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Abstract: In this study, we propose a real-time pedestrian detection system using a FPGA with a
digital image sensor. Comparing with some prior works, the proposed implementation realizes
both the histogram of oriented gradients (HOG) and the trained support vector machine (SVM)
classification on a FPGA. Moreover, the implementation does not use any external memory or
processors to assist the implementation. Although the implementation implements both the HOG
algorithm and the SVM classification in hardware without using any external memory modules and
processors, the proposed implementation’s resource utilization of the FPGA is lower than most of the
prior art. The main reasons resulting in the lower resource usage are: (1) simplification in the Getting
Bin sub-module; (2) distributed writing and two shift registers in the Cell Histogram Generation
sub-module; (3) reuse of each sum of the cell histogram in the Block Histogram Normalization
sub-module; and (4) regarding a window of the SVM classification as 105 blocks of the SVM
classification. Moreover, compared to Dalal and Triggs’s pure software HOG implementation,
the proposed implementation‘s average detection rate is just about 4.05% less, but can achieve a
much higher frame rate.

Keywords: HOG; SVM; FPGA; hardware acceleration; pedestrian detection

1. Introduction

Real-time pedestrian detection is an important technology for modern society [1] in many
applications, such as surveillance [2], intelligence vehicle systems [3], and robot navigation [4].
Some studies have extracted diverse features from an image and have found appropriate classification
methods to perform robust pedestrian detection [5–9]. An excellent algorithm, the histogram
of oriented gradients (HOG) [10], was proposed by Dalal and Triggs in 2005. It is an efficient
feature extraction algorithm, and it can accurately detect a pedestrian in difficult conditions, such as
deformation, rotation, or illumination changes. However, the calculation cost of the HOG is very
high because of its repeated and complex computation. However, several studies have realized
pedestrian detection based on a central processing unit (CPU) or graphics processing units (GPUs),
or the combination of both [11–15], they are not suitable to many applications, such as surveillance.
Since such applications are contingent on hardware cost and power consumption, field programmable
gate arrays (FPGA), with better speed and power consumption, are more suitable than GPUs.

Some prior works have realized pedestrian detection based on a FPGA, such as [16–22].
In early years, Kadota et al. [16] proposed several methods to simplify the computation, such as
the square root and arctangent. Negi et al. [17] proposed an implementation by using binary-patterned
HOG features, adaptive boosting (AdaBoost) classifiers [23], and some approximation arithmetic
strategies. Hsiao et al. [18] realized an implementation in an embedded hardware/software co-design.
Komorkiewicz et al. [19] proposed an accurate system using single-precision 32-bit floating point
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computations in all stages of image processing. Hiromoto et al. [20] proposed a window-based scanning
architecture. Mizuno et al. [21] proposed a simplified HOG algorithm with cell-based scanning and
utilized an external SRAM to assist support vector machine (SVM) calculation [24]. Hahnle et al. [22]
proposed a cell-based scanning method, as well.

The above implementations have at least one characteristic from the following list: (a) they
implement the HOG without implementing any classification; (b) they use external memory or
an external processor in their implementation; and (c) they use large hardware resources in
their implementation.

To avoid using additional resources, the proposed implementation is all in a FPGA with a digital
image sensor, which is responsible for capturing images and it does not use any external memory
modules and processors. Moreover, the implementation can be suited to certain environments, such as
surveillance, under reasonable resolution and resource utilization.

Shown in the experimental results, although the proposed implementation implements both the
HOG algorithm and the SVM classification in hardware without using any external memory modules
and processors, the implementation’s resource utilization of the FPGA is lower than most of the prior
art. The main reasons resulting in the lower resource utilization are shown as follows:

1. Through simplifications in the Getting Bin, the proposed system can use fewer hardware resources
to obtain bins.

2. Through the distributed writing and two shift registers in the Cell Histogram Generation
sub-module, the proposed system can easily deal with each intermediate cell histogram without
any address decoder.

3. To decrease the number of calculations, the proposed system reuses each sum of the cell histogram,
which is overlapped between each block in the Block Histogram Normalization sub-module.

4. The same as some previous state of the art, we regard a window of the SVM classification as
105 blocks of the SVM classification.

The detail of this article is organized as follows: The background knowledge of the HOG feature
extraction algorithm and SVM classification are introduced in Section 2. Section 3 explains how the
pedestrian detection is implemented using the HOG algorithm and the SVM classification on a FPGA.
Subsequently, the implementation’s hardware resource utilization, detection rates, and comparisons
with previous works are shown in Section 4. Finally, the article concludes in Section 5.

