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NMR lineshape analysis using 
analytical solutions 
of multi‑state chemical exchange 
with applications to kinetics 
of host–guest systems
Václav Březina1,2, Lenka Hanyková2, Nadiia Velychkivska1,3, Jonathan P. Hill1 & Jan Labuta1*

Nuclear magnetic resonance (NMR) lineshape analysis is a powerful tool for the study of chemical 
kinetics. Here we provide techniques for analysis of the relationship between experimentally 
observed spin kinetics (transitions between different environments A,B, . . . ) and corresponding 
chemical kinetics (transitions between distinct chemical species; e.g., free host and complexed host 
molecule). The advantages of using analytical solutions for two-, three- or generally N-state exchange 
lineshapes (without J-coupling) over the widely used numerical calculation for NMR spectral fitting 
are presented. Several aspects of exchange kinetics including the generalization of coalescence 
conditions in two-state exchange, the possibility of multiple processes between two states, and 
differences between equilibrium and steady-state modes are discussed. ‘Reduced equivalent schemes’ 
are introduced for spin kinetics containing fast-exchanging states, effectively reducing the number of 
exchanging states. The theoretical results have been used to analyze a host–guest system containing 
an oxoporphyrinogen complexed with camphorsulfonic acid and several other literature examples, 
including isomerization, protein kinetics, or enzymatic reactions. The theoretical treatment and 
experimental examples present an expansion of the systematic approach to rigorous analyses of 
systems with rich chemical kinetics through NMR lineshape analysis.

In NMR terminology, a process by which a particular nuclear spin changes its position among various chemical 
environments (i.e., states A,B, . . . ) is called chemical exchange. We denote these transitions between states as 
spin kinetics. The chemical exchange is characterized by transition rate coefficients kij (in units of s −1 ), where 
i, j = A,B, . . . ; i  = j . These coefficients are often denoted as ‘rate constants’, although we apply the term ‘transition 
rate coefficients’ due to their possible dependence on concentration. This concentration dependence may occur 
when spin kinetics is compared with the corresponding chemical kinetics (characterized by concentration-inde-
pendent reaction rate coefficients). An example of this is a bimolecular reaction discussed in detail in "Chemical 
exchange in host–guest complexes" Section. The simplest and most common case of a reversible process is a two-
state chemical exchange between A and B spin states (i.e., between states with different chemical environments 
and thus different Larmor frequencies) described by two transition rate coefficients kAB , kBA as illustrated in Fig. 1.

NMR lineshape fitting is a straightforward method to obtain transition rate coefficients and often requires only 
the acquisition of simple 1D NMR spectra1–3. For more complicated molecules (e.g., proteins) HSQC spectra can 
be analyzed, where either a 1D crosssection4–6 or the full 2D spectral7–9 lineshape is fitted. NMR lineshape fitting 
procedure is most suitable for the analysis of exchange processes with transition rate coefficients approximately 
in the range of 10–105 s−1 for 1 H NMR spectra7,10. The validity of this range based on the NMR instrument 
capability and the spectra lineshape fitting limitations (accuracy) are discussed in detail in Section S7.4 in Sup-
plementary Information (SI).

Methods other than lineshape fitting exist for the determination of transition rate coefficients. However, those 
methods usually require elaborate NMR sequences and extended experimental time. They are also aimed at the 
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analysis of different ranges of transition rate coefficients (both higher and lower). Reviews of these methods (e.g., 
ZZ-exchange, EXSY, R2 relaxation dispersion) are available from Bain11, Kleckner12 or Furukawa13.

The present study consists of theoretical ("Two-state exchange", "Three-state exchange", "Exchange schemes 
containing a fast process", and "Chemical exchange in host–guest complexes" Sections) and experimental parts 
("Analysis of an actual system exhibiting multi-state exchange" Section). In the theoretical part, analytical solu-
tions for two- and three-state exchange spectral lineshapes in the absence of J-coupling (with possible gener-
alization to N states) are discussed, including their applications to lineshape fitting, calculation of coalescence 
points and construction of reduced equivalent schemes in the case of fast exchange regime. The presence of 
multiple processes between two states or the possibility of steady-state mode in some systems is also considered. 
In the experimental part ("Analysis of an actual system exhibiting multi-state exchange" Section), an analysis is 
presented of an actual system involving a di-bromobenzylated oxoporphyrinogen host complexed with a (R)-
camphorsulfonic acid guest by means of lineshape analysis of 1H NMR spectra. These spectra were obtained by 
titration experiments during our previous work14, where binding and halochromic properties of the host were 
studied in the presence of organic acid guests. We propose a six-state spin kinetics scheme for the central NH 
resonances of the host molecule and determine the underlying chemical kinetics scheme. The parameters of 
both the chemical kinetics and spin kinetics schemes and the concentration dependence of the transition rate 
coefficients are then determined in their entirety by the lineshape fitting procedure in conjunction with infer-
ences from the theoretical part.

