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Mitochondria are no longer considered to be solely the static powerhouses of the cell. While they are undoubtedly essential
to sustaining life and meeting the energy requirements of the cell through oxidative phosphorylation, they are now regarded
as highly dynamic organelles with multiple functions, playing key roles in cell survival and death. In this review, we discuss the
emerging role of mitochondrial fusion and fission proteins, as novel therapeutic targets for treating a wide range of
cardiovascular diseases.
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Cdk1, cyclin-dependent kinase 1; Drpl, dynamin-related peptide; ER, endoplasmic reticulum; ESC, embryonic stem cell;
Fis1, human fission protein 1; IMM, inner mitochondrial membrane; IRI, ischaemic reperfusion injury; L-OPA1, long
form of optic atrophy factor 1; LV, left ventricular; LVH, left ventricular hypertrophy; MAM, mitochondria-associated
membranes; MFF, mitochondrial fission factor; MFN1, mitofusin 1; MFN2, mitofusin 2; MI, myocardial infarction;
MiD49/MiD51, mitochondrial dynamics proteins of 49 kDa and 51 kDa; MOMP, mitochondrial outer membrane
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of important roles which affect cell survival and death
(Pellegrini and Scorrano, 2007).

Introduction

Mitochondria are essential for eukaryotic life, meeting the
cells’ energetic requirements through oxidative phosphoryla-
tion. This is especially true in the heart, where the mitochon-
dria occupy around 30% of the total cell volume and produce
a staggering 30 kg of ATP per day, in order to sustain normal
contractile function of the heart. While their primary role
is to generate ATP, mitochondria also play a number

These important secondary roles mean that mitochon-
drial biology is a rejuvenated field, with mitochondrial dys-
function at the root of numerous diseases. In particular, the
field of mitochondrial dynamics, in which mitochondria are
dynamic organelles, and are able to change their morphology
by undergoing fusion and fission, has recently been investi-
gated and shown to be relevant to the cardiovascular system
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(Ong etal., 2013). This review investigates the role of the
mitochondrial fusion and fission proteins as novel therapeu-
tic targets for combating cardiovascular disease.

Changing mitochondrial morphology
by fusion and fission

Proteins involved in shaping mitochondria are grouped as
either mitochondrial fusion proteins (joining individual
mitochondria together to become one), mitochondrial fission
proteins (dividing one mitochondrion into two mitochon-
dria) or mitochondrial distribution proteins (those which
influence mitochondrial morphology through movement of
mitochondria around the cell such as Miro and Milton) (see
Figure 1 for summary).

Mitochondrial dynamics and the heart

Mitochondrial fusion

The fusion proteins are the outer mitochondrial membrane
(OMM) proteins, mitofusin 1 (MFN1) and mitofusin 2
(MFN2), and the inner mitochondrial membrane (IMM)
protein, optic atrophy factor 1 (OPA1) (as shown in Figure 1).
These proteins hydrolyze GTP to fuse two neighbouring mito-
chondria together to allow sharing of mitochondrial DNA,
proteins and metabolites. MFN1 and MFN2 mediate OMM
fusion through the formation of either heterodimers [i.e.
MEN1 binding to MFN2, and the most efficient method of
fusion (Hoppins et al., 2011)] or homodimers (MFN2 binding
to MFN2) (Chen et al., 2003; Koshiba et al., 2004). Fusion of
IMM is mediated by OPA1 (Malka et al., 2005; Song et al.,
2009), which itself is regulated by nuclease cleavage at the
mRNA level, and proteolytic cleavage at the protein level
(Song et al., 2007). In the absence of OPA1, MFN1 and MFN2
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Mitochondrial fusion and fission proteins and their roles in changing mitochondrial morphology. MFN1, MFN2 and OPAT1 are all key to mediating
mitochondrial fusion, while Drp1 interacts with Fis1, MFF and MiD49/51 to mediate mitochondrial fission. Secondary to these mitochondrial-
shaping roles, MFN2 tethers the SR/ER to the mitochondria allowing efficient Ca®* transfer between the organelles. The mitochondria are also key
to apoptosis with BAK and BAX binding to MFN2 stabilizing Drp1 binding. Drp1 binding leads to mitochondrial fragmentation and the release
of cytochrome c. Cytochrome c is normally sequestered by OPA1 in the cristae, although the OPA1 oligomers maintaining cristae shape are

disrupted by BAK and BAX binding.
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mediate only superficial mitochondrial fusion with the IMMs
remaining unfused. This lack of IMM fusion and matrix
content mixing result in loss of mitochondrial heterogeneity
and the occurrence of metabolic disturbances, confirming
that a key role of mitochondrial fusion is the mixing of
matrix contents (mitochondrial DNA, metabolites and pro-
teins) (Chen etal., 2005; Song etal., 2009). Whole body
genetic ablation of MFN1 and MFN2 results in embryonic
lethality due to a major placental defect (Chen et al., 2003).
Mutations in human MFN2 are responsible for the autosomal
dominant neurodegenerative disease Charcot-Marie-Tooth
type 2A, a peripheral sensorimotor neuropathy (Zuchner
et al., 2004). Mutations in the OPA1 gene were first identified
in 2000 and found to be associated with the human neuro-
generative condition, autosomal dominant optic atrophy
(Delettre et al., 2000). How a deficiency in the mitochondrial
fusion protein MFN2 or OPA1 results in such a specific neu-
rological condition is currently unknown.

Mitochondrial fission

Mitochondrial fission describes the fragmentation or division
of one mitochondrion into two or more mitochondria.
Its main functions include: (i) increasing mitochondrial
numbers to ensure mitochondria are passed on to daughter
cells during mitosis (Taguchi et al., 2007); (ii) enabling shut-
tling of mitochondria to other regions of the cell; (iii) signal-
ling to the cell that it is damaged and needs to be removed by
mitophagy thereby maintaining a healthy mitochondrial
network (Lee et al., 2011); and (iv) the initiation of apoptotic
cell death (Lee et al., 2004).

The process of mitochondrial fission occurs through two
coupled mechanisms. The first is the inhibition of the mito-
chondrial fusion proteins, and the second is the recruitment
of the mitochondrial fission protein (see Figure 1), dynamin-
related protein 1 (Drpl), from the cytosol (where it is primar-
ily located) to the OMM where it mediates mitochondrial
scission, through its interaction with other mitochon-
drial fission proteins: human fission factor-1 (Fisl), mito-
chondrial fission factor (MFF), and mitochondrial dynamics
proteins of 49 and 51 kDa (MiD49 and MiD351, respectively)
(Yoon et al., 2003; Gandre-Babbe and van der Bliek, 2008;
Otera et al., 2010; Palmer et al., 2011; Loson et al., 2013). The
pro-apoptotic protein PUMA (a BH3 member of the Bcl-2
protein family) has been reported to be critical for the recruit-
ment of Drpl to the mitochondria (Wang et al., 2009; Din
et al., 2013). PUMA is reported to either displace BAX and Bad
from their cytosolic sequestering proteins (Ren et al., 2010)
which in turn causes Drp1 to translocate to the mitochondria
(Din et al., 2013), or actually be present at the mitochondria
where it aids Drpl binding and assembly to mediate the
scission events (Wang et al., 2009). Once Drpl has bound to
the OMM on one of its numerous receptors, it oligomerizes
into a helical structure encircling the mitochondrion, and
upon GTP hydrolysis, it constricts the mitochondrial mem-
brane, until the lipid bilayers are sufficiently destabilized to
break apart from each other (Mears ef al., 2011). Drpl then
reverts back to its monomeric structure and moves back to
the cytosol, leaving two mitochondria behind.

The dominance and specific roles of MFF, MiD49/51 and
Fis1 in Drpl-mediated fragmentation are controversial (for
recent reviews see Elgass ef al., 2013; Otera et al., 2013). It is
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reported that MFF can recruit Drpl independently of Fisl;
while MiD49 and MiDS51 can act independently of both MFF
and Fis1 (Loson et al., 2013). The MiD proteins are reported to
be Drp1 receptors on the mitochondrial membrane (Palmer
et al., 2011), while MFF is reported to be a key protein in the
recruitment of other proteins (potentially more Drp or other,
as yet unidentified proteins) (Gandre-Babbe and van der
Bliek, 2008) or a bone fide Drpl receptor (Otera et al., 2010).
With the oligermization of Drpl1 less efficient without Fis1, it
has a potential role as an assembly chaperone protein (Otera
et al., 2010; Loson et al., 2013), although this role is distinct
from MFF (Gandre-Babbe and van der Bliek, 2008). Clarifica-
tion of the roles of MiD49/51, MFF and Fis1, the pathways
(mitosis or apoptosis) in which Drpl binds specifically to
each protein could yield potential therapeutic targets.