2. Background Knowledge

This study implements not only the HOG feature extraction algorithm, but also the SVM
classification on a single FPGA. The pedestrian detection in each frame is performed using a sliding
window. As shown in Figure 1, the detection window in the proposed scheme consists of 64 × 128
pixels in size, and it contains 7 × 15 blocks. A block further contains 2 × 2 cells and a cell contains
8 × 8 pixels. It slides the detection window rightward or downward by eight pixels (the width of a
cell) per time in a frame.

The pedestrian detection process consists of two parts: First, it obtains the descriptors of each
detection window by using the HOG feature extraction algorithm. Afterwards, the descriptors are
classified by using the SVM classification.
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Figure 1. Division of a detection window in a frame in the proposed scheme.

2.1. HOG Feature Extraction Algorithm

The process of the HOG feature extraction consists of three steps:

1. Calculation of Gradients

Before calculating the gradients, the proposed system converts RGB values of pixels to gray values
of pixels. In this scheme, the converted method is realized by the Equation (1) [25]:

Gray = R× 0.299 + G× 0.587 + B× 0.144 (1)

Let Gray(i, j) be the gray values of the pixel (i, j). The horizontal differences of gray Gx(i, j) and
vertical differences of gray Gy(i, j) are defined as shown in Equations (2) and (3):

Gx(i, j) = Gray(i + 1, j)− Gray(i− 1, j) (2)

Gy(i, j) = Gray(i, j + 1)− Gray(i, j− 1) (3)

Using these values, gradient magnitudes M(i, j) and gradient orientations θ(i, j) are calculated
according to Equations (4) and (5), respectively:

M(i, j) =
√

Gx(i, j)2 + Gy(i, j)2 (4)

θ(i, j) = tan−1
(

Gy(i, j)
Gx(i, j)

)
(5)

2. Cell Histogram Generation

When magnitudes M(i, j) and orientations θ(i, j) are obtained, they are utilized to vote for
generating cell histograms. In this scheme, orientations are divided into nine bins. In each cell,
gradient magnitudes of all pixels are voted on their respective bins. The contributions of all pixels in a
cell are added up to create a histogram.

3. Block Normalization

In this scheme, each group of 2 × 2 cells, which is regarded as a block, is normalized by using the
L1-sqrt normalization method:

v→
√

v
(‖v‖1 + e)

(6)
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where v is an unnormalized descriptor vector in a block, ‖v‖1 is its 1-norm, and e is a small constant.
Finally, all of normalized blocks are concatenated as HOG descriptors x.

2.2. SVM Classification

When obtaining HOG descriptors, they are classified by the linear SVM classification equation:

y(x) = ωT ·x + b (7)

In the training section of this study, firstly, every 64 × 128 pixels of an image would be converted
into 3780 HOG features through the HOG feature extraction algorithm. Two classes are used in the
HOG: with a pedestrian and without a pedestrian. Subsequently, the library of the SVM supported in
OpenCV would use these HOG features to train the weight vector ω and the bias b. When the weight
vector ω and the bias b are determined after the training section, they would be stored into the ROM
on the FPGA, and then the implementation on the FPGA utilizes it to classify new 64 × 128 pixels of
the detection windows.

3. Proposed Hardware Implementation

This section explains how the proposed system implements pedestrian detection using the HOG
algorithm and the SVM classification in real-time on a FPGA. From the inputs of the pixels to the
outputs of the results, the entire implementation is accomplished entirely in hardware.

3.1. Flow of Pedestrian Detection Algorithm

As shown in Figure 2, each pixel (i, j) in the input frame (resolution of 800 × 600), which is
captured by the digital image sensor is converted to gray values, Gray(i, j) by Equation (1). The key
performance parameters of the digital image sensor are listed in Table 1.

Table 1. Key performance parameters of the digital image sensor.