Let us emphasize the main benefits of exact analytical solutions of NMR lineshapes over the possible numeri-
cal solutions. Analytical solutions enable complex analyses of coalescence conditions in symmetric and (gen-
eral) asymmetric two-state exchange (Section S5 in SI). These results can be readily applied for a more accurate 
estimate of the transition rate coefficients at coalescence kc (e.g., Eq. (8)). Exact solutions provide interpretation 
of exchange lineshapes in slow or fast exchange limits (Section S4 in SI) and also, in this regard, a means for 
the construction of reduced equivalent schemes in the presence of a fast exchange process ("Exchange schemes 
containing a fast process" Section). Moreover, analytical solutions are facile to implement and perform faster 
in lineshape fitting code than numerical ones since they do not require the calculation of an inverse matrix for 
each point of the spectrum (Sections S1.1 and S3 in SI).

Two‑state exchange
Analytical solution for the spectral lineshape.  The NMR signal is proportional to the complex trans-
verse magnetization (equivalent to −1 quantum coherence in quantum mechanical description15) obtained it the 
form Mj

xy = M
j
x + iM

j
y , where j = A,B, . . . are spin states and i is the imaginary unit. Under chemical exchange 

of non-J-coupled spins, the evolution of transverse magnetization Mj
xy can be modeled classically using Bloch-

McConnel equations16,17. Its free evolution after a pulse is described as follows

where Mxy = (MA
xy ,M

B
xy)

T , the diagonal matrix L describes evolution due to the external magnetic field, the 
diagonal matrix R2 accounts for spin-spin relaxation, and the kinetic matrix K characterizes flux of magnetiza-
tion from one state to another due to the chemical exchange. Equation (1) can be solved numerically in the 
frequency domain, see Sections S1 and S3 in SI. However, this study aims to identify analytical solutions, which 
yield deeper insights into the general lineshape analysis.

In the two-state case, L = diag(ωA,ωB) , R2 = diag(RA
2 ,R

B
2 ) (‘diag(• )’ represents a diagonal matrix with ele-

ments indicated in brackets), where RA
2  , RB

2  are transverse relaxation rates for A and B states, respectively, and 
the kinetic matrix is expressed as

Concentrations of spins A and B, denoted as [A] and [B], respectively, can be written in the form of relative 
populations pA and pB (with normalization pA + pB = 1 ) 

 

(1)
d

dt
Mxy(t) = (iL − R2 + K)Mxy(t),

(2)K =
(

−kAB kBA
kAB − kBA

)

.

(3a)pA =
[A]

[A] + [B]
,

(3b)pB =
[B]

[A] + [B]
.

Figure 1.   Spin kinetics of two-state exchange.
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Time dependence of populations is governed by two first-order kinetics differential equations with the fol-
lowing matrix form

where p = (pA, pB)
T . We are interested in the equilibrium state, which sets the time derivative at the left-hand 

side of Eq. (4) to zero and converts this differential equation into an algebraic equation

Formally, Eqs. (4) and (5) hold for any number of states N with populations p = (pA, pB, . . . , pN )
T when the 

kinetic matrix K is correspondingly constructed. The solution for equilibrium (Eqs. (5)) can be readily obtained 
by a diagrammatic method introduced in King and Altman18 or Hill19. Apart from equilibrium, this solution 
also describes the steady-state, see discussion in the next section.

The equilibrium populations in the two-state exchange (Fig. 1) can be expressed as functions of the transition 
rate coefficients (from Eqs. (2) and (5)) 

 
Without loss of generality, let us assume that the initial transverse magnetization is real and positive, 

M
j
xy(t = 0) = M

j
0 , M

j
0 ∈ R , j = A,B . This corresponds to the magnetization vectors (of nuclei of interest in 

the states A and B) being tilted parallel to the x-axis, as can be seen from the definition Mj
xy = M

j
x + iM

j
y (the 

imaginary y component is set to zero).
A solution of the system of linear differential equations in Eq. (1) for symmetric two-state exchange where 

kAB = kBA = k is a standard part of literature reports11,15,17. Also, an analytical solution in complex form for the 
asymmetric case has already been published by Gutowski and Saika20, Johnson21 and Římal1. The formula in 
complex form reads 

where

 for j = A,B . M0 = MA
0 +MB

0  denotes the total transverse magnetization. The sign of the imaginary part of αj 
depends on the convention in Fourier transformation (FT)22. The expression α−1

j  describes the complex Lorent-
zian lineshape with Larmor frequency ωj and transverse relaxation Rj

2 . This is useful for calculating limit cases 
when the transition rate coefficients tend to zero or infinity, see Section S4 in SI. At equilibrium, the populations 
and transition rate coefficients in Eq. (7a) are connected by the algebraic Eqs. (6a,b).

