to delivery us-

ing integrated clinical features from large-scale, high-dimensional

clinical data derived from the Mount Sinai Health System EMR

database. Furthermore, we compare the performance of our model

with existing risk assessment tools.

MATERIALS AND METHODS

We aimed to build a novel informatics-based tool to assess risk of

PPH (Figure 1). We derived thousands of potentially informative

features from clinical information recorded prior to delivery for

patients in our delivery cohort. Using PPH status determined by our

physician-validated digital phenotyping algorithm,24 which consid-

ers medication dosing and timing, fluctuations in lab values during

labor and delivery, and medical observations across labor and deliv-

ery admission, in addition to the standard estimated blood loss met-

ric, for retrospectively identifying deliveries with PPH, we built a

model to estimate PPH risk prior to delivery and compared results

with a previously published model23 and 3 widely used clinical risk

toolkits.15–17 Our approach differed from others in that we com-

bined results from multiple machine learning methods (tree-based

and regression-based) to robustly select features derived from real

world data in a large healthcare system, and thus refer to this model

as an “integrated machine learning” (IML) model. We received ap-

proval from the Icahn School of Medicine at Mount Sinai Institu-

tional Review Board (IRB-17-01245) to conduct this study. Further

details on all methods can be found in the Supplementary Methods.

Experimental design
For each pregnancy journey, we used clinical information available

from 8 months prior to pregnancy (estimated based on gestational

age at delivery) up to and including delivery time. This time frame

captures events occurring prior to and during pregnancy while limit-

ing the variation in data availability across patients, which can often

be substantial. To allow for independent testing of our model and to

facilitate comparison across other risk assessment tools, we divided

our pregnancy-delivery cohort into training (80%) and testing

(20%) sets. Patients were randomly assigned to training or testing;

all deliveries for a given patient were assigned to the same set.

Feature engineering and selection
Current risk stratification efforts for PPH have relied primarily on

known risk factors (eg, prior cesarean delivery).20 While these fac-

tors are significant predictors of PPH, in many cases, PPH occurs in

women with no known risk factors.11,18,21 Considering this, we in-

cluded both known risk factors and thousands of potential predic-

tors extracted from EMR to maximize our ability to detect any

patterns of clinical information that increase risk for PPH. These

predictors spanned the total set of disease categories, generic medi-

cations, procedures, lab values, and vital signs ever detected in our

cohort and included multiple ways of measuring many factors (eg,

minimum and maximum pulse). Of note, we generated functional

principal components to summarize multiple vital sign and lab

measurements for each patient over time. We excluded any feature

with fewer than 5 individuals with nonmissing values because these

features are unlikely to be informative. Among the remaining fea-

tures, we used a combination of gradient boosting, adaptive lasso re-

gression, and logistic regression to select a small subset of features

for input into our risk model.

Learning algorithm
Selected features were used to train gradient boosted decision tree

models with 100-fold cross-validation employed within the training
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dataset with the python package LightGBM. We used stratified k-

fold splits to retain PPH rates across folds and balanced sample

weights to boost the relative importance of PPH deliveries in classifi-

cation. We set iterations to continue only until there was no im-

provement in area under the receiver-operating characteristic curve

(AUROC) in validation. Within folds, the best model was selected

based on the F1 score, which reflects the weighted average of preci-

sion and recall. We reported average sensitivity, specificity, positive

predictive value, negative predictive value, AUROC, and F1 score

across folds. The final model was estimated using the full training

sample with the average number of best iterations from cross-

validation and then applied without modification to the test dataset.

We estimated 95% confidence intervals (CIs) for test performance

metrics via bootstrapping (1000 samples with replacement).

Model interpretation and simplification
Knowing what information drives prediction is key for adoption by

medical professionals. Here, we used Shapley values to estimate rel-

ative importance of each feature using the python package

SHAP.25,26 Overall feature importance can be calculated by taking

the mean across individual Shapley values for each feature. Shapley

values can also be transformed to relative risk scores and plotted

against patients’ values to show inflection points above or below

which risk is substantially increased or decreased. Changes in abso-

lute risk were calculated by multiplying Shapley-derived relative risk

score by the prevalence of PPH across the entire cohort. Finally, we

used Shapley values to simplify our model to the minimum necessary

features for maximum performance to improve its clinical utility

and ease of interpretation.