Parameter Value

Active Pixels 2592 H × 1944 V
Pixel size 2.2 µm × 2.2 µm

Color filter array RGB Bayer pattern
Shutter type Global reset release (GRR)

Maximum data rate/master clock 96 Mp/s at 96 MHz

Frame rate
Full resolution Programmable up to 15 fps

VGA mode Programmable up to 70 fps
ADC resolution 12-bit

Responsivity 1.4 V/lux-sec (550 nm)
Pixel dynamic range 70.1 dB

SNRMAX 38.1 dB

Supply Voltage Power 3.3 V
I/O 1.7 V–3.1 V

To avoid expensive floating point computations, the RGB weights are shifted by eight bits
(0.299 << 8 ≈ 77, 0.587 << 8 ≈ 150, 0.144 << 8 ≈ 29) to retain their decimal information. The HOG
Computation module, which contains three sub-modules and the SVM Classification module are run
at a 150 MHz operating frequency. The Gray(i, j) are continually streamed into the Gradient Calculation
sub-module and then their gradients are determined. When their magnitude and their orientation are
produced, the cell histogram is generated in the Cell Histogram Generation sub-module. Finally, in the
Block Histogram Normalization sub-module, a group of cell histograms (2 × 2 cells comprise a block)
is normalized as the final HOG features for the SVM classification. After classification, three signals
are outputted:
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• The row of the detection window position, Rw.
• The column of the detection window position, Cw.
• The result of the detection window (1 with pedestrian, 0 without pedestrian), Dec.

Figure 2. Flow of the proposed system’s pedestrian detection algorithm.

In the following sections each sub-module and the SVM Classification module in Figure 2 are
individually described.

3.2. Gradient Calculation

Figure 3 is the implementation of the gradient calculation sub-module in the proposed structure.
The Gray(i, j) is continually streamed into a shift register, which is composed of three line buffers.
Each line buffer consists of 800 8-bit words to suit the system’s column size of a frame. When the shift
register is appropriate for computing differences, data is buffered to calculate horizontal differences
Gx(i, j) and vertical differences Gy(i, j). When Gx(i, j) and Gy(i, j) are obtained, magnitudes M(i, j)
and orientations θ(i, j) are calculated simultaneously. The result of sqrt in Figure 3 is obtained by the
Altera’s ALTSQRT IP core [26]. The Getting Bins (computing orientations) is described in Figure 3.
Results of the Getting Bins are buffered because the results of the Getting Bins are faster than the
results of the computing magnitudes.

Figure 3. Diagram of the Gradient Calculation sub-module in the proposed structure.

The original HOG divided the orientations of gradients into several bins, and used the magnitudes
of each gradient as the weight to generate the cell histogram in the Cell Histogram Generation
sub-module. Then, the distribution of the cell histogram is computed in the Block Histogram
Normalization sub-module to obtain the final feature. In the proposed scheme, it divides orientations
into nine bins (as shown in Figure 4).
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Figure 4. Dividing orientations into nine bins in the proposed scheme.

To avoid the expensive floating point computation of arctangents, this study refers to the scheme
of Kadota et al. [16] and Zhou et al. [27], which uses a compared method to obtain corresponding bins.
Firstly, the study utilizes Algorithm 1 to determine θ(i, j)’s rough range.

Algorithm 1. Determine θ(i, j)’s rough range.

Input: Gx(i, j), Gy(i, j)

Output:

Gx_r(i, j): absolute values of Gx(i, j)
Gy_r(i, j): absolute values of Gy(i, j)
GxGy_xor(i, j): values determining Gx(i, j) and Gy(i, j)
have same sign or not

1© if (Gy(i, j) == 0) begin //θ(i, j) = 0◦, bin (i, j) = 8
GxGy_xor(i, j) = 0;
Gx_r(i, j) = 10;
Gy_r(i, j) = 1 << 8;

2© end else if (Gx(i, j) == 0) begin //θ(i, j) = 90◦, bin (i, j) = 4
GxGy_xor(i, j) = 1;
Gx_r(i, j) = 1;
Gy_r(i, j) = 3 << 8;

3© end else begin //0◦ < θ(i, j) < 90◦ or 90◦ < θ(i, j) < 180◦, bin (i, j) hasn’t been determined
GxGy_xor(i, j) = Gx[bit of sign] (i, j) ˆ Gy[bit of sign] (i, j);
Gx_r(i, j) = Gx[bit of sign] (i, j) ? (~Gx[bit of sign-1:0] (i, j)) + 1 : Gx[bit of sign-1:0] (i, j);
Gy_r(i, j) = Gy[bit of sign] (i, j) ? ((~Gy[bit of sign-1:0] (i, j)) + 1) << 8: (Gy[bit of sign-1:0]
(i, j)) << 8;

end

Afterwards, the nearest tangent value of Gy(i, j) is determined in Algorithm 2. Finally, the exact
bin (i, j) is obtained in Algorithm 3.