For lineshape fitting, it is convenient to express the real (absorption) part of the spectrum from Eq. (7). The 
result can be found in the report by Takai et al.3 and, for convenience, we show it here for the symmetric and 
asymmetric cases in SI (Eqs. S8–S10 in Section S2, with corresponding MATLAB code in Section S3).

Using the analytical spectral lineshape, we also calculated the position of coalescence point kc in the case of 
symmetric two-state exchange (i.e., kAB = kBA = k ), see Section S5.1 in SI. If the relaxation rate is neglected 
( R2 = 0 ), then the approximative formula is the well-known kc≈|ωB − ωA|/(2

√
2)15. We have derived correc-

tions to this approximation in the form of a power series in R2/�ωAB terms ( �ωAB = |ωB − ωA| ). Equation (8) 
is the formula for kc containing a linear correction term,

The correction term provides significant error reduction (see Fig. S1 for error analyses) and Eq. (8) can be readily 
applied in the experiment for more precise estimation of kc . Furthermore, we have generalized the concept of 
coalescence and investigated the coalescence conditions for asymmetric two-state exchange, see Section S5.2 in 
SI. In contrast to symmetric two-state exchange, where the coalescence transition rate coefficient is a single value 
kc , asymmetric exchange exhibits infinitely many pairs of transition rate coefficients { kAB,c , kBA,c } at which the 
spectrum has coalescence lineshapes (provided constant values of ωA , ωB , and R2).

Two‑state exchange at equilibrium and at steady‑state.  It has already been mentioned above that 
Eq. (5) also allows a steady-state solution. To understand the difference between equilibrium and steady-state, 
let us define a population flux from state j to state k as

(4)
dp

dt
= Kp ,

(5)K p = 0 .

(6a)p
eq
A =

kBA

kAB + kBA
,

(6b)p
eq
B =

kAB

kAB + kBA
.

(7a)Stwo-state exch.(ω) = M0
pAαB + pBαA + kAB + kBA

αAαB + kABαB + kBAαA
,

(7b)αj = R
j
2 + i(ω − ωj)

(8)kc≈
�ωAB

2
√
2

[

1− 1.1379
R2

�ωAB

]

.

(9)Jjk = pjkjk − pkkkj .
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It follows then from Eq. (9) that Jjk = −Jkj.
A condition for equilibrium is that population flux between each state j and k is equal to zero ( Jjk = 0 ). In 

contrast, in steady-state mode non-zero population fluxes (constant in time) are present, but the net flux Jk to 
any state k is zero (see Eq. (10)), so that the populations do not change over time,

for all k = A,B, . . . . Note that 
∑

k = A,B, . . . Jk = 0 even outside equilibrium or steady-state because the spin 
in states A,B, . . . is an isolated system.

The condition of zero population flux for equilibrium can be reformulated using populations and transition 
rate coefficients setting Jjk = 0 in Eq. (9). Hence, at equilibrium (but not at steady-state)

As follows from these relationships, the equilibrium conditions reduce the number of independent transition 
rate coefficients compared to any out-of-equilibrium state. This must be considered during the analysis of actual 
experimental data.

A steady-state spin kinetics can be achieved only in schemes containing a closed cycle19. Closed cycle exists 
in the scheme if it is possible to return to the same state through a different process (i.e., through a different 
transition state). Since closed cycles are not contained in the simple two-state exchange, as presented in Fig. 1, a 
steady-state mode is not feasible. It also follows from Eqs. (2) and (5) that JAB = JBA = 0 , which is equivalent to 
the equilibrium condition in Eq. (11). However, even in two-state kinetics, a closed cycle can arise if the transi-
tion between states is accomplished by more than one process.

For an illustration of two-state kinetics with two reversible processes, see Fig. 2. In that case, there exist two 
independent reversible processes I ( kIAB and kIBA ) and II ( kIIAB and kIIBA ) both of which cause interconversion of 
A and B states. Since a closed cycle is present, in theory, there can be non-zero population flux in clockwise 
( J IAB = J IIBA > 0 ), or counterclockwise ( J IAB = J IIBA < 0 ) directions. However, the NMR spectral lineshape for a 
two-process two-state exchange (Fig. 2) is in principle indistinguishable from one-process two-state exchange 
(Fig. 1), see SI Section S6.1. Consequently, steady-state and equilibrium modes in the two-process case also 
cannot be distinguished (both can be mapped on an equilibrium one-process lineshape).