Comparison with other risk assessment tools
We extracted risk factors for 3 commonly used PPH risk assess-

ments: the CMQCC, AWHONN, and NYSBOH.15–17 We assigned

women to low-, medium-, or high-risk groups based on 16 to 17

largely overlapping binary criteria that evaluate medical history, ob-

stetric complications, and current vital signs and labs.20 We used

intrapartum versions when available as this timing better aligns with

the timing of our model. We used both high and medium risk as cut-

offs for computing sensitivity, specificity, positive predictive value,

negative predictive value, and AUROC for each of the 3 toolkits.

We also implemented a previously published EMR-based risk

prediction model that was based on the U.S. Consortium for Safe

Labor Study (CSLS), 2002 to 2008, as an additional comparison.23

The authors used several statistical methods to analyze 55 risk fac-

tors. Here, we trained a gradient boosting machine (their highest

performing method) using all available risk factors (54 of 55; 1 vari-

able, parity, is not available in our dataset) in our training sample

and applied this model to our test sample for a direct comparison.

Significant differences between our model and all other risk assess-

Figure 1. Overview of study design and model development. AWHONN: Association of Women’s Health, Obstetric and Neonatal Nurses; CMQCC: California Ma-

ternal Quality Care Collaborative; CSLS: U.S. Consortium for Safe Labor Study; ICD: International Classification of Diseases; NYSBOH: New York Safety Bundle

for Obstetric Hemorrhage; PPH: postpartum hemorrhage.
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ment tools were assessed using a 2-sided DeLong test for comparing

AUROCs within the same sample.27

Comparison with an alternative phenotype
Because the PPH phenotype we used here is newly developed, we

evaluated our model and all comparison risk assessment tools

against a more commonly used phenotype, estimated blood loss

(EBL) �1000 mL, as well. For these analyses, we followed the same

procedures as described previously, but using only patients with

nonmissing EBL values (n¼63 348) and using EBL alone to define

our outcome (deliveries with EBL �1000 mL were labeled PPH,

mean 1204 6 496 mL; deliveries with EBL <1000 mL were labeled

controls, mean 414 6 229 mL).

RESULTS

Patient cohort demographics and clinical characteristics
Our final pregnancy-delivery cohort included 70 948 deliveries

(79.6%, n ¼ 56 509 of 70 948 independent patients), and PPH prev-

alence was 9% (Figure 1). PPH and non-PPH deliveries differed sig-

nificantly in several demographic and clinical characteristics (Table

1). Additional summary statistics were reported previously.24

Selected features and model performance
We generated 5327 features in our training sample, 3982 of which

had at least 5 nonmissing values. Of these features, we selected 219

that showed significant association with PPH across 2 selection

procedures (gradient boosting and either adaptive lasso or logistic

regression). These 219 derived features represented 98 unique raw

features (eg, minimum and maximum pulse would be counted as 2

features, but only 1 unique feature). These derived features ex-

cluded any features that were used for the PPH digital pheno-

type.24

All selected features were included in cross-validation training,

but only 80 unique raw features (178 total derived features) received

nonzero importance scores (Supplementary Table S2). Using these

80 features, our IML model achieved an AUROC of 0.73 (95% CI,

0.72-0.74) in the training set and an AUROC of 0.72 (95% CI,

0.70-0.73) in the test set. Performance across subsets of features

based on their importance scores suggested that there was minimal

additional value added beyond the top 29 derived features, repre-

senting 24 unique raw features (Supplementary Figure S1). Using

only these top 24 features, AUROC was 0.71 (95% CI, 0.69-0.72)

in the test set. Additional performance metrics were listed in Supple-

mentary Table S1 (training) and Table 2 (testing).