Algorithm 2. Determine the nearest tangent value of Gy_r(i, j).

Input: Gx_r(i, j), Gy_r(i, j)

Output:
Distance_signk (i, j): indicate Gx_r(i, j) × tanθ(i, j) <
Gy_r(i, j) or Gx_r(i, j) × tanθ(i, j) ≥ Gy_r(i, j)
NearestDeg (i, j): flag of the nearest degree

1© //fixed tanθ are shifted by 8 bits to retain their decimal information.
Distance0 (i, j) = Gx_r(i, j) × (tan10◦ << 8)—Gy_r(i, j)
Distance1 (i, j) = Gx_r(i, j) × (tan30◦ << 8)—Gy_r(i, j)
Distance2 (i, j) = Gx_r(i, j) × (tan50◦ << 8)—Gy_r(i, j)
Distance3 (i, j) = Gx_r(i, j) × (tan70◦ << 8)—Gy_r(i, j)

2©

Distance_absk (i, j) =

{
Distancek (i, j) < 0, Distancek (i, j) takes 2′s complement

otherwise, Distancek (i, j)

Distance_signk (i, j) = Distancek[bit o f sign] (i, j), 0 ≤ k ≤ 3
3©

NearestDeg (i, j) = minDegree(Distance_absk (i, j), 0 ≤ k ≤ 3), minDegree() = k
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Through proposed Algorithms 1–3, the proposed system only uses 220 LUTs, 235 registers,
and four DSP blocks to implement the comparison method to get bins. The four DSP blocks are mainly
used to implement the step 1© in Algorithm 2.

Algorithm 3. Obtain bin (i, j) according to the property of tanθ.

Input: GxGy_xor(i, j), NearestDeg (i, j), Distance_signk (i, j)
Output: bin (i, j)

1© if (GxGy_xor(i, j) == 0) //Same sign
case(NearestDeg (i, j))

0: θ(i, j) = 10◦

1: θ(i, j) = 30◦

2: θ(i, j) = 50◦

3: θ(i, j) = 70◦

end case
if Distance_signk (i, j) == 1 (|Gx(i, j)| × |tanθ(i, j)| < |Gy(i, j)|)

the bin (i, j) is at big degree side of the nearest θ(i, j)
Else

the bin (i, j) is at small degree side of the nearest θ(i, j)
2© else //GxGy_xor(i, j) == 1 (Different sign):

case(NearestDeg (i, j))
0: θ(i, j) = 170◦

1: θ(i, j) = 150◦

2: θ(i, j) = 130◦

3: θ(i, j) = 110◦

end case
if Distance_signk (i, j) == 1

the bin (i, j) is at small degree side of the nearest θ(i, j)
Else

the bin (i, j) is at big degree side of the nearest θ(i, j)

3.3. Cell Histogram Generation

When the magnitudes M(i, j) and bin (i, j) are obtained, they are utilized to vote for generating cell
histograms (as shown in Figure 5). Each M(i, j), which is regarded as a weight, refers to bin (i, j) to vote,
directly. In the proposed scheme, the results of voting magnitude for every pixel are not written into
Shift Register 1 until the results of voting magnitudes for eight pixels (width of a cell) are completed.

Shift Register 1 contains eight buffer lines and each buffer line stores 100 partial cell histograms.
Because a frame in the scheme contains 100 columns of cells and every cell contains nine bins, a buffer
line contains 900 12-bit words, and every word stores a partial value of a certain bin. Storing Bin
Counter is able to compute how many partial values have been stored into Shift Register 1. When the
amount of the stored partial values are suitable for summing, every partial value in the same bin
would be read out and summed to the whole cell histograms. The whole cell histograms would be
stored into Shift Register 2. When 100 columns by one row of whole cell histograms are obtained,
the next 100 columns by eight rows of partial cell histograms would be computed in the same way.

Shift Register 2 contains two buffer lines, because the shift register could be suited to block
overlapping. Each buffer line in the shift register contains 900 13-bit words to store the histogram of the
whole cell. Since every block overlaps adjacent blocks in a cell, this study utilizes the two buffer lines
of the shift register to easily assemble the blocks. When the shift register is appropriate for the next
phase, the data in the shift register would be read by the Block Histogram Normalization sub-module.