An example of two-process two-state kinetics is presented by the conversion of a substrate to a product in 
reversible enzyme-catalyzed reactions according to the Michaelis-Menten scheme. After an initial pre-steady-
state period (usually very brief) the chemical reaction achieves an approximate steady-state, where free and 
bound enzyme concentrations change slowly (this is a standard assumption in the analysis of enzyme kinetics23). 
Consequently, a nuclear spin located at the enzyme undergoes exchange between free and bound states in an 
approximate steady-state mode. This approximate steady-state eventually reaches equilibrium unless forced by 
an external action (e.g., by addition of substrate and removal of product). However, even in the absence of an 
enforcing factor, the enzyme spin populations achieve an approximate steady-state over a relatively long time 
period. For further details see Section S6.2 in SI.

Another example of two-process two-state spin kinetics is conformational variation in dimesityl systems, 
where both mesityl rings can flip about the connecting single bonds24–26. These ring flips interconvert P and 
M helical enantiomers. There are several different transition state geometries, distinguishing different types 
of processes. Each process converts the enantiomer although the spin state can remain unchanged. For more 
details see Section S6.3 in SI. There are also examples of systems having two states and undergoing more than 
two processes including correlated motions of trimesityl compounds27 or other propeller-like triaryl systems28.

Three‑state exchange
Analytical solution for spectral lineshape.  Using FT, spectral exchange lineshapes can be obtained 
analytically for systems having arbitrary number of spin states. Details of the solutions and numerical imple-
mentations in MATLAB can be found in SI (Sections S1 and S3). In this paper, we focus on detailed analyses of 
three-state chemical exchange. To the best of our knowledge, the general analytical solution presented here has 
not been reported. There have been several attempts during the early years of NMR spectroscopy to obtain exact 
solutions in the simplified cases presented by Gutowsky and Saika20 or Sack29. It should be noted that Kovrigin30 

(10)
Jk =

∑

j = A,B, . . .
j �= k

Jjk = 0

(11)
p
eq
k

p
eq
j

=
kjk

kkj
.

Figure 2.   Spin kinetics of two-state exchange where two independent processes are present.
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analyzed numerically several properties of three-state (and four-state) chemical exchange. There also exist NMR 
spectral simulation programs (e.g., NmrLineGuru31, TITAN7), which enable the numerical fitting of multi-state 
exchange lineshapes. As mentioned above, our aim is to identify an exact analytical solution that yields deeper 
insight into the NMR spectral manifestation of the three-state exchange.

Transitions among three states are described by six transition rate coefficients according to Fig. 3 with the 
corresponding kinetic matrix

The equilibrium/steady-state populations can be determined using the equation Kp = 0 (Eq. (5)) with popula-
tions p = (pA, pB, pC)

T . Details of the solution (Eq. (15) in Table 1) will be discussed below. The spectral lineshape 
for three-state chemical exchange is as follows

where

Kinetics of three‑state exchange.  In contrast to simple two-state kinetics (Fig. 1), general three-state 
kinetics (Fig. 3) contains a cycle thus enabling the existence of a steady-state. The expressions for steady-state 
and equilibrium populations of the general three-state kinetics and two special cases are summarized in Table 1. 
For special cases, it can be seen that imposing symmetry (Table 1b) or complexity reduction (Table 1c) to the 
general three-state scheme leads only to solutions in equilibrium and a steady-state solution is absent (for more 
details, see text below).

In the case of general three-state kinetics (Table 1a), the populations for steady-state pssj  are calculated from 
Eqs. (5) and (12), the solution is given in Eq. (15) in Table 1, and the coefficients πj are defined in Eq. (13).

At equilibrium, the solution (Eq. (15) in Table 1) further simplifies when it is combined with the equilibrium 
conditions (Eq. (11)). Since now the transition rate coefficients are not mutually independent,

If we choose, for example, kBA as the dependent rate coefficient, then the equilibrium populations can be 
obtained according to Eqs. (16a-c) in Table 1. The dependent transition rate coefficient kBA is calculated according 
to Eq. (16d). Without loss of generality, it is possible to select any other transition rate coefficient as dependent.