Top 24 features highlight novel risk markers measured

at admission and intrapartum
Among the top 24 unique features, 7 were lab results, 6 were diag-

noses, 4 were vital signs, 4 were demographic variables, and 3 were

medications. Considering the full list of 29 features, 19 (66%) fea-

tures were ones used in current clinical practice or reported previ-

ously, including anemia, preeclampsia, and Cesarean delivery

(Supplementary Table S4). Five (17%) features were novel measures

of risk factors previously reported. For example, we reported ante-

partum pulse as a top feature; pulse is a known risk factor, however,

Table 1. Demographics and clinical characteristics for the Mount Sinai Health System delivery cohort

Pregnancy-Delivery Cohort PPH Non-PPH

Demographics

Number of deliveries 70 948 (100) 6639 (9) 64 309 (89)

Age at delivery, ya 32 6 6 33 6 6 32 6 6

Racea

White 39 977 (56) 3176 (48) 36 801 (57)

African American 7318 (10) 911 (14) 6407 (10)

Asian 5728 (8) 622 (9) 5106 (8)

Native American 278 (<1) 25 (<1) 253 (<1)

Other 13 256 (19) 1495 (22) 11 761 (18)

Unknown 4391 (6) 410 (6) 3981 (6)

Ethnicitya

Non-Hispanic 40 058 (57) 3444 (55) 36 629 (57)

Hispanic 11 313 (16) 1269 (19) 10 044 (16)

Unknown 19 577 (28) 15 686 (25) 17 891 (28)

Insurancea

Private 41 443 (59) 3633 (55) 37 810 (59)

Medicaid or Medicare 23 301 (33) 2474 (37) 20 827 (32)

Uninsured 464 (1) 46 (1) 418 (1)

Other or missing 5740 (8) 486 (7) 5254 (8)

Clinical characteristics at hospital admission

Body mass index, kg/m2a 29 6 5 30 6 6 29 6 5

SBP, mm Hga 121 6 14 125 6 16 121 6 14

DBP, mm Hga 73 6 11 75 6 12 72 6 11

Temperature, �Fa 98.2 6 0.4 98.3 6 0.5 98.2 6 0.4

Hematocrit, %a 36 6 3 35 6 4 36 6 3

Platelets, 10�9/La 207 6 57 202 6 61 207 6 57

Gestational weeks at deliverya 39 6 2 38 6 3 39 6 2

Values are n (%) or mean 6 SD.

DBP: diastolic blood pressure; PPH: postpartum hemorrhage; SBP: systolic blood pressure.
aSignificant difference between cases and controls, P< .001.
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antepartum measures have not been previously considered. As such,

we find that patient data in the 24 feature model is more complete

than the full, 80-feature model (Supplementary Figure S2). Finally, 5

(17%) features represent newly identified risk factors that may war-

rant further investigation including red blood cell count, mean cor-

puscular hemoglobin, red blood cell distribution width, absolute

neutrophil count, and white blood cell count, many of which are

measured in complete blood count panels. These features were avail-

able in 62.5% of PPH deliveries and 55.0% of non-PPH deliveries.

To illustrate how each unique feature contributed to individual pre-

dicted risk, we plotted patients’ Shapley values for the most impor-

tant version of each of the top 24 unique raw features, excluding

functional principal components, colored by the feature value itself

(Figure 2). Shapley values reflect the relative contribution of the fea-

ture to the patient’s predicted risk score; often, high feature values

had a larger impact on an individual’s risk score.

Blood pressure and pulse are measured frequently across the du-

ration of hospital admission to monitor patient well-being. We cal-

culated 3-hour moving averages and SDs for cases and controls

during the 12 hours preceding delivery (Figure 3). Fixed-effects

models confirmed patients who developed PPH had consistently

higher blood pressure and pulse in the hours prior to delivery (and

hemorrhage) than patients who delivered without PPH (Ps <2 �
10�16) (Supplementary Table S4). Additionally, we found that rela-

tive risk for PPH increased, sometimes dramatically, when values

for these key vital signs, as well as for the primary labs used for PPH

risk assessment upon admission, passed certain inflection points (Ta-

ble 2, Figure 4). As noted with the shaded areas in each plot, these

points did not always align with the reference range for normal

pregnancy values.