Recently, it has been reported that the interaction
of mitochondria with the endoplasmic reticulum (ER)
(Friedman et al., 2011), inverted formin 2 (a formin that
accelerates both actin polymerization and depolymerization)
and the actin component of the cytoskeleton (De Vos et al.,
2005; Korobova et al., 2013), may mark out sites for Drpl-
mediated mitochondrial fission. The proposed paradigm sug-
gests that the ER encircles mitochondria at sites of fission,
and ER-associated inverted formin 2 then stimulates actin
polymerization, providing the force required for partial con-
striction of the mitochondria, thereby facilitating the trans-
location of Drp1 to these pre-constriction contact sites in the
OMM. The actual mechanism through which Drp1 localizes
to these pre-constricted ER-contact sites on the OMM, and
the roles MFF and MiD49/51 play in this process remains to
be determined.

Regulation of the mitochondrial fission and
fusion proteins

Recent studies have begun to describe the mechanisms that
regulate the function of the mitochondrial fission and fusion
proteins, providing insight into how mitochondrial dynam-
ics may integrate into cell death and survival pathways.

Regulation of Drpl. Drpl recruitment from the cytosol to the
OMM is the major factor governing mitochondrial fission.
As such, mitochondrial fission is regulated by the post-
translational modification of Drpl, which alters both its
localization and affinity for oligomerization. A number of
post-translational modifications have been reported to occur
on Drpl (see Table 1) including sumoylation (Figueroa-
Romero et al., 2009), phosphorylation (see below), ubiquit-
ination (Nakamura et al., 2006), S-nitrosylation (Cho et al.,
2009), O-GlcNAcylation (Gawlowski et al., 2012) and so on
(reviewed in Otera etal., 2013). The most extensively
reported Drpl post-translational modification is phosphor-
ylation, which occurs at Ser®® and Ser®” (in reference to the
sequence of the human Drp1). Phosphorylation on Ser®'® by
cyclin-dependent kinase 1 (Cdkl)/cyclin B, a key mitotic
kinase, induces Drpl translocation to the mitochondria,
where mitochondrial fragmentation ensures an equal divi-
sion of the mitochondrial network between the daughter
cells (Taguchi et al., 2007; Marsboom et al., 2012). Due to the
slow mitotic turnover of adult cardiac myocytes, this form of
Drpl regulation may occur on an infrequent basis in the



Table 1

Post-translational modification of Drp1 by phosphorylation

Reference Cell-type Regulator
Taguchi et al., 2007  Hela Cyclin-dependent
kinase (Cdk1)

Chang and Hela PKA

Blackstone, 2007
Cribbs and Strack, PC12 PKA

2007 Calcineurin

Calcium

Cereghetti et al., Calcineurin

2008 Calcium

Han et al., 2008 Hela neurones Ca?*/calmodulin-

dependent
PKI 1 (CaMKlor)
Marsboom et al., Pulmonary arterial Cdk1
2012 smooth muscle cells
Din et al., 2013 Neonatal Pim-1

cardiomyocytes

Mitochondrial dynamics and the heart

Drp1 phosphorylation

site

Ser®®> with no effect of
GTPase activity

(Ser°® is the rat

Drp1 splice variant 1 of
Ser®16)

Ser®’ in the GTPase
effector domain

Ser>¢ with no effect of
GTPase activity

(Ser%% is the rat

Drp1 splice variant 1 of
Sers37)

Effect

Cdk1 phosphorylates Drp1 and
activates it during cell division

PKA phosphorylates Drp1 and inhibits
GTPase activity

PKA phosphorylates Drp1 and inhibits
GTPase activity preventing apoptosis

Calcineurin and calcium
dephosphorylates Drp1 and activates
it enhancing apoptosis

Ser®37 Calcineurin and calcium
dephosphorylates Drp1 and activates
it enhancing apoptosis

Ser6® CaMKlo phosphorylates Drp1 and

(Ser®® is the Drp1 splice
Seré1

Ser%3’

activates it
variant of Ser®3’)

Cdk1 phosphorylates Drp1 and
activates it during cell division

Pim-1 phosphorylates Drp1 and inhibits
fission

adult heart. Phosphorylation at the other site, Ser®*’

ated by PKA, Cam kinase and Pim1. Phosphorylation at Ser
inhibits Drpl oligomerization, suppresses mitochondrial
fission and prevents cell death (Table 1). Indeed, phosphor-
ylation by Pim1 is reported to play a key role in the seques-
tering of Drp1 in the cytosol (Din et al., 2013).

Conversely, dephosphorylation by calcineurin induces
mitochondrial fragmentation through Drpl recruitment to
the mitochondria (Cribbs and Strack, 2007; Chang and
Blackstone, 2007). Dephosphorylation of this site is reported
to initiate the transition towards apoptosis, with high Ca*
concentrations, ATP depletion and the loss of mitochondrial
membrane potential, all initiators of the calcineurin-
dependent mitochondrial fission pathway (Cribbs and Strack,
2007; Estaquier and Arnoult, 2007; Cereghetti et al., 2008;
Sandebring et al., 2009; Cho et al., 2010). In neonatal cardio-
myocytes, it has recently been demonstrated that high
glucose and the presence of diabetes induces mitochondrial
fragmentation through the O-GIcNAcylation of OPA1l
(Makino etal., 2011) and Drpl (Gawlowski etal., 2012),
resulting in the dephosphorylation of Ser®’ and its translo-
cation to the OMM.

, is medi-
637

Regulation of mitofusins. A prerequisite for mitochondrial
fusion is a mitochondrial membrane potential (Legros et al.,
2002), ensuring the mixing of healthy mitochondrial pro-
teins and mtDNA. MFN1 has been reported to have higher
GTPase activity than MFN2 (Ishihara et al., 2004), and this
activity appears to be regulated by guanine nucleotide
binding protein-f subunit 2 (Zhang et al., 2010). The binding

of guanine nucleotide binding protein-p subunit 2 to MFN1
appears to decrease its mobility, allowing clustering of MFN1
to occur in specific foci and increasing mitochondrial fusion
(Zhang et al., 2010).

MEN2 regulation has been reported to be mainly depend-
ent on protein expression, rather than any protein modifica-
tions that alter GTPase activity or recruit MFN2 to the
mitochondria. Under conditions of enhanced metabolic
demand, peroxisome proliferator-activated receptor vy
coactivator 1o (PGC-1a) and PGC-1B have been shown to
increase MFN2 expression (Liesa et al., 2008; Zorzano, 2009),
linking mitochondrial fusion to changes in mitochondrial
biogenesis.

Conversely, both MFEN1 and MFN2 are reported to be
regulated by ubiquitination, which immediately inhibits
their activity, as well as providing the signal for these proteins
to be degraded (Gegg et al., 2010). This modification inhibits
mitochondrial fusion and is key to the process of removing
damaged mitochondria by mitophagy (Gegg etal., 2010;
Tanaka et al., 2010). The loss of the mitochondrial membrane
potential, which indicates a loss of mitochondrial function,
recruits the kinases PTEN-induced putative kinase 1 (PINK1)
or JNK to the OMM (Leboucher et al., 2012). The phosphor-
ylation of MFN2 on Thr''! and Ser*** by PINK1 then stabilizes
the binding of Parkin, which ubiquitinates MFN2 (Chen and
Dorn, 2013). The effect of the ubiquitination is twofold; a
direct and immediate inhibition of MFN2 activity, thus pre-
venting the damaged mitochondria fusing with the healthy
mitochondrial population, and the recruitment of p62
(sequestosome 1) to mediate mitochondrial autophagy (Gegg
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et al., 2010; Tanaka et al., 2010; Glauser et al., 2011; Chen and
Dorn, 2013). This modification and inhibition is not just
limited to MFN2, as Parkin-mediated ubiquitination of MFN1
has also been reported (Gegg et al., 2010; Glauser et al., 2011).
Thus the MFN proteins are regulated by their presence on the
OMM, allowing mitochondrial fusion to occur when in
contact with other mitochondria. As such, mitochondrial
fusion must also be regulated through the proteins that
manoeuvre the mitochondria around the cell, such as Miro
and Milton (Koutsopoulos et al., 2010). Interestingly, the
activity of both Miro and Milton has been reported to be
regulated through their binding to MFN2 (Misko et al., 2010),
demonstrating that mitochondrial fusion can also be con-
trolled by the presence of these proteins in the OMM.