It follows from these relationships that the equilibrium condition reduces the number of independent transi-
tion rate coefficients, and this fact must be taken into consideration during analysis of any actual experimental 
data. Prior to use of the three-state lineshape formula in Eq. (13), the populations and transition rate coefficients 
for the steady-state should be related using Eq. (15) in Table 1 and for equilibrium using Eq. (16) in Table 1.

(12)K =

(−kAB − kAC kBA kCA
kAB − kBA − kBC kCB
kAC kBC − kCA − kCB

)

.

(13)Sthree-state exch.(ω) = M0
P

Q
,

M0 =MA
0 +MB

0 +MC
0 ,

P = pA[αBαC + αB(kCA + kCB + kAC)+ αC(kBA + kBC + kAB)]
+ pB[αAαC + αA(kCA + kCB + kBC)+ αC(kAB + kAC + kBA)]
+ pC[αAαB + αA(kBA + kBC + kCB)+ αB(kAB + kAC + kCA)]
+ πA + πB + πC ,

Q =αAαBαC + αAαB(kCA + kCB)+ αAαC(kBA + kBC)+ αBαC(kAB + kAC)

+ αAπA + αBπB + αCπC ,

πA = kBAkCA + kBCkCA + kBAkCB ,

πB = kABkCA + kABkCB + kACkCB ,

πC = kACkBA + kABkBC + kACkBC .

(14)1 =
p
eq
C

p
eq
B

p
eq
B

p
eq
A

p
eq
A

p
eq
C

=
kBC

kCB

kAB

kBA

kCA

kAC
.

Figure 3.   Spin kinetics of three-state exchange.
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Details about lineshape fitting in different modes (i.e., equilibrium, steady-state and out-of-steady-state mode 
with time-dependent populations) of the spin kinetics and discussion about the interdependency of the fitted 
parameters during lineshape analysis can be found in SI, Sections S7.1 and S7.2. It is also worth mentioning 
that a steady-state in the general three-state exchange scheme cannot be distinguished from an equilibrium by 
analyzing a single NMR spectrum since the equilibrium lineshape (Eq. (13) and Eq. (16) in Table 1) can also be 
fitted to the steady-state lineshape (Eq. (13) and Eq. (15) in Table 1). For further details, see Section S7.3 in SI.

The first special case of three-state kinetics is denoted half-symmetric and is shown in Table 1b. In this case, 
the states A and B are denoted as A1 and A2 , respectively, due to the symmetry in the corresponding chemical 
species. Hence, the states A1 and A2 are equally populated, and the system is described by three transition rate 
coefficients: kAC , kCA and kA . Populations given by Eqs. (17) in Table 1 already imply equilibrium because they 
obey the equilibrium conditions in Eq. (11). A steady-state with non-zero net fluxes is not possible for this kinetic 
scheme. The second special case is a consecutive kinetic scheme, which is shown in Table 1c. As this scheme lacks 
a closed cycle, only equilibrium is possible with populations in Eq. (18) in Table 1.

Extension to a higher number of states.  The derivation of NMR lineshape formulae is straightforward 
for arbitrary numbers of states and arbitrary spin kinetic schemes, as shown in Section S1.1 in SI. An example of 
Mathematica code for rapid derivation of four-state exchange lineshape is provided in Section S1.2 in SI (we do 
not show the actual formulae due to their excessive numbers of terms).

We have identified a four-state spin kinetics system in the cis-trans isomerization process in work on butterfly-
shaped overcrowded alkene published by Kartha et al.32 It is important to note that the cis-trans isomerization 
corresponds to chemical kinetics involving three species (meso cis and two chiral trans isomers). The transi-
tion between cis and both trans forms is enabled by two independent reversible processes: ‘rim flip’ or ‘double 
bond flip’, both with different energy barriers. In the original paper, the data were fitted by symmetric two-state 
exchange lineshapes on two different temperature ranges. We have reproduced the full four-state temperature-
dependent spectra using the lineshapes derived in Section S1.2 in SI. Our four-state model reconstructs the 
experimental data shown in Kartha et al.32 with excellent accuracy. We have also compared the two-state model 
fits used in the original paper to the actual four-state spectral lineshape and discuss the quality of this approxi-
mation. Moreover, we have also calculated the two limit cases (low- and high-temperature regimes), where the 

Table 1.   Three-state spin kinetics and its special cases.
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four-state lineshape can be exactly identified as two-state lineshapes. Detailed description and analysis can be 
found in SI, Section S8.

Exchange schemes containing a fast process
Let us consider a consecutive three-state spin kinetics scheme with slow or intermediate exchange between states 
A and B, and fast exchange between B and C, see Fig. 4a.