Through the proposed distributed writing and two shift registers, it can easily deal with each
intermediate cell histogram without any address decoder.
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Figure 5. Diagram of the Cell Histogram Generation sub-module in the proposed structure.

3.4. Block Histogram Normalization

In the Block Histogram Normalization sub-module (as shown in Figure 6), this study uses the
L1-sqrt normalization method to realize the normalization. Firstly, the cell histograms read from the
shift register are inputted to Left Shift and Sum. Normally, results of the block histogram normalization
are less than 1, so Left Shift shifts the data for saving their decimal information. Through these left
shifts in Figure 6, results of Divide and sqrt (both from Altera’s IP core [26]) would not be zeroes.
Since Divide would not be run until the cell histograms are added as a sum of the blocks, the proposed
system inputs these data into FIFOs. When the cell histograms are added as a sum of the blocks,
the data would be read from FIFOs into Divide and then the data would be divided by the sum of the
blocks. To reduce the computational workload, this study exploits the property of block overlapping.
Every block overlaps adjacent blocks by the width of a cell. When the overlapping cell is read into
Divide, it would be also write into another FIFO for the next block histogram computation. For the
same reason, a sum of the cells would be stored and it would be added for the next sum of the blocks.
Finally, the results of Divide are shifted and inputted into the sqrt to produce the final HOG descriptors.
Through an address decoder, four descriptors, which individually indicate a cell of a block (a block
has four cells), would be buffered to the Final Descriptor Buffer.
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Figure 6. Diagram the Block Histogram Normalization sub-module in the proposed structure.

3.5. SVM Classification

This section explains the SVM Classification module, which was implemented on the FPGA
as well. The linear SVM classification (Equation (7)) is implemented in this module. The weight
vectors ω and the bias b are stored in a ROM on the FPGA. The detection window in the proposed
scheme contains 7× 15 blocks and every block contains 36 descriptors, so a detection window contains
7 × 15 × 36 = 3780 descriptors. If it waits for all of the descriptors to consist of a whole window
(3780 descriptors) to begin the SVM classification, it has to use a large amount of memory to store
the previous descriptors. To reduce the memory utilization, the same as some previous states of the
art, the SVM Classification module in this study uses a cell-based scanning structure. It modifies the
linear SVM classification Equation (7) as Equation (8), in which the xBi means descriptors of a block in
a window:

y(x) =
105

∑
i=0

(ωT
i ·xBi) + b (8)

Since a window contains 7 × 15 = blocks, a window of the SVM classification can be regarded as
105 blocks of the SVM classification. Hence, when the descriptors of a block are completed, we can
begin these partial SVM classifications. In this case, rather than store descriptors of many windows,
it just stores the results of partial SVM classifications.

Since a window contains 15 rows of blocks, the Block RAM in Figure 7 consists of 15 rows of
RAM. Each row of RAM consists of a row of 93 windows in which each word stores their results
of partial SVM classifications individually. The proposed system uses two multiply-accumulators
(MACs) for a row of RAM, so it has 30 MACs in the SVM Classification module. Since a block may
overlap 105 windows, at most, descriptors of a block may have to take the dot product of the whole
weight vectors in ROM. Hence, two descriptors read from the Final Descriptor Buffer are inputted
to each MAC, and 15 weight vectors read from ROM are used for each descriptor (30 vectors in
total). A MAC Address Decoder is responsible for reading/writing the Final Descriptor Buffer and
determines which weight vectors should the current descriptors to be taken dot product to. When a
block is completed, these 15 results of partial SVM classifications are added to their previous results of
partial SVM classifications stored in Block RAM and then the results are judged whether a window is
completed. If a window is completed, the completed result is added to judge whether the window
contains any pedestrians, the according word in the RAM would be zeroed, and another 14 results
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would be rewritten according to the words. If a window is not completed, 15 results would all be
rewritten according to the words. After the words in a row of RAM are zeroed, the next row of
partial results would be stored to these zeroed words. Hence, the 15 rows of RAM can be reused for
all windows.

Figure 7. Diagram of the SVM classification in the proposed structure.

Since the blocks (except the first one) in a frame need 126 cycles to be completed for partial SVM
classifications, a frame of blocks would be completed in 126× 99× 74 (a frame contains 99 × 74 blocks)
= 923,076 cycles. If the operating frequency of the proposed hardware is 150 MHz, it can achieve
around 162 fps.