Regulation of OPA1. The regulation of OPA1 is complex and
is dependent upon cleavage at both the mRNA transcript and
protein levels (Delettre etal., 2001; Ishihara etal., 2006;
Griparic et al., 2007; Ehses et al., 2009; Song et al., 2009).
There are reported to be eight transcript variants of the OPA1
gene generated through the differential splicing of exon 4
(Delettre et al., 2001). Furthermore, each OPA1 isoform gen-
erated from these transcripts has two cleavage sites; S1 which
is located on the N-terminus and cleaved by the mitochon-
drial processing peptidase to generate long form of optic
atrophy factor 1 (L-OPA1), and S2 which is targeted by Ymel,
presenilins-associated rhomboid-like protein (PARL), OMA1
and paraplegin to generate S-OPA1 (short OPA1l) (Cipolat
et al., 2006; Griparic et al., 2007; Song et al., 2007; Quiros
et al., 2012). The sum of these processes results in five distinct
OPA1 bands on electrophesis gels ranging from 100 to 85 kDa
(Griparic et al., 2007; Song et al., 2007).

Ymel, PARL and paraplegin are all proteases reported to
cleave OPA1 at S2 to create OPA1 short forms (Cipolat et al.,
2006; Ishihara et al., 2006; Song et al., 2007). The cleavage of
OPAL1 is classified as either constitutive or inducible. Consti-
tutive cleavage refers to OPA1 cleavage to form a range of
fusion competent OPA1 isoforms, and is mediated by PARL
and OMA1 (Cipolat et al., 2006; Frezza et al., 2006; Sanjuan
Szklarz and Scorrano, 2012). PARL is reported to be sensitive
to the phosphorylation status of OPA1, implicating another
layer of regulation (Pellegrini and Scorrano, 2007), while
Ymel is only able to cleave certain splice variants of OPA1,
with some being totally insensitive to Ymel cleavage
(Griparic et al., 2007). Inducible cleavage occurs in response
to apoptotic stimuli to generate S-OPA1 isoforms, which have
no fusion abilities, and is reported to also be mediated by
OMAL1 (Head et al., 2009). Genetic knockout of OMAT1 results
in mice that are unable to adapt their metabolism to utilize
the appropriate substrates, revealing the importance of
OMA1-mediated cleavage (Quiros et al., 2012). Formation of
L-OPA1 is totally reliant upon de novo synthesis, with S-OPA1
unable to convert back to L-OPA1 (Griparic et al., 2007).

The reason for such regulation of OPA1 splice lengths is
that each OPA1l variant has a different solubility, which
governs their localization within the inner mitochondrial
membrane and their ability to mediate mitochondrial fusion
of the IMMs. Controversy exists as to whether just the long
forms of OPA1 are fusion competent (Ishihara et al., 2006), or
whether a mixture of isoforms varying in length is required
(Song et al., 2007). The long forms of OPA1 are reported to be
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stabilized by Higd1-a, with knockdown of Higd1-a resulting
in excessive processing of OPAl into the short form and
collapse of cristae, fragmentation of the mitochondrial
network, the loss of mitochondrial DNA stability and a retar-
dation of cellular growth (An et al., 2013). In response to the
loss of mitochondrial membrane potential, OPA1 is rapidly
cleaved at the protein level into shorter forms (by a protease
other than Ymel) and is classified as inducible OPA1 cleavage
(Griparic et al., 2007). The loss of L-OPA1 reduces the ability
of the mitochondrion to fuse, essentially signalling the mito-
chondria for autophagy (Duvezin-Caubet et al., 2006).

Such debate as to the processing of OPA1 arises because of
the large number of splice variants (at both mRNA and
protein level), cleavage being mediated by several different
proteases, and cleavage occurring in response to both pro-
fusion and pro-apoptotic pathways. Indeed, the L-OPAI,
are likely to be required to mediate IMM fusion; while
OPA1 processing (by paraplegin or OMA1) to create shorter,
less active forms of OPA also occurs to inhibit fusion
(Duvezin-Caubet et al., 2006; Ishihara et al., 2006; Ehses et al.,
2009). The inhibition of OPA1 immediately following the loss
of a mitochondrial membrane potential, serves as a block of
mitochondrial fusion, preventing the damage spreading to
healthy mitochondria. As such, the regulation of OPA1 activ-
ity is the key to a mitochondrion’s ability to fuse and remain
part of the healthy network.

Mitochondrial fusion and fission proteins and
cell death

The mitochondrial fusion and fission proteins have been
shown to play critical roles in a number of different cell death
pathways, with the mitochondria as a point of convergence
for many of them (see Figure 1). However, their interplay
with components of the cell death pathway can be quite
complex and continues to be elucidated.

Apoptosis. Mitochondria play a major role in the initiation
of the intrinsic pathway of apoptotic cell death and, in this
respect, are controlled by a subclass of the Bcl-2 protein
family. This subclass is further categorized into anti-apoptotic
and pro-apoptotic proteins, such as BAX and BAK. In healthy
cells, BAX is predominantly cytosolic, until pro-apoptotic
stimuli cause BAX translocation to the mitochondria to
mediate mitochondrial outer membrane permeabilization
(MOMP), releasing cytochrome ¢ along with other pro-
apoptotic factors into the cytosol. Mitochondria are known
to undergo fragmentation on induction of apoptosis, which
has been suggested to facilitate MOMP. However, the inter-
play between the mitochondrial fusion and fission proteins,
the members of the Bcl-2 protein family and MOMP is quite
complex and is incompletely understood (Youle and Strasser,
2008).

Interestingly, both BAX and BAK are reported to colocal-
ize with MFN2 at the outer mitochondrial membrane
(Karbowski et al., 2002; Neuspiel et al., 2005). Indeed, BAX-
mitochondrial binding, apoptosis and cytochrome c release
are all inhibited by the expression of constitutively active
MEN2 (Neuspiel et al.,, 2005). Therefore, during apoptosis,
BAX could bind and inhibit MFN2, preventing any further
mitochondrial fusion and prepare the mitochondria for



fragmentation. If one proposes MFN2 as the BAX receptor,
this may also explain why MFN2 knockouts are more
resistant to apoptosis. With the BAX and BAK binding sites
no longer present, binding of these pro-apoptotic proteins at
the mitochondria is likely to be reduced.

MEN2 has also been proposed to decrease mitochondrial
membrane stability, encouraging pores to form in the OMM
and facilitate the opening of the mitochondrial permeability
pore (MPTP) (Papanicolaou etal., 2012c). Potentially, the
presence of MFN2 may reduce the stability of the mitochon-
drial membrane, making it easier for Drpl to mediate mito-
chondrial fragmentation and stimulate cytochrome c release.
Finally, the role of non-oligomerized or monomeric BAX and
BAK in mitochondrial fusion has recently been evaluated
in the context of MPTP opening and necrotic cell death
(Whelan et al., 2012). This study confirmed that BAX/BAK
double-knockout cells contain fragmented mitochondria and
the double-knockout cells were resistant to MPTP opening
and necrotic cell death. MFN2-deficient cells, tested in the
same study (Whelan ef al., 2012), also exhibited resistance
against MPTP opening, supporting the observation that
MEFN2 promotes this process. Furthermore, monomeric BAX
was demonstrated to be responsible for the observed sensi-
tivity to MPTP. This may be in agreement with the notion
that the localization of BAX to the OMM lowers the threshold
for forming hemifusion-related holes, and if there is sufficient
stress overload in the matrix/IMM, this hole can be employed
in the precipitous exchange of ions during MPTP opening.

Drp1. Drpl is also reported to colocalize with BAX at the
OMM and mediate mitochondrial fragmentation in response
to apoptotic stimuli. While Drp1 mutants failed to prevent
BAX-mitochondrial binding, there were no subsequent
changes in mitochondrial morphology, indicating that BAX
recruits Drpl rather than vice versa (Karbowski et al., 2002).
The recruitment of Drpl to the mitochondria has been
reported to be independent of Fis1, with Drp1 binding to the
mitochondria stimulated by BAX and stabilized by ubquit-
ination by the small ubiquitin-like modifier (Wasiak et al.,
2007). Once at the OMM, Drpl mediates mitochondrial frag-
mentation, the loss of the membrane potential and facilitates
the release of cytochrome c. These studies implicate Drpl as a
key player in apoptosis, with Drpl inhibition reported to
slow, rather than fully inhibit apoptosis (Frank et al., 2001;
Estaquier and Arnoult, 2007). This may be due to the release
of other pro-apoptotic proteins (other than cytochrome c)
from the mitochondria when Drpl is inhibited. However,
there is growing evidence that apoptosis is able to proceed
independently of Drpl (Parone etal., 2006; Wakabayashi
et al., 2009) despite the fact that mitochondrial fission medi-
ated by Drpl1 is considered to be a key hallmark of apoptosis
(Martinou and Youle, 2006). As such, whether therapeutic
inhibition of Drp1 would be effective in preventing apoptosis
is still controversial.