The two fast-exchanging peaks merge, so that only two peaks can be observed. This situation can be mod-
eled as limit of kBC , kCB → ∞ in Eq. (13), the ratio kBC/kCB = pC/pB is kept constant. The resulting equation 
is given as

where

In comparison with Eq. (7), it becomes obvious that three-state exchange containing a fast process can be 
modeled as a two-state exchange between states A and B′ with transition rate coefficients kAB and kB′A , where kB′A 
has the following relationship to the transition rate coefficient kBA with physical meaning

The resonant frequency of the state B′ is the population weighted average of the frequencies ωB and ωC , in 
particular ωB′ = (pBωB + pCωC)/(pB + pC) (by analogy with fast asymmetric two-state exchange). Similarly, 
it holds that RB′

2 = (pBR
B
2 + pCR

C
2 )/(pB + pC) for the relaxation rate. We can view the B′ state as being merged 

B and C since MB′ = MB +MC (and consequently pB′ = pB + pC ). The full kinetic scheme is simplified to a 
reduced equivalent scheme as seen in Fig. 4b. To maintain the transition rate from B′ to A (one-way population 
flux, i.e., kB′ApB′ ) the same as the transition rate from B to A (i.e., kBApB ) in the original scheme, the equality 
kB′ApB′ = kBApB must hold. Because pB′ is larger than pB , the modified coefficient kB′A should be smaller than the 
original coefficient kBA . Note that only the transition rate coefficient out of the replacement state B′ is modified 
(as seen in Fig. 4a vs. b). Furthermore, modified transition rate coefficients can also be obtained directly from 
the kinetics differential equations in Eq. (4), which is illustrated in Section S10 in SI.

In the work of Feng31, a simulated three-state exchange (the same as in Fig. 4a) was successfully fitted with a 
two-state formula. Our approach here using the reduced equivalent scheme can be used to explain these results31 
and provides an in-depth understanding, see details in SI, Section S9. Another example of a reduced equivalent 
scheme for three-state exchange with appended fast-exchanging state is given in SI, Section S10.

Chemical exchange in host–guest complexes
Chemical exchange, as described by the previous schemes and governed by transition rate coefficients kij , com-
prises transitions between states that can be observed by using 1D NMR measurements. In this paper, we apply 
terminology from chemical kinetics33, where the term ‘rate’ denotes variations of the concentrations of reactants 
or products with time (the rate is in units of M.s−1 ). In the following discussion, we differentiate reaction rate (rate 
of change between chemical species) from transition rate (rate of change between spin states). Finally, reaction 
and transition rates are directly related, which enables concentration dependence of transition rate coefficients 
to be determined17.

Let us consider the 1:1 host(H)–guest(G) binding in Fig. 5a with an equilibrium constant

(19)Sthree-state exch.limit(ω) = M0
P

Q
,

M0 = MA
0 +MB

0 +MC
0 ,

P = pA
pBαB + pCαC

pB + pC
+ (pB + pC)αA +

kBApB

pB + pC
+ kAB ,

Q = αA
pBαB + pCαC

pB + pC
+

kBApB

pB + pC
αA + kAB

pBαB + pCαC

pB + pC
.

(20)kB′A = kBA
pB

pB + pC
.

Figure 4.   Consecutive three-state exchange containing a fast exchange process. (a) Spin kinetics scheme and 
(b) the corresponding reduced equivalent scheme.
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Guldberg-Waage’s law of mass action assumes that the forward and backward rates of a chemical reaction are 
proportional to the concentrations of reacting molecules, 

 Here we distinguish between reaction rate coefficients κ• , which describe the kinetics of host–guest binding, 
and transition rate coefficients k• which describe transitions of a particular spin between corresponding states. 
Although reaction rate coefficients κ• are usually denoted in the literature as ‘ k• ’, here we have applied the Greek 
letter ‘ κ ’ to avoid confusion with transition rate coefficients. Reaction rate coefficients are independent of con-
centration and their temperature dependence is governed by the Eyring equation, in accordance with transition 
state theory,

where �G‡
ij is the molar Gibbs free energy of activation between states i and j (i.e., height of the barrier between 

states i and j), η is the transition probability, h is the Planck constant and R is the molar gas constant.
The free host H can be assigned to state A and the complex HG to state B ( [A] = [H] and [B] = [HG] ). The 

variation of concentration with time of the spin state B associated with the HG complex, i.e., the transition rate, 
is given by Fig. 5b and Eq. (4) (multiplied by [H]t to transform populations to concentrations, subscript ‘t’ denotes 
total concentration), yielding d[B]/dt = kAB[A] − kBA[B] . In the latter equation, the two right-hand side terms 
are identified as forward and backward transition rates, that is 

 
A comparison of Eq. (22) with Eq. (24), using the assignment [A] = [H] and [B] = [HG] , implies that kAB 

depends on free guest concentration unlike kBA , 

 
The free guest concentration [G] and consequently the value of kAB increases with [G]t and decreases with [H]t . 