Predictive risk model outperforms previously published

and existing risk assessment tools
Our 24-feature IML model achieved a significantly higher

AUROC than all other risk assessment tools we applied (Ps <1.94

�10�7 from 2-sided DeLong test) (Table 3, Supplementary Figure

S3). The CSLS model achieved an AUROC of 0.67 (95% CI,

0.66-0.69) and the clinical risk assessment toolkits yielded

AUROC values between 0.55 (95% CI, 0.54-0.56) and 0.61 (95%

CI, 0.59-0.62) across toolkits and case classification thresholds

(Table 3). Because the CSLS and our models had no clear risk cat-

egory thresholds, we assigned risk category labels using deciles of

predicted risk (top 10% ¼ high risk; 60%-90% ¼ medium risk,

<60% ¼ low risk) to compare precision across risk tools (see

Table 2. Vital signs and lab values show discrete increases in relative risk for PPH

Feature During Hospital

Admission

SHAP-Based Cut Point Increase in Relative Risk (Absolute Risk) for PPH

Quartile 1 Median Quartile 3

Minimum SBP 132 mm Hg 9% (0.9%) 11% (1.0%) 13% (1.2%)

Minimum DBP 85 mm Hg 2% (0.2%) 2% (0.2%) 3% (0.3%)

Median pulse 90 beats/min 3% (0.3%) 4% (0.4%) 5% (0.5%)

Minimum hematocrit 30% 2% (0.1%) 5% (0.4%) 7% (0.7%)

Minimum hemoglobin 10.0 g/dL 2% (0.2%) 3% (0.3%) 6% (0.6%)

Minimum platelets 150 � 10�9/L 1% (0.1%) 1% (0.1%) 2% (0.2%)

DBP: diastolic blood pressure; SBP: systolic blood pressure.

Table 3. Performance matrix across risk assessment tools in our independent test set

Risk Assessment Tool Sensitivity Specificity PPV NPV AUROC

Integrated Machine Learning (all 80 variables) 0.57 0.73 0.17 0.95 0.72

(0.54–0.60) (0.72–0.74) (0.16–0.18) (0.94–0.95) (0.70–0.73)

Integrated Machine Learning (top 24 variables) 0.58 0.71 0.17 0.95 0.71

(0.55–0.61) (0.70–0.72) (0.15–0.18) (0.94–0.95) (0.69–0.72)

Consortium for Safe Labor Study 0.56 0.69 0.15 0.94 0.67

(0.53–0.59) (0.68–0.70) (0.14–0.16) (0.94–0.95) (0.66–0.69)

Intrapartum CMQCC—high risk 0.27 0.88 0.19 0.92 0.58

(0.24–0.30) (0.88–0.89) (0.17–0.20) (0.92–0.93) (0.56–0.59)

Intrapartum CMQCC—medium risk 0.63 0.58 0.13 0.94 0.61

(0.59–0.68) (0.57–0.59) (0.12–0.14) (0.94–0.95) (0.59–0.62)

Intrapartum NYSBOH—high risk 0.22 0.87 0.15 0.92 0.55

(0.20–0.25) (0.87–0.88) (0.13–0.16) (0.91–0.92) (0.54–0.56)

Intrapartum NYSBOH—medium risk 0.60 0.61 0.13 0.94 0.60

(0.56–0.65) (0.60–0.62) (0.12–0.14) (0.93–0.94) (0.59–0.62)

Admission AWHONN—high risk 0.43 0.75 0.15 0.93 0.59

(0.40–0.47) (0.74–0.76) (0.13–0.16) (0.93–0.94) (0.58–0.61)

Admission AWHONN—medium risk 0.89 0.20 0.10 0.95 0.55

(0.84–0.94) (0.20–0.21) (0.09–0.10) (0.94–0.96) (0.54–0.56)

AUROC: area under the receiver-operating characteristic curve; AWHONN: Association of Women’s Health, Obstetric and Neonatal Nurses; CMQCC: Cali-

fornia Maternal Quality Care Collaborative; NPV: negative predictive value; NYSBOH: New York Safety Bundle for Obstetric Hemorrhage; PPH: postpartum

hemorrhage; PPV: positive predictive value.
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Supplementary Table S4). Among the high-risk category, PPV was

28% for our model, 24% for the CSLS model, and 15% to 19%

for the clinical toolkits (Figure 5).