OPA1. OPAL1 is also regarded as an anti-apoptotic protein,
with its overexpression reducing cell death and its knock-
down increasing cell susceptibility to apoptosis (Olichon
etal., 2003; Lee etal., 2004; Estaquier and Arnoult, 2007;
Song et al., 2007). Localized in the IMM, OPA1 maintains
IMM integrity and is able to sequester cytochrome ¢ within

Mitochondrial dynamics and the heart

the cristae (Frezza et al., 2006). While both long insoluble and
short soluble forms of OPA1 are found at the cristae junc-
tions, it is the short form that is reported to be anti-apoptotic.
Cleavage by PARL increases the amount of shorter soluble
OPA1, which is able to form oligomers and mediate cristae
remodelling (Cipolat et al., 2006; Frezza et al., 2006; Sanjuan
Szklarz and Scorrano, 2012). Such remodelling is reported to
keep the cristae junctions tight, sequestering the cytochrome
¢ within the cristae thereby inhibiting apoptosis. To mediate
cytochrome c release, OPA1 oligomerization is disrupted by
Bid, which opens up the cristae releasing cytochrome c into
the intermembranous space (Frezza etal., 2006). In this
regard, BAX- and BAK-mediated fission can also release cyto-
chrome c into the cytoplasm leading to caspase activation
(Scorrano et al., 2002). Furthermore, OPA1 cleavage is respon-
sible for the protective response to heat shock, with PARL
knockout mice being more susceptible to apoptosis. As such,
this pathway is physiologically relevant (Cipolat et al., 2006).

Mitophagy. Mitophagy is required to remove damaged mito-
chondria and maintain a healthy mitochondrial network for
normal cell function. The role of MFN2 in cellular autophagy
has recently been explored in the adult murine heart by Zhao
etal. (2012). These authors found that the cardiac-specific
deletion of MFN2 in the adult heart resulted in the accumu-
lation of autophagosomes, which was mostly shown to be
due to impaired fusion of autophagosomes with lysosomes
(Zhao et al., 2012). In this particular study, the role of MFN2
in mediating mitophagy was not clear, although starvation
was found to increase its association with Ras-related protein,
an autophagosome maturation-related protein (Zhao et al.,
2012).

The current paradigm suggests that mitochondrial mem-
brane depolarization of damaged mitochondria signals PINK1
translocation to the OMM where it mediates Parkin recruit-
ment to the damaged mitochondria and induces their
mitophagic removal by ubiquitination (Karbowski et al.,
2002). Chen and Dorn (2013) have provided experimental
data suggesting that in damaged mitochondria, PINK1 phos-
phorylates and activates MFN2 so the it can act as a receptor
for Parkin on the OMM and mediate autophagy. These find-
ings were shown to be consistent with the observation that
hearts deficient in MFN2 displayed impaired mitochondrial
respiration and went on to develop a dilated cardiomyopathy
(Chen and Dorn, 2013).

In summary, these two experimental studies suggest
another non-fusion pleiotropic role for MFN2 as a critical
mediator of cellular autophagy and mitophagy. Given the
importance of these processes in the healthy and diseased
cardiovascular system, the therapeutic potential for manipu-
lating these processes may be mediated via MFN2.

MPTP. The opening of the MPTP is a critical determinant of
cell death. Therefore, preventing or delaying its opening
increases cell survival. This is of particular importance in the
setting of acute ischaemic reperfusion injury (IRI), where
MPTP opening at the point of reperfusion mediates cardio-
myocyte death, and inhibiting MPTP opening at this time
prevents cell death (Hausenloy et al., 2003; Hausenloy and
Yellon, 2003). The mitochondrial fusion and fission proteins
have been reported to influence MPTP opening susceptibility
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and, therefore, affect cell viability. In the HL-1 cardiac cell
line, Ong et al. (2010) found that inhibiting mitochondrial
fission during acute IRI could prevent MPTP opening. Simi-
larly, MFN2 ablation in neonatal cardiomyocytes was also
found to increase MPTP opening susceptibility (Papanicolaou
et al., 2011). However, the results of manipulating the mito-
chondrial fusion proteins in the adult heart have had oppos-
ing effects on MPTP opening susceptibility. Genetic ablation
of MEN1, MFN2 or OPA1 has been reported in the adult heart
to reduce MPTP opening susceptibility, the mechanism for
which is unclear. It has been suggested that the mitofusins
may act as indirect mediators of MPTP formation
(Papanicolaou et al., 2012¢). During the process of mitochon-
drial fusion, membrane destabilization occurs. As well as
leading to a leak of solutes from the mitochondria, the desta-
bilization of the membrane may make it easier for MPTP
formation to occur. Conversely, in the MFN1 and MFN2
knockout mice, the lack of mitochondrial fusion stabilizes
the mitochondrial membranes, thus reducing the ability of
the pore proteins to break the membrane, and form the MPTP
(Papanicolaou et al.,, 2012c). OPA1 down-regulation may
inhibit pore formation through a similar stabilization of the
inner mitochondrial membrane, or the disturbances in cristae
formation may alter the way Ca*" is handled within the
mitochondria (Piquereau et al., 2012). Whether the mitofusin
proteins or OPA1l play a direct role in MPTP formation
remains to be determined, although how these proteins
would interact with the ATP synthase, a recently proposed
component of the MPTP is unclear (Giorgio et al., 2013).

Programmed cell necrosis. The current paradigm has sug-
gested that cell death by necrosis is an unregulated process.
However, a pathway of programmed cell necrosis has recently
been described, in which the cytokine TNF-o. activates the
receptor-interacting serine-threonine kinases (RIP), RIP1 and
RIP3, and their interaction with the mixed lineage kinase
domain like protein resulting in ROS generation, calcium
overload and the opening of the MPTP (Vanlangenakker
et al., 2008). RIP3 forms a complex mitochondrial protein
phosphatase PGAMS, which recruits Drpl to the OMM by
dephosphorylating its Ser®” site causing mitochondrial frag-
mentation (Wang et al., 2012). These findings implicate a role
for Drpl in mediating programmed cell death necrosis.
Importantly, and relevant to the heart, pharmacological inhi-
bition of this pathway, using Necrostatin-1 to target RIP1, has
been reported to limit myocardial infarction (MI) size and
prevent post-left ventricular (LV) remodelling in animal
models of acute IRI (Lim et al., 2007; Oerlemans et al., 2012).

Tethering to ER or sarcoplasmic reticulum. Tethering between
the ER and mitochondria was initially observed in the 1970s
using electron microscopy (Morre et al., 1971). Subsequent
studies have gone on to show that this interaction is physi-
ologically important, and they have identified some of the
key proteins which mediate this interaction including the
voltage-dependant anion channel (Szabadkai et al., 2006),
Tespal (Matsuzaki etal., 2013), Trichoplein/mitostatin
(Cerqua et al., 2010) and, most recently MFN2 (de Brito and
Scorrano, 2008), although the latter has not been universally
reported (Cosson et al., 2012). The contact region between
the ER and mitochondria is known as the mitochondrial
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associated membrane (MAM) and contains proteins and
phospholipids which facilitate inter-organelle signalling,
energy regulation and apoptosis all of which occur at the
ER-mitochondria interface (Vance, 1990).

Scorrano’s group (de Brito and Scorrano, 2008) first pro-
posed the key role for MFN2 in tethering these organelles
together. Present at both the mitochondrial and ER mem-
branes, MFN2 is enriched within the MAM region (see
Figure 1). As such, MFN2 present on the ER membrane is able
to interact with either MFN1 or MFN2 on the mitochondrial
membrane, and tether the organelles together. Loss of MFN2
diminishes this interaction between the mitochondria and ER,
increasing the distance between the two organelles. The inter-
action mediated by MFN2 is physiologically important for IP3
signalling, as well as preventing ER stress. Indeed, Ngoh et al.
(2012) showed that MFN2 expression increases under ER
stress, and without this adaptive tethering, apoptosis follows.