4. Results and Discussion

The proposed system is implemented on an Altera tPad FPGA board, developed by Terasic
(Hsinchu City, Taiwan), which has a DE2-115 evaluation board with a Cyclone IV EP4CE115 FPGA.
The entire implementation is accomplished all in hardware without using any external memory
modules. In this section, we show the hardware resource utilization in this study and compare the
results with other previous works. In addition, it also compares this study’s implementation method
with some previous works.

Since it is difficult to evaluate the detection rate on a FPGA, a simulation is conducted
using software to estimate the accuracy degradation of the proposed system with the fixed-point
implementation. The software with a fixed-point implementation has the same behavior as the
proposed system with a fixed-point implementation. We also implement floating-point arithmetic in
the software and compare it with its fixed-point implementation to estimate the accuracy degradation.
Finally, we compared the fixed-point implementation of the software with Dalal’s implementation [10].

4.1. Implementation Method and Resource Utilization

Table 2 compares this study’s implementation method with other previous works and Table 3
compares this study’s resource utilization with other previous works. Compared to the implementation
from Kadota et al. [16], which just concentrates on the HOG feature extraction without implementing
the classification, this study implements not only the HOG feature extraction, but also the SVM
classification. Although they do not use any memory in their platform, this study uses significantly less
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LUTs and registers. Compared to the implementation from Negi et al. [17], the memory utilization in
this study is significantly lower than theirs, and the resolution is higher. In the implementation
from Hsiao et al. [18], their LUTs, registers, DSP blocks, and memory are all less than this
study’s. However, their implementation is not accomplished all in hardware. Their implementation
is accomplished in an embedded hardware/software co-design. They just implement the HOG feature
extraction in FPGA hardware and implement the SVM classification in an embedded ARM processor.
Comparing this study’s resource utilization of HOG (without the SVM classification) with their
resource utilization, the resource utilization between this study’s and theirs does not have significant
difference, but the proposed implementation can achieve a higher frame rate. Compared to the
implementation from Komorkiewicz et al. [19], their implementation used the single-precision floating
point representation in all stages of image processing, so their resource utilization was very large. In
the implementation from Hiromoto et al. [20], although they used fewer DSP blocks than the proposed
system, the proposed system used significantly fewer LUTs and memory than theirs. Compared to the
implementation from Mizuno et al. [21], theirs and this study use the same platforms, but the study
does not use any external memory modules. Especially in the SVM classification module, they use an
external SRAM to store SVM coefficients and intermediate results. In this case, the SRAM can help
the FPGA to reduce its memory utilization significantly, but it does not indicate that they truly reduce
the memory utilization. They just use the external memory (SRAM) instead of the internal memory
(the memory of the FPGA).

4.2. Detection Rate

To evaluate the detection rate of this study, a simulation is conducted using software for object
detection to estimate the performance and the accuracy degradation. The software has the same
behavior as the FPGA implementation and it is implemented by using Microsoft Visual C++ 2013
Express Edition with the OpenCV library version 3.1 and two different databases.

The first database used in this study is the well-established MIT pedestrian database [28].
This study selects 624 images with at least one person each as positive training examples and 300
images with at least one person each is selected as positive testing examples. In negative examples,
since the MIT pedestrian database does not have person-free images, we selected 3120 patches sampled
randomly from 312 person-free scenes in the INRIA person database [29] as negative training examples.
Subsequently, we select another 1160 patches sampled randomly from 116 person-free scenes in
the INRIA person database as negative testing examples. Figure 8 shows the detection accuracy of
fixed-point and floating-point implementations in this study, which presents a graph of false positives
per window (FPPW) versus the miss rate. The detection accuracy of both implementations in this
study are less than, or equal to, 1% at any location on the FPPW axis.

Figure 8. Detection accuracy of fixed-point and floating-point implementations on the MIT
pedestrian database.
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Table 2. Comparing this study’s implementation methods with other previous works.

[16] [17] [18] [19] [20] [21] Proposed

Implementaion Device HOG-FPGA
SVM-No

HOG-FPGA
AdaBoost-FPGA

HOG-FPGA
SVM-ARM Processor

HOG-FPGA
SVM-FPGA

HOG-FPGA
SVM-FPGA

HOG-FPGA
SVM-FPGA

HOG-FPGA
SVM-FPGA

External memory × × ARM processor × × SRAM ×
Distributed writing and two shift

registers in Cell Histogram Generation × × × × × × #

105 blocks of the SVM classification × AdaBoost × × × # #

Table 3. Comparing this study’s resource utilization with other previous works.