Finally, we found a similar pattern of results using a more com-

monly implemented phenotype, EBL �1000 mL, rather than our

digital phenotyping algorithm (Supplementary Table S5). Case prev-

alence using EBL alone was 7% overall (n¼4182). Our IML model

achieved an AUROC of 0.85 (95% CI, 0.84-0.87) using all 80

unique features, with no loss in AUROC when restricting the top 24

unique features (0.85; 95% C,I 0.84-0.86); this was significantly

higher than all other risk tools (Ps <2.2 � 10�16 from 2-sided

DeLong test). The CSLS model had an AUROC of 0.77 (95% CI,

0.75-0.78), and the clinical toolkits had AUROCs ranging from

0.55 (95% CI, 0.54-0.56) to 0.66 (95% CI, 0.64-0.57) depending

on the toolkit and case classification threshold (Supplementary Ta-

ble S5).

Figure 2. SHAP summary plot. SHAP summary plot for top 24 clinical features for postpartum hemorrhage (PPH) prediction shows the SHAP values for the most

important features from Gradient boosting model in the training data. Features in the summary plot (y-axis) are ordered by the mean absolute SHAP values (x-

axis), which represents the importance of the feature in driving the PPH prediction. Values of the feature for each patient are colored by their relative value, with

red color indicating high value and blue color indicating low value. Positive SHAP values indicate increased risks for PPH and negative values indicate protective

effects to PPH. DBP: diastolic blood pressure; freq.: frequency; hosp.: hospital; SBP: systolic blood pressure.

Figure 3. Dynamic changes of 3 vital signs consistently measured prior to delivery. Moving averages and standard deviations with 3-hour windows across the 12

hours prior to delivery were computed for cases and controls. PPH: postpartum hemorrhage.
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DISCUSSION

This study highlights a novel approach to predicting postpartum

hemorrhage utilizing a rich, diverse EMR dataset spanning 9 years

of deliveries. Our IML model used only 24 clinical variables—all

passively collected through routine clinical care—to evaluate risk for

PPH more accurately than 3 currently used risk assessment tools and

a previously developed EMR-based model. When we used deciles of

predicted risk to assign patients to risk categories, we found that

PPH prevalence was 28% in our high-risk category, nearly twice as

high as when risk was determined using clinical risk tools (15%-

19%) (Figure 5). Additionally, we identified inflection points for vi-

tal signs and labs where risk for PPH increased. These can help to

guide risk management for PPH, while several novel risk factors

may be additionally useful for monitoring risk during hospital ad-

mission. Finally, we showed that phenotype sensitivity can have a

high impact on risk prediction research by comparing models using

a highly accurate digital phenotype vs a less sensitive, blood loss–

based one.

One significant advantage of our model is that it substantially

outperformed currently used clinical tools with only 24 features, all

of which are generally assessed prior to delivery. Our feature selec-

tion process was key to this success. All other risk assessment tools

were based on expert opinion and clinical consensus, which does

not always result in a set of features that maximize predictive accu-

racy. By assaying thousands of potential risk factors and using a

suite of data-driven approaches to find the optimal set, we selected

24 known and novel risk factors that together delivered the highest

performance of the tools we tested, including a model with more

than twice as many features (CSLS, 55 features).