For bimolecular elementary reactions the transition rate coefficients usually depend linearly on concentration, 
while for unimolecular reaction (i.e., decay of the complex) the transition rate coefficients are independent of 
concentration.

The above formulas (Eq. (25)) imply that simple 1:1 host–guest binding does not allow (in general) for sym-
metric two-state exchange because in titration experiments the pB/pA ratio always increases upon addition of 
guest molecules. Only two of the parameters κAB , κBA and KHG are independent. The dependence of [H] , [HG] 
and [G] on the total host and guest concentrations ( [H]t and [G]t ) can be expressed in an analytical form for 1:1 
host–guest binding, see Eqs. (S41a-c) in SI, Section S11.1. Illustration of a simulated titration of a host with a 
guest is given in SI, Section S11.2. In the SI, Sections S11.3 and S11.4, we also give an example of a three-state 
exchange in the competitive host–ligand binding model (two types of ligand), including the lineshapes during 
a simulated titration experiment.

Analysis of an actual system exhibiting multi‑state exchange
Analytical solutions1–3,34 for spectral lineshape have been used for fitting of the two-state exchange, but only 
numerical methods4–6,30,31,35 have been applied in the case of systems containing more states than two. This 
section illustrates the use and benefits of the analytical treatment of the multi-state chemical exchange scheme 

(21)KHG =
[HG]
[H][G]

=
κAB

κBA
.

(22a)forward reaction rate = κAB[G][H] ,

(22b)backward reaction rate = κBA[HG] .

(23)κij =
ηkBT

h
exp

(

−
�G‡

ij

RT

)

,

(24a)forward transition rate = kAB[A] ,

(24b)backward transition rate = kBA[B] .

(25a)kAB = κAB[G] ,

(25b)kBA = κBA .

Figure 5.   Two-state exchange with 1:1 host–guest binding. Schemes for (a) chemical kinetics and (b) 
corresponding spin kinetics of a nucleus located at the host molecule.
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containing fast exchange processes (see "Exchange schemes containing a fast process" Section), which reduces 
the number of fitting parameters.

The di-bromobenzylated oxoporphyrinogen host (H), i.e., N21,N23-bis(4-bromobenzyl)-5,10,15,20-tetrakis 
(3,5-di-t-butyl-4-oxocyclohexadien-2,5-ylidene)porphyrinogen, Fig. 6a, was synthesized by previously reported 
method36,37. The host H is protonated by (R)-camphorsulphonic acid guest (G) at one of its hemiquinonoid sites 
while forming a host–guest complex (HG) to stabilize the protonated cation. Full NMR spectra and details of 
the corresponding titration experiment are given in our previous paper14. The central NH protons of the host 
are subject to chemical exchange between six environments, which is experimentally manifested in its NMR 
spectrum as three resonances (some of the resonances are already merged due to fast exchange, see below) in the 
titration spectra at low [G]t , see Fig. 7a. At low [G]t the three observable resonances are well separated and the 
exchange between them is in a slow regime. The peak at 9.3 ppm, denoted as state C′ , vanishes at 1 guest equiva-
lent (equivalents defined as [G]t/[H]t ). The state C′ actually comprises substates C and D averaged due to fast 
chemical exchange, see Fig. 6b. These substates correspond to free host and its complex with water, respectively 
(details are discussed below). The two resonances at 13.1 and 11.8 ppm correspond to two equally populated states 
denoted as A′

I and A′
II , respectively. The state A′

I comprises substates A1 and A2 , the state A′
II comprises substates 

A3 and A4 , each two substates are averaged due to the fast exchange. States A1 , ..., A4 of the green-labeled refer-
ence NH spin in Fig. 6c correspond to protonated host with protonation at four different C=O sites. States A1 
and A3 correspond to (+)-HG tautomer and states A2 and A4 to (−)-HG tautomer. The labels ( + ) and (−) have 
been assigned arbitrarily (without the influence of guest anion, the protonated species (+)-H+ and (−)-H+  are 
mutual mirror images, i.e., enantiomers).