MEN2-mediated ER-mitochondrial tethering is regulated
by MITOL (ubiquitin ligase) (Sugiura et al., 2013). Interest-
ingly, MITOL only ubiquitinates mitochondrial MFN2 on
lysine residues 63 and 192, while ER MFN2 remains unmodi-
fied. Rather than signalling MFN2 for degradation, ubquit-
ination increases the affinity of MFN2 for GTP, stimulating
MEN2 activity. Through this mechanism, MFN2 undergoes
GTP-dependent oligomerization and facilitates the formation
of mitochondrial ER tethering domains (Sugiura et al., 2013).

The dynamic nature of cardiac contractility is mirrored by
alterations in energy demand, which must be met by mito-
chondrial respiration. Key to this supply-demand coupling
is the interaction and close proximity of the sarcoplasmic
reticulum (SR) and mitochondria. With Ca?* stimulating both
contraction and mitochondrial respiration (specifically the
Kreb’s cycle dehydrogenases), the transfer of Ca** from the SR
to the mitochondria enables a tight coupling of energy
demand and supply (Chen efal., 2012b). Central to this
pathway is the uptake of Ca*" into the mitochondria through
the mitochondrial Ca* uniporter, whose molecular identity
was recently discovered (de Brito and Scorrano, 2008;
Baughman et al., 2011; De etal., 2011). Despite the mito-
chondrial Ca* uniporter possessing a low affinity for Ca*
(10 uM) (Kirichok et al., 2004), mitochondrial Ca** uptake is
rapid, suggesting that high concentrations of Ca?" exist
(around 25 uM) (Giacomello et al., 2010) within a very local-
ized area to the SR (Rizzuto et al., 1998). Mitochondrial teth-
ering to the SR through MFN2 enables the Ca® present in
these subcellular microdomains to stimulate mitochondrial
respiration on a beat-to-beat basis (Csordas etal., 2010;
Giacomello et al., 2010; Chen et al., 2012b).

The effect of disturbing the interaction between the SR
and mitochondria by ablating MFN2 or by a pharmacological
strategy is not clear, but it may in part contribute to the
development of a cardiomyopathy through its effect on Ca*
signalling.

Mitochondrial fusion and fission
proteins and the adult heart

The majority of experimental studies investigating the phe-
nomenon of mitochondrial dynamics have been restricted to



Table 2

Effect of ablating the mitochondrial fusion proteins in the adult heart

Mitochondrial dynamics and the heart

Fusion Mitochondrial MPTP IRI
protein Murine model morphology (TEM) susceptibility sensitivity Other effect
Papanicolaou et al., MFN1 Cardiac knockout Smaller Reduced Reduced No phenotype
2012a (KO)

Papanicolaou et al., MFN2 Cardiac KO Pleomorphic, larger Reduced Reduced Modest LV hypertrophy,
2011 mild LV impairment
Wang et al., 2012 MFN2 Cardiac KO Pleomorphic, larger Not tested Increased Impaired mito function

and autophagy
Chen et al., 2011 MEN1/MEN2  Cardiac KO Smaller No change Not known  Impaired mito function
Piquereau et al., OPA1 Whole body Pleomorphic larger Reduced Not known
2012 OPAT +/-

immortal cell lines because their mitochondrial networks are
highly mobile, unconstrained by sarcomeres, easy to image
and the cells themselves are compliant to genetic manipula-
tion. More recently, mitochondrial fusion and fission pro-
teins have been investigated in the adult heart, in which
mitochondria have a distinct arrangement and in which
mitochondrial movement is constrained by the cellular
architecture.

The mitofusins and the adult heart

In terms of the cardiovascular system, a number of experi-
mental studies have investigated the mitofusins in cardiac
and vascular cell lines and neonatal cardiomyocytes in which
mitochondrial movement is unrestricted. In the adult heart,
however, the role of the mitofusins in the adult heart have
been somewhat varied and in some cases unexpected (see
Table 2). This difference may be due in part to the pleiotropic
non-fusion effects of mitofusins, in particular MFN2 (de Brito
and Scorrano, 2008). Of particular interest and importance is
the recent observation suggesting that mitochondrial dynam-
ics may be relevant to the adult heart, with the description of
‘nanotunneling’ and ‘kiss-and-tell’ events in isolated adult
cardiomyocytes (Huang et al., 2013; Kasahara et al., 2013).
‘Kiss-and-tell’ events were observed between adjacent mito-
chondria and are hypothesized to mediate local mixing of
mitochondrial material. ‘Nanotunneling’ was also observed
as a means of communication between mitochondria that are
more remote. The highest rate of fusion events was observed
in the perinuclear region where the mitochondria are not
restricted by the sarcomeres, as with the interfibrillar mito-
chondria. Interestingly, these fusion events occurred rela-
tively infrequently (compared to mitochondrial mobility in
HeLa and MEF cell lines) with mitochondrial material taking
up to a day to transverse the cell (Huang ef al., 2013). These
observations add substantial evidence to the idea that adult
cardiac mitochondria are dynamic, and form a large intercon-
nected network as observed in other tissues. An early study by
Chen et al. (2003) was the first to report that mice deficient in
both MEN1 and MFN2 die in utero during the mid-gestation
period, highlighting the critical role the mitofusins play in
embryonic development. Cardiac-specific ablation of both
MENT1 and MFN2 in the embryo was shown to be lethal at day

9.5-10.5, demonstrating that these mitochondrial fusion pro-
teins also play a critical role in cardiac development (Chen
etal., 2011).

Papanicolaou et al. (Papanicolaou et al., 2011; Chen et al.,
2012b) first investigated the effects of conditional ablation
of cardiomyocyte-specific MFN2 (a-MHC-Cre) in the adult
murine heart. Interestingly, they found that subsarcolemmal
mitochondria in this heart were pleomorphic and slightly
enlarged, and that the hearts themselves displayed modest LV
hypertrophy and a mild deterioration in LV systolic function.
MEN2 ablation was found to be associated with a decreased
sensitivity to MPTP opening and reduced susceptibility to
acute IRI, despite there being no major effect on mitochon-
drial function other than a mild mitochondrial membrane
depolarization (Papanicolaou et al., 2011; Chen et al., 2012b).
In contrast, the effect of genetic ablation of MFN2 using small
interfering RNA in neonatal cardiomyocytes had opposing
effects with mitochondrial fragmentation, increased suscep-
tibility to MPTP opening and less cell death following oxida-
tive stress. These studies demonstrate the cell-specific effects
of MEN2 ablation. Zhao et al. (2012) have also investigated
the effects of cardiac-specific MFN2 ablation (Mlc2v-Cre) in
the adult murine heart. At 4 months of age, there was no
obvious cardiac phenotype in MFN2 depleted hearts (Zhao
etal., 2012). Although they were able to confirm the appear-
ance of pleomorphic large mitochondria in these hearts, the
MEN2 knockout hearts also displayed increased sensitivity to
acute IRI and developed late-onset LV dysfunction at 17
months of age (Zhao et al., 2012). These findings were asso-
ciated with a major metabolic disturbance with impaired
autophagy, defective lipid metabolism and decreased mito-
chondrial respiration (primarily at complex III) (Zhao et al.,
2012). The explanation for the observed differences in effects
of MFN2 ablation in the adult heart is not clear. Whether the
difference in response to MFN2 ablation can be attributed to
the use of different cardiac-specific promoters is not known.

Papanicolaou et al. (2012b) were also the first to investi-
gate the effects of deleting cardiomyocyte-specific MFN1
(Myh6-Cre) in the adult murine heart from embryonic day
9.5. They found evidence of mitochondrial fragmentation
(smaller spherical mitochondria), preserved mitochondrial
function, resistance to oxidative stress in terms of mitochon-
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drial membrane depolarization and cell viability, and reduced
sensitivity to MPTP opening. The explanation for the differ-
ing effects on MFN1 versus MFN2 ablation on mitochondrial
morphology is not known but may be attributed to the high
profusion affinity of MFNI1.

The effect of genetic ablation of both MFN1 and MFNZ2 in
the adult murine heart (8 weeks of age) has also been inves-
tigated. It resulted in mitochondrial fragmentation, impair-
ment in mitochondrial respiration, and a severe lethal
cardiomyopathy after 7-8 weeks, suggesting that the
mitofusins are essential for normal cardiac mitochondrial
morphology and respiratory function (Chen etal., 2011;
Papanicolaou et al., 2012a).