Our study also offered high-resolution analysis of the PPH sta-

tus–dependent temporal trends for vital signs and labs that are

assessed and used for monitoring the peripartum period. In the ob-

stetric population, there is a wide range of hemodynamic changes as-

sociated with blood loss.28,29 Although hemodynamic changes

encompass the reVITALize definition for PPH, there are no discrete

definitions for these changes. Our model shows significant increas-

ing trends for systolic blood pressure (SBP), diastolic blood pressure

(DBP), and pulse in cases prior to delivery (Supplementary Table

S4). As depicted in Figure 3, SBP, DBP, and pulse begin rising at ap-

proximately 5 hours prior to delivery. There is significant variability

Figure 4. SHAP dependency plot. SHAP scores (relative risks, y-axis) for postpartum hemorrhage (PPH) prediction was plotted against feature values (x-axis) for

patients in the training data. The plot shows how different values of the features can affect relative risks and ultimately impact classifier decision for 6 vital signs

and lab measurements stratified by type of delivery. The shaded gray area reflects the reference ranges for the corresponding vital signs or lab measures. Data

points are colored by the delivery method (Cesarean or vaginal). DBP: diastolic blood pressure; SBP: systolic blood pressure.
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Figure 5. Postpartum hemorrhage (PPH) prevalence among patients of differ-

ent risk groups varies by risk assessment tools. Case prevalence within each

risk category for each risk tool was calculated. Risk categories were assigned

using deciles for U.S. Consortium for Safe Labor Study (CSLS) and Sema4

models (high risk ¼ top 10%, medium risk ¼ 60%-90%, low risk ¼ <60%).

AWHONN: Association of Women’s Health, Obstetric and Neonatal Nurses;

CMQCC: California Maternal Quality Care Collaborative; IML: integrated ma-

chine learning; NYSBOH: New York Safety Bundle for Obstetric Hemorrhage.
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in the relationship between blood loss and clinical signs, but these

trends may provide useful insights for clinical care.29

Additionally, we highlighted some notable transition points for

important features such as platelets, hemoglobin, hematocrit, SBP,

DBP, and pulse (Table 2; Figure 4). Notably, platelet count >150

appears to be protective for PPH. Recent data has shown that mild

thrombocytopenia is an independent risk factor for PPH.30,31 None-

theless, our cohort provided robust data clearly showing an increas-

ing risk of hemorrhage with decreasing platelet for both vaginal and

cesarean deliveries. Furthermore, we found that hematocrit and he-

moglobin values reflected differential risks for PPH for cesarean rel-

ative to vaginal deliveries. Risk for all patients increased with values

lower than 30% or 10.0 g/dL, respectively (Table 2), but the in-

crease was steeper for cesarean deliveries than for vaginal deliveries

(Figure 4). Cesarean deliveries were performed in 35.3% (n ¼
25 074 of 70 948) of patients. Finally, we found that risk increased

at different thresholds for SBP, DBP, and pulse than what would be

expected based on reference ranges for normal values (Table 2). For

SBP, we observed an 11% median increase in risk for PPH when val-

ues were above 132 mm Hg, despite a typical cutoff of <140 mm

Hg in pregnancy. Similarly, high pulse and DBP increased in risk at

values within the normal range: 90 beats/min and 85 mm Hg, re-

spectively, while >110 beats/min and >90 mm Hg are considered

high in pregnancy. We also note differences in vital signs between

vaginal and cesarean deliveries which reflect physiologic differences

in mode of delivery (active pushing in vaginal delivery vs closely

monitored blood pressures intraoperatively with neuraxial or gen-

eral anesthesia). Nonetheless, our data suggest that intrapartum vi-

tal signs can capture risk for PPH and using PPH-specific risk

guidelines may enhance monitoring relative to using reference

ranges derived from the general population.

We also highlight several novel risk factors that are not currently

monitored but are available from routine lab measurements and

provide additional information for clinicians. We found that red

blood cells indices (red blood cell distribution width, red blood cell

count, and mean corpuscular hemoglobin) were key risk factors for

PPH in our model. Red blood cell distribution width can be a

marker for disease severity for underlying conditions such as diabe-

tes, cardiovascular disease, and chronic kidney disease, as well.32,33

These indices are likely associated with anemia, which impairs the

physiologic response to blood loss and leads to worse prognosis.