Platform
[16] [17] [18] [19] [20] [21] Proposed

Altera Stratix II Xilinx Virtex-5 Xilinx Spartan-6 Xilinx Virtex-6 Xilinx Virtex-5 Altera Cyclone IV Altera Cyclone IV

Resolution 640 × 480 320 × 240 various 1 640 × 480 320 × 240 800 × 600 800 × 600
Frame rate (fps) 30 62 about 15 1 60 38 72 162

Operating frequency (MHz) 127 44 192 25 167 40 150
# of LUTs 37,940 17,383 4169 113,359 28,495 34,403 16,060

# of registers 66,990 2181 3533 75,071 5980 23,247 7220
# of DSP blocks 120 no data 10 72 2 68 69
Memory (kBit) no data 1327 243 4284 2196 348 334

1 In the implementation of Hsiao et al., their inputted images are from four datasets, which have various size of images. They just say their implementation can reach about 15 fps.
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The second database used in this study is the INRIA person database [28]. This study selects
1208 images with at least a person each as positive training examples, together with their left–right
reflections (2416 images in all). A total of 12,180 patches sampled randomly from 1218 person-free
scenes are selected as negative training examples. In the testing period, this study selects another
566 images as positive testing examples, together with their left–right reflections (1132 images in
all), and this study selects another 4530 patches sampled randomly from 453 person-free scenes as
negative testing examples. Figure 9 shows the detection accuracy of our fixed-point and floating-point
implementations. The miss rate of the fixed-point is 3% higher than the floating-point at 10−3 FPPW,
with the same miss rate at 10−2 FPPW, and 0.17% higher at 10−1 FPPW. On average, the fixed-point
has a 1.42% higher miss rate than the floating-point.

There are several factors that would cause the differences in the miss rate when the fixed point
parameters are used to replace the floating-point parameters, such as:

1. Quantization errors in the weights when converting RGB channels to the gray channel.
2. Quantization errors in the values of tanθ when computing the bin boundaries.
3. Truncation of the non-integer parts when taking square roots in the gradient

magnitude calculation.
4. Truncation of the non-integer parts when taking square roots and divisions in the block

normalization calculation.

Figure 9. Detection accuracy of fixed-point and floating-point implementations on the INRIA
person database.

In addition to evaluating the detection rate of fixed-point and floating-point implementations,
this study also compares fixed-point implementations to Dalal and Triggs’s pure software
implementation [10]. As shown in Figure 10 our miss rate is about 8.66% higher at 10−3 FPPW,
1.77% higher at 10−2 FPPW, and 0.04% higher at 10−1 FPPW. On average, the proposed hardware
implementation has about a 4.05% higher miss rate than the original software-only HOG design.
Other than the quantization errors described previously, the additional differences in the miss rate is
caused by the omission of bilinear interpolation in bin voting.
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Figure 10. Comparing our fixed-point implementation with Dalal’s on the INRIA person database

5. Conclusions

This study implements the HOG pedestrian detection algorithm in FPGA, and by changing
three sub-modules in the HOG flow, the proposed system can achieve a higher frame rate with only
little degradation in accuracy. Through simplifications in the Getting Bin, it can use fewer hardware
resources to determine the bins of the histogram. The Cell Histogram Generation sub-module exploits
the distributed writing and two shift registers to easily deal with each intermediate cell histogram
without any address decoder. In the Block Histogram Normalization sub-module, it reuses each
sum of cell histogram, which is overlapped between each block to decrease the calculation workload.
Moreover, to reduce the memory utilization, the SVM classification module in this study also uses
a cell-based scanning structure. It separates a 3780-feature image into 105 steps of the partial SVM
classification. When descriptors of a block are completed in the HOG module, it can begin the partial
SVM classifications in the SVM classification module. Finally, rows of detection window positions,
columns of detection window positions, and the results of detection windows would be outputted.

Compared to previous implementations, this study realizes both the HOG algorithm and the
SVM classification on a FPGA without using any external memory modules to achieve a real-time
pedestrian detection under a resolution of 800 × 600. Shown in experimental results, the proposed
system’s resource utilization of the FPGA is lower than these implementations, relatively, and the
average detection rate is slightly decreased.
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