OPA1 and the adult heart

Mice completely deficient in OPA1 die in utero, confirming
the importance of this protein in embryonic development
and maintenance of mitochondrial integrity (Davies et al.,
2007). As an alternative approach, mice partially deficient in
OPA1 (heterozygous OPA1 +/-) have been used to investigate
the role of OPA1 in the adult heart (Piquereau et al., 2012;
Chen et al., 2012a). In this transgenic mouse, there was a 50%
reduction in myocardial OPA expression, enlarged mitochon-
dria with disturbed cristae and altered mitochondrial organi-
zation, with a mild cardiac phenotype at 3 and 6 months, but
severe deterioration and heart failure occurring at 12 months.
Indeed, at 12 months, the mutation of OPA1 led to cardiac
dysfunction with a reduced cardiac output, blunted inotropic
reserve and reduced pressure-volume loops (Chen et al.,
2012a). This reduction in cardiac reserve was associated
with mitochondrial dysfunction with a general reduction in
complex activity and a blunted respiratory response when
stimulated with either ADP or FCCP. In addition, the
10-week-old mouse was more susceptible to pressure-load LV
hypertrophy when challenged with the transverse aortic con-
striction model (Piquereau et al., 2012). Coupled with a
reduction in mitochondrial DNA, these results suggest that
maintenance of mitochondrial integrity, at either the DNA or
protein level, is a key physiological requirement for mito-
chondrial fusion in the adult heart. The requirement for
OPA1 in the adult heart is also the same for skeletal muscle,
in which OPA1 plays a pivotal role (Chen et al., 2010).

Drpl and the adult heart
The Drpl-knockout mouse is embryonically lethal at embry-
onic day 12.5 and surprisingly, there are no phenotypical
differences between the wild type and heterozygote Drpl-
knockout mouse (Manczak et al., 2012). These studies dem-
onstrate a vital role for Drpl during development (Ishihara
et al., 2009; Wakabayashi et al., 2009), and that Drp1 locali-
zation, rather than its quantity may regulate its action.
Despite the lack of a Drp1l-knockout mouse, many of its roles
in mitochondrial fission (apoptosis, mitophagy and increas-
ing the mitochondrial network) are likely to hold true in the
heart, since these functions of Drpl have been reported in
numerous other tissues and appear fundamental to mamma-
lian life. The only effect of Drpl that is unlikely to occur in
the heart, or occur on a very infrequent basis, is its effect in
mitosis as cardiomyocytes rarely undergoing replication.
While there are few studies directly investigating the role
and molecular mechanisms of Drpl in cardiac tissue (due to
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the aforementioned difficulties of manipulation and imaging
in the heart), those studies conducted on cardiac tissue, have
focused mainly on the involvement of Drpl in apoptosis.
Indeed, several studies have all reported that inhibition of
Drp1 reduces cardiac cell death post-IRI (Ong et al., 2010; Din
et al., 2013; Gao et al., 2013) or prevents cardiac dysfunction
following aortic banding (Givvimani etal., 2012). These
studies are discussed in greater detail later on, but they all
demonstrate that Drpl and mitochondrial fission play a key
role in the regulation of apoptosis in cardiac tissue. As men-
tioned previously, not all mitochondrial fission should be
considered detrimental. Drpl recruitment to the mitochon-
dria mediated by Bnip3 serves to mediate mitophagy in car-
diomyocytes (Lee etal., 2011), and, because of the high
amount of oxidative phosphorylation that occurs in the
heart, this pathway is especially important to remove
damaged mitochondria and maintain the quality of
mitochondria.

Mitochondrial fusion/fission proteins
as therapeutic targets

The postnatal period

In the first few days of postnatal cardiac growth there are
drastic changes in cardiac metabolism and intracellular archi-
tecture as the heart switches from the placental circulation
and anaerobic metabolism to the pulmonary circulation and
oxidative phosphorylation. The role of the mitochondrial
fusion and fission proteins in mediating this adaptive
response has recently been investigated (Papanicolaou et al.,
2012a). It was found that over the first 7 days of postnatal
cardiac growth, mitochondrial morphology changes from
fragmented and randomly orientated to more elongated
mitochondria aligned to myofibrils; this change is associated
with a significant increase in the expression of MFN1 and
MEN2 (Papanicolaou et al., 2012a). Crucially, transgenic
mice (loxP/Myh6-Cre) deficient in cardiac-specific MFN1 and
MEN2 from the late embryonic period display severe mito-
chondrial dysfunction at 7 days (abnormal mitochondrial
structure, down-regulated mitochondrial biogenesis genes,
reduced mitochondrial DNA), develop cardiomyopathy, and
all die before 14 days old, implicating an important role for
the mitofusins in cardiac growth over the initial postnatal
period (Papanicolaou et al., 2012a).

Another critical change, which occurs at the time of birth,
is closure of the ductus arteriosus (DA) in response to the
increase in oxygen thereby diverting blood from the right
ventricle into the pulmonary circulation. Failure of the DA
to close can result in pulmonary congestion and failure
to thrive. Hong et al. (2013) have investigated the role of
Drpl-mediated mitochondrial fission in oxygen-induced
DA closure. They provided evidence that oxygen-induced
phosphorylation of Drpl at Ser®® induces mitochondrial
fission in DA smooth muscle cells, which then generates
mitochondrial-signalling ROS required to activate DA
closure through a complex mechanism involving inhibi-
tion of oxygen-sensitive potassium channels, membrane
depolarization of DA smooth muscle cells, L-type channel
activation, increased intracellular calcium and subsequent
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vasoconstriction of the DA (Hong et al., 2013). These findings
implicate Drp1 as a potential therapeutic target for mediating
DA closure (see Figure 2).

Vascular smooth muscle cell

(VSMC) proliferation

VSMC proliferation and hyperplasia is a key feature of a
variety of cardiovascular diseases including atherosclerosis,
hypertension, pulmonary arterial hypertension (PAH), and its
existence contributes to the failure of coronary artery bypass
vein grafts and to the restenosis following percutaneous coro-
nary intervention. As such, novel therapeutic targets are
required to inhibit VSMC proliferation in these settings. In
this regard, the mitochondrial fusion and fission proteins
may provide novel targets for preventing this pathological
process.

MFN2 and proliferation of VSMCs. Chen et al. were the first to
implicate MFN2, as a novel hyperplasia suppressor gene

(HSG), capable of inhibiting VSMC proliferation in a variety
of vasculo-proliferative conditions (Chen et al., 2004). These
authors found that the expression of HSG (MFN2) in VSMCs
was reduced in several experimental models of vasculo-
proliferation, and HSG (MFN2) overexpression inhibited
VSMC proliferation in angioplasty balloon-induced neo-
intimal injury, oxidized LDL and subsequent atheroma
formation and restenosis in rat carotid arteries. These
vasculo-proliferative effects appeared to be mediated by
inducing apoptotic death of VSMCs through the suppression
of the Ras-Raf-MAPK-Erk1/2 and PI3K-Akt signalling path-
ways (Chen et al., 2004; Guo et al., 2007). The same research-
ers found that PKA-induced phosphorylation of MFN2 at
Ser**? is central to the anti-proliferative effect of MFN2 on
VSMC:s (see Figure 2) (Zhou et al., 2010).

Drp1 and proliferation of VSMCs. Chalmers et al. (2012) have
investigated the role of the mitochondrial fission protein,
Drpl, in VSMCs in relation to their proliferative response.
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They found that in native non-proliferative quiescent VSMCs
mitochondria were fairly static,c, mainly ovoid in shape
whereas during proliferation, the mitochondria became more
mobile and displayed various shapes. Interestingly, treatment
of VSMCs with the Drp1 inhibitor, Mdivi-1, was able to inhibit
the proliferative response, suggesting that mitochondrial
fission may be required for the proliferation of VSMCs. The
requirement for mitochondrial fission in VSMC proliferation
has been recently explored in the setting of PAH (see Figure 2).

PAH. PAH, in which the pulmonary arteries become
obstructed, results in right ventricular hypertrophy and heart
failure. Despite new vasodilator therapy, the morbidity and
mortality remain high (15% death at 1 year) (Thenappan
et al., 2010). Therefore, novel therapeutic targets for prevent-
ing the progression of PAH are desirable. In this regard, recent
experimental data have implicated the mitochondrial fusion
and fission proteins as potential novel therapeutic targets for
treating PAH.