Further, infectious markers (white blood cell count and absolute

neutrophil count) also had a high importance. These markers may

indicate underlying inflammatory process, which also may alter or

blunt the maternal response to blood loss leading to PPH. While

these factors are already routinely assessed upon admission to Labor

& Delivery, they are not currently used for monitoring risk. This

may be a promising future direction for detecting individuals at risk,

especially individuals presenting without other known risk factors.

Our final contribution was evaluating all risk prediction tools

against a highly accurate PPH phenotype. Any assessment of the per-

formance of a risk tool depends on how accurately the outcome it

aims to predict is measured. Here, we compared performance of all

risk tools for 2 definitions of PPH: (1) a digital phenotype that we

developed24 and (2) a phenotype based exclusively on a blood loss

threshold for hemorrhage (�1000 mL) recommended by American

College of Obstetricians and Gynecologists11 and assessed by the

CSLS model.23 We have previously compared these phenotypes to

chart review labels and found that the digital phenotype was signifi-

cantly more accurate (AUROC of 0.85 vs 0.67).24 A key driver of

this discrepancy is that many patients with PPH do not pass this

blood loss threshold (but can be identified using other measures of

blood loss or receipts of treatment) and thus are misclassified as con-

trols.13 Here, using the same features and statistical methods for

each tool, all risk models achieved higher performance for the EBL-

based phenotype. Our model improved 14 points in AUROC (0.85

[95% CI, 0.84-0.86] vs 0.71 [95% CI, 0.69-0.72]) by switching phe-

notypes. However, this high performance is not particularly mean-

ingful given the low accuracy of the phenotype and underlines the

importance of both developing high-quality phenotypes and build-

ing risk assessment tools based on well-measured outcomes. Most

prior work aimed at improving risk prediction for PPH has not

benefited from using robust phenotypes, and this remains a major

barrier to achieving that goal.

Our study comes with several limitations: it is retrospective,

relies on data from a single healthcare system, and does not utilize

free-text notes. Our study may not reflect performance in a real-

world clinical setting, and prospective validation of this work with

model calibration34 in diverse healthcare systems is critical to evalu-

ate any potential clinical utility, although currently no such prognos-

tic model exists for the general obstetric population.35 Nonetheless,

EMR in Mount Sinai Health System is the one of the largest and

most comprehensive EMR systems, representing racial and ethnic

diversity in New York City, as well as EMR implementation from

various data sources. In the current study, we did not assess for dif-

ferences in prediction by race or ethnicity. Although we note differ-

ences in rates of postpartum hemorrhage by race, ethnicity, and

insurance type, we have not accounted for potential differences in

baseline characteristics or other risk factors that may contribute to

these differences. Given this, it may be premature to incorporate

these differences into our model and conclusions.36 This would be

an important area for future study. Finally, while our use of deiden-

tified data can facilitate the application of our tools in research set-

tings, systematic incorporation of data from clinical notes could

bring valuable information particularly for patients missing key de-

livery details or without additional confirmation of PPH.

In summary, we utilized a large, robust, and diverse dataset to

develop a novel risk prediction model for PPH, one of the leading

causes of maternal mortality in the United States. In comparison

with existing risk assessment tools, including those currently used in

clinical practice, we are able to achieve a higher AUROC with rela-

tively few features using a highly accurate digital phenotype for

PPH. We further identified inflection points for vital signs and lab

values in which risk for PPH begins to increase, which can be used

as guidelines for monitoring risk intrapartum. The improvements in

risk assessment afforded by our approach will require real-time, pro-

spective evaluation in a hospital setting.37 This tool affords integra-

tion of multiple important clinical factors to best predict risk of

clinically significant PPH. Our results suggest that using this model

could facilitate early identification of PPH and allocation of appro-

priate resources,38 such as increased personnel, quick access to ute-

rotonics, and identification of patients who need close observation.

Ultimately, this may lead to reduced incidence, lower severity, and

lower rates of maternal mortality.
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