The ability of pulmonary arterial smooth muscle cells
(PASMC) to hyperproliferate is an essential part of the patho-
physiology underlying PAH. It has been demonstrated that
this pathological process is dependent on the ability of the
mitochondria to undergo division as this allows the equal
redistribution of mitochondria during cell proliferation.
Marsboom et al. (2012) noted that in PAH, the mitochondria
in PASMCs are fragmented, findings which were associated
with the up-regulation of Drpl and the down-regulation of
MEN2 (see Figure 2). They demonstrated that mitochondrial
fission, mediated by cyclin B1/Cdk1 phosphorylation of Drp1
at Ser®, is required for the hyperproliferation of PASMCs.
Interestingly, treatment with the small molecule Drp1 inhibi-
tor, Mdivi-1, was shown to prevent the progression of PAH in
three different experimental models of PAH, suggesting Drp1-
mediated mitochondrial fission as a novel therapeutic target
for PAH (Marsboom et al., 2012). However, preventing PAH by
using this therapeutic approach would require prolonged and
chronic inhibition of mitochondrial fission, the result of
which may be detrimental over the long term, given the
essential role mitochondrial fission plays in maintaining a
healthy mitochondrial network. The same research group
have gone on to implicate the mitochondrial fusion protein,
MEN2, as a potential therapeutic target for treating PAH. They
found that in two different experimental models of PAH, and
in patients with PAH, both MFN2 and PGC-1a were down-
regulated in PASMCs. Importantly, they demonstrated that
genetic ablation of MFN2 and PGC-1a induced mitochondrial
fragmentation and worsened PAH, whereas in contrast, over-
expressing MFN2 was able to prevent the progression of PAH.

Heart failure

A critical role for the mitochondrial fusion and fission pro-
teins in normal development and function of the heart has
been indicated by the finding that deficiencies in either the
mitochondrial fusion or fission proteins result in the devel-
opment of a cardiomyopathy.

OPA1 and heart failure. The changes in mitochondrial mor-
phology that occur with ischaemia-induced heart failure have
been investigated by Chen et al. (2009), using a post-MI rat
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heart failure model and human dilated and ischaemic cardio-
myopathy tissue samples. These authors observed mitochon-
drial fragmentation and decreased myocardial levels of OPA1
(Chen et al., 2009). A subsequent experimental study by the
same authors has recently demonstrated that heterozygous
mice deficient in OPA1 had reduced mitochondrial DNA copy
number and decreased expression of nuclear antioxidant
genes at 3 to 4 months of age (Chen et al., 2012a). However,
baseline cardiac function was normal in these OPA1-deficient
mice, although at 12 months of age, the mice developed a
cardiomyopathy associated with mitochondrial fragmenta-
tion and impaired mitochondrial function (Chen efal.,
2012a). The reason for the decline in OPA1 levels in heart
failure requires further investigation.

Mitofusins and heart failure. Silencing of mitochondrial
assembly regulatory factor orthologue of mammalian mito-
fusin and OPA1 in the Drosophila fly heart tube resulted in a
dilated cardiomyopathy, which could be rescued by overex-
pressing either of the human mitofusins (MFN1 or MFN2) or
superoxide dismutase 1, implicating impaired mitochondrial
fusion and oxidative stress in the pathogenesis of heart failure
(Dorn et al., 2011).

Conditional cardiac-specific ablation of MFN1 and MFN2
in the adult murine heart has been reported to result in a
severe lethal dilated cardiomyopathy after 6-8 weeks, a
finding which was associated with mitochondrial fragmenta-
tion and impaired mitochondrial respiration, implicating a
role for the mitofusins in maintaining normal mitochondrial
function in the adult heart (Chen ef al., 2011).

Drp1 and heart failure. Ashrafian et al. (2010) have described
a novel mutation in the Drpl gene (C452F) which gives rise
to an autosomal dominant form of dilated cardiomyopathy
in the python mouse. Although the homozygous mutation is
embryonically lethal, the heterozygous form survives until
adulthood and develops a severe dilated cardiomyopathy
after 11 weeks, a finding which was associated with reduced
content of mitochondrial respiratory enzymes and ATP
(Ashrafian et al., 2010).

Acute IRI

Ischaemic heart disease is the leading cause of death and
disability worldwide. Its clinical manifestations are due to the
detrimental effects of acute IRI on the myocardium. The
susceptibility of the heart to acute IRI and its recovery is
critically dependant on the function of its mitochondria.
Mitochondrial dysfunction in response to acute IRI and
subsequent opening of the MPTP at reperfusion are critical
determinants of cell death. Therefore, the preservation of
mitochondrial viability and the prevention of MPTP opening
during acute IRI are important therapeutic strategies for
cardioprotection. Recent experimental data suggest that
manipulating the mitochondrial fission and fusion proteins
in the heart may affect the susceptibility to acute IRI, provid-
ing novel therapeutic targets for cardioprotection.

Mitochondrial fission proteins as targets for cardioprotection. In
response to acute IRI, the mitochondrial fission protein, Drp1,
has been demonstrated to translocate to the OMM and induce



mitochondrial fission (Ong et al., 2010; Din et al., 2013). In
the HL-1 cardiac cell line, Ong etal. (2010) showed that
genetic or pharmacological (using Mdivi-1) inhibition of Drp1
during simulated IRI prevented the opening of the MPTP and
reduced cell death. In the murine heart, Mdivi-1-induced
inhibition of Drp1 reduced cell death in isolated cardiomyo-
cytes subjected to simulated IRI and reduced MI size in the
adult murine heart subjected to in vivo acute IRI. A number of
experimental studies have subsequently confirmed Drp1 to be
a therapeutic target for cardioprotection in the adult heart.
Din et al. (2013) found that using Mdivi-1 to inhibit Drpl
translocation to the OMM during acute IRI protected neonatal
murine cardiomyocytes and the adult murine heart. Interest-
ingly, the same authors were able to reduce Drpl transloca-
tion to the mitochondria in simulated IRI through the
overexpression of Pim1, implicating this kinase as another
mechanism through which cardioprotection through the
modulation of Drpl may be achieved. Using the non-specific
dynamin inhibitor, Dynasore, to inhibit Drp1 during acute
IRI, Gao et al. (2013) were able to protect the isolated adult
murine heart. Inhibiting mitochondrial fission has also been
reported to protect the kidney and the brain against acute IRI,
suggesting that therapeutic targeting of mitochondrial fission
may be beneficial in other organs (Zhang et al., 2013). Most
recently, a specific peptide inhibitor of Drp1, named P110, has
been used to demonstrate that inhibiting mitochondrial
fission at reperfusion can reduce myocardial infarct size and
prevent adverse LV remodelling post-MI in the adult rat heart
(Disatnik et al., 2013). The discovery of other components of
the mitochondrial fission machinery, such as MFF and
MiD49/51, raises the possibility of inhibiting these other
proteins to mediate cardioprotection. However, this therapeu-
tic strategy will only be useful in protecting the heart against
acute episodes of IRI, as this can be achieved by transient
pharmacological inhibition of mitochondrial fission. Chronic
inhibition of mitochondrial fission would be detrimental to
the heart and other organs as this process is critical to main-
taining a health mitochondrial network.

Mitochondrial fusion proteins as targets for cardioprotection.
The role of the mitochondrial fusion proteins (MFN1, MFN2
and OPA1) as targets for cardioprotection has produced some
unexpected findings. This may relate to their well-established
non-fusion effects, which may interfere with the myocardial
response to acute IRI. In the HL-1 cardiac cell line, Ong et al.
(2010) found that overexpressing MFN1 or MFN2 prevented
the opening of the MPTP and reduced cell death following
simulated IRI. These findings were consistent with those of
Papanicalou et al. (Papanicolaou etal., 2011; Chen etal.,
2012b), who demonstrated that small interfering RNA knock-
down of MFN2 delayed MPTP opening and rendered neona-
tal cardiomyocytes more susceptible to oxidative stress.

The genetic manipulation of the mitochondrial fusion
proteins in the adult heart has had contrasting effects in
terms of susceptibility to MPTP opening and sensitivity to
acute IRI (see Table 2). The deletion of MFN1, MFN2 or OPA1
appears to render the heart less resistant to MPTP opening,
and in the case of MFN1 and MFN2, the hearts have been
reported to be more resistant to acute IRI. The explanation for
this is not clear, but could possibly be related to the non-
fusion effects of the mitofusins described earlier. Although
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partial genetic ablation of OPA1 has been shown to delay
MPTP opening, its effect on acute IRI susceptibility has not
been investigated (Piquereau et al., 2012). Similar to the mito-
fusins, OPA1 has non-fusion pleiotropic effects such as inhib-
iting apoptosis by preventing cytochrome c release, and
therefore, the effect of manipulating OPA1 on the suscepti-
bility to acute IRI may be less straightforward to predict.

Experimental studies thus far have investigated the effects
of genetically ablating the mitochondrial fusion proteins.
However, the effect of overexpressing the mitochondrial
fusion proteins in the adult heart on sensitivity to acute IRI is
currently unknown. Whether this would worsen the response
to acute IRI is unclear.

In summary, the role of the mitochondrial fusion proteins
in the adult heart in terms of susceptibility to acute IRI is
quite complex. However, the development of small molecule
inhibitors of MFN1 and MFN2 may provide a novel therapeu-
tic strategy for cardioprotection.

LV hypertrophy (LVH)

Hypertrophy of the left ventricle can be both physiological
(in response to exercise) and pathological (congenital or
acquired — most often a detrimental response to an increase
load) and can lead to an increased risk of arrhythmias,
regions of ischaemia and heart failure (Frey and Olson, 2003;
Frey etal., 2004). As such, novel therapeutic agents are
required to prevent the progression of LVH and reduce the
onset of heart failure.

Mitochondrial fusion proteins and LVH. A number of experi-
mental studies have implicated the mitochondrial fusion pro-
teins MFN2 and OPA1 as potential therapeutic targets for
treating LVH. Previous work by Fang et al. demonstrated that
MEN2 (formerly known as hyperplasia suppressor gene or
HSG) can inhibit VSMC proliferation through the suppres-
sion of MEK1/2-Erk1/2 (Fang etal., 2007), a signalling
pathway that is up-regulated in LVH. As such, they investi-
gated whether MFN2 can also suppress pathological LVH.
They found that MFN2 expression was down-regulated and
Erk1/2 up-regulated in four different experimental models of
LVH (phenylephrine induced LVH in neonatal rat cardiomyo-
cytes, spontaneously hypertensive rats, f,.adrenoceptor trans-
genic mice and pressure overload LVH by transverse aortic
constriction) (Fang et al., 2007). Yu etal. (2011) went on
to demonstrate that MFN2 is down-regulated and Akt
up-regulated in neonatal rat cardiomyocytes treated with
angiotensin-II, and that genetic overexpression of MFN2
could prevent angiotensin-II-induced LVH in both neonatal
cardiomyocytes and the intact rat heart. While these studies
all show a reduction in total MEN2 protein, there is also the
possibility that these observations are merely due to the
reduction in mitochondrial mass per se. It is, therefore, impor-
tant to quantify the amount of mitochondrial dynamic
protein to total mitochondrial mass in order to obtain the
correct conclusion, especially in pathologies that are associ-
ated with dynamic changes in mitochondrial number.
Consistent with a role for MFN2 in hypertrophy are the
observations of cardiac hypertrophy in mice with cardiac-
specific MFN2 knockout (Papanicolaou et al., 2011; Chen and
Dorn, 2013). These implicated MFN2 as a potential cause, and
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therefore target for treating LVH. MFN2 and the mitochon-
dria are presumably implicated in such a condition through
the generation of ROS, and an energy supply-demand mis-
match. One can hypothesize that by increasing the activity of
MEN2 in the early stages of hypertrophy, the mitochondrial
network is maintained, ensuring healthy mitochondria,
which produce less ROS. Furthermore, given the ability of
MEN2 to tether mitochondria to the SR, this pathway is not
only important in the maintenance of Ca* homeostasis, but
also in energy supply-demand coupling. Through these
mechanisms, MFN2 could reduce the need for the heart to
hypertrophy pathologically.

Another mitochondrial fusion protein, OPA1, may also be
a potential therapeutic target for preventing LVH. Mice that
are partially deficient in OPA1 are more susceptible to LVH
and cardiac dysfunction induced by total aortic constriction
(Piquereau et al., 2012). While the anti-hypertrophic effects
of OPA1 overexpression in the adult heart are yet been inves-
tigated, it is supposed that beneficial effects would be
observed. The benefits could operate on two levels, the main-
tenance of a healthy mitochondrial network (less ROS, better
ATP coupling etc.) and a reduction in apoptosis. With OPA1
a strongly anti-apoptotic protein (as previously discussed),
OPA1 manipulation may reduce the apoptosis of cardiomyo-
cytes, reducing subsequent collagen deposition and the asso-
ciated decline in cardiac function. If the next lines of
investigation prove MFN2 and OPA1 to be beneficial in the
treatment of hypertrophy, the next challenges are to discover
drugs that will specifically activate these fusion proteins, and
pinpoint the exact time-point of disease progression where
activation of these proteins would prove most beneficial.

Mitochondrial fission proteins and LVH. In a recent study it
was reported that Drp1 is up-regulated, and MFN2 and OPA1
are down-regulated in a cell model of phenylephrine-induced
cardiomyocyte hypertrophy, suggesting a change in the
balance of mitochondrial morphology to fragmentation may
be associated with the development of LVH (Javadov et al.,
2011). Drpl has recently been investigated as a potential
mediator of LVH given its role in mediating mitophagy, a
process that may contribute to the pathogenesis of LVH and
heart failure (Givvimani efal., 2012). Treatment with the
Drp1 inhibitor Mdivi-1 prevented the progression of LVH and
development to heart failure induced by pressure overload
transaortic constriction. Treatment with Mdivi-1 was associ-
ated with the maintenance of the mitochondrial population,
a release of pro-angiogenic factors (CD31 and VEGF) and a
reduced collagen deposition. Assuming that Mdivi-1 is acting
upon the mitochondria through Drp1 inhibition, this study
implicates changes in mitochondrial dynamics as a key stage
in the development of pathological hypertrophy (Givvimani
etal., 2012).

Differentiation of stem cells into
cardiomyocytes

In the cardiomyocyte differentiation of stem cells, changes in
mitochondrial function and architecture are required to cater
for the increased metabolic demands of the differentiated
beating cardiomyocyte (reviewed in Rehman, 2010). For the
embryonic stem cell (ESC) to differentiate into a cardiomyo-
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cyte, there needs to be a metabolic switch from anaerobic
glycolysis to oxidative phosphorylation (Chung et al., 2007).
Crucially, this change in mitochondrial metabolism has been
reported to require a change in mitochondrial morphology
from fragmented rounded mitochondria (lacking cristae)
present in the ESC, to an elongated interconnected mitochon-
dria (with well-developed cristae) closely aligned with the
myofibrils of the differentiated contractile cardiomyocyte
(Chung et al., 2007). This change in mitochondrial morphol-
ogy was associated with alterations in the expression of Drp1
and MFN2 as well as expected changes in the metabolic
transcriptome (Chung ef al.,, 2007). A recent experimental
study has shown that the presence of OPA1 and MFN2 are
required in the development of the heart, with developmental
arrest occurring at el3.5 (Kasahara et al., 2013). Similarly,
differentiation from ESC to cardiac myocytes was associated
with an increased expression of MFN2 and OPAl. While
knockout of these genes failed to affect mitochondrial biogen-
esis, the mitochondrial network failed to elongate and the cells
were no longer able to differentiate into beating cardiomyo-
cytes. Through a mechanism that was unrelated to ATP pro-
duction, the interruption of mitochondrial fusion reduced
signalling calcium entry, which suppressed calcineurin activ-
ity and Notch signalling (Kasahara ef al., 2013). These findings
suggest that therapeutic targeting of mitochondrial fusion and
fission protein may allow one to facilitate the cardiac differ-
entiation of stem cells in future regenerative therapy.

Limitations and future
therapeutic potential

Despite the therapeutic potential of pharmacologically tar-
geting mitochondrial fusion and fission proteins to treat car-
diovascular disease, several hurdles still need to be overcome
to make this a clinical reality. These include the ability to
target the therapy in terms of treatment duration and its
organ-specificity. Given the important physiological roles the
mitochondrial fusion and fission proteins play in normal
cellular physiology, therapeutic activation or inhibition of
either the mitochondrial fission or fusion proteins is likely to
have detrimental effects as both processes are required to
maintain a healthy mitochondrial network for normal cell
function. As such, the application of this therapeutic
approach may be limited to temporary modulation in acute
rather than chronic cardiovascular conditions. Another
important issue to consider will be the ability to target the
drug to a specific organ and avoid off-target side effects. One
potential approach could be the intracoronary delivery of the
drug or coating coronary stents with the drug, thereby ena-
bling the local delivery of the drug to the myocardium or the
coronary endothelium.

Summary

Mitochondria are now regarded as highly dynamic organelles
with multiple functions. Emerging data suggest that the mito-
chondrial fusion and fission proteins may provide novel thera-
peutic targets for treating a variety of cardiovascular diseases
including acute IRI, heart failure, LVH, pulmonary arterial



hypertension and diabetes mellitus (see Figure 2). There is also
the potential to target mitochondrial fusion and fission pro-
teins to promote DA closure and facilitate cardiomyocyte
differentiation from stem cells for regenerative therapy.
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