Figure 6.   Spin states of central NH protons of di-bromobenzylated oxoporphyrinogen host molecule (H). 
(a) Structure of H. Bromobenzyl groups are situated behind the molecule. The spin states are described with 
respect to reference proton denoted by green arrow. (b) Schematic representation of free host HC and host–
water complex HW

D inducing the spin states denoted in superscript. (c) Protonated host–guest complex in 
two distinct tautomeric forms ( +)-HG and (−)-HG differing in the site of protonation. NH spins of ( +)-HG 
tautomer can be present in two spin states HG

A1 or HG
A3 (similarly NH spins of (−)-HG can be in states HG

A2 
or HG

A4 ) depending on the carbonyl protonation proximity to the green-labeled reference proton. Different 
sites of protonation within the green and yellow zones form the averaged states A′

I and A′
II , respectively. Guest 

anion stabilizing the host–guest complex14 is not shown since it does not affect the structure of spin states (see 
details in the text). The superscripts (e.g., HC , HGA1 ) denote the spin state with respect to the green-labeled 
reference NH proton. (d,e) 1H NMR spectra of NH resonances of host H ( 8.4× 10−4 M−1 , CDCl3 ) with 
0.59 equiv. of guest G at (d) −60 ◦ C and (e) 25 ◦ C. In (d), the presence of four states A1 , ..., A4 of protonated H 
can be recognized (intensity ratio of the peaks at 13.03 and 12.96 ppm is 74:26). In (e), only two averaged states 
A′
I and A′

II can be observed.
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Figure 7.   Experimental results for the host–guest system of di-bromobenzylated oxoporphyrinogen with 
(R)-camphorsulfonic acid. (a) NH portion of 1H NMR spectra of host H (initial concentration 6× 10−4 M , 
CDCl3 ) during the titration with guest G (y-scaling of spectra is adjusted for clarity). Concentration of guest 
G corresponds to the value where the spectrum meets the y-axis. (b) Apparent positions of peak maxima 
during the titration, green and blue arrows denote the shift of maxima due to solvent polarity increase and 
fast exchange between states C (free H) and D (host–water complex HW), respectively. Red line is fit of the 
frequency ωC′ = pCωC + pDωD rescaled to ppm. (c) Concentration dependence of the transition rate coefficient 
kA′ obtained using two-state lineshape fitting on states A′

I and A′
II (black circles) and using three-state lineshape 

fitting on states A′
I , A

′
II and C′ (green circles). The red line is the best fit of the kA′ concentration dependence 

within three-state model (two-state model is used above 1 equiv. due to the disappearance of the C state from 
NMR spectra) using Eqs. (26a) and (S45a,b). Magenta lines denote the slope of the red fitting curve. (d) Other 
transition rate coefficients describing the half-symmetric three-state exchange. The parameter kA′C′ was fitted 
and kC′A′ was calculated ( kC′A′ = kA′C′pC′/pA′

I
 ). (e) Concentration dependence of the power law exponent. (f) 

Concentration dependence of populations of host-related species. (g) Concentration dependence of free guest, 
host–water complex (both determined from the model in SI, Section S11.3) and total concentration of water (as 
determined from water peak integration, red solid line is interpolation). (h) Gibbs energy profile of all chemical 
species as calculated from the Eyring equation, Eq. (23), from the reaction rate coefficients at T = 298 K and 
setting the transition probability η = 1 . Barriers �G‡

CD and �G‡
DC were not determined, since the corresponding 

exchange process was too fast. The Larmor frequencies of states A′
I and A′

II are not unequivocally assigned 
with respect to the structures in Fig. 6c. Error bars in (c) and (d) denote maximum errors, see discussion in 
Section S12 in SI.



11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17369  | https://doi.org/10.1038/s41598-022-20136-4

www.nature.com/scientificreports/

Binding of the guest counteranion at the central NH site influences the Larmor frequency of the states A1 , ..., 
A4 through so-called ‘chiral field’34 caused by fast movement of the guest anion near the NH site (the charged 
species interact strongly together due to hydrophobicity of the CDCl3 solvent). All states A1 , ..., A4 are directly 
observed at low temperature as shown in Fig. 6d. Since the chiral field is different in ( +)-HG and (−)-HG (due 
to the absence of mirror symmetry of the guest), Larmor frequency of state A1 differs from that of A2 , although 
Larmor frequencies of A3 and A4 are coincidentally similar. At room temperature, only averaged states A′

I and A′
II 

are detected, see Fig. 6e. Considering the mirror symmetry plane σ of the host (shown in Fig. 6a), the reference 
proton is in state A′

I when the protonation is at the same side of the molecule and in state A′
II when the protonation 

is on the other side. We were not able to unequivocally assign states A1 , ..., A4 (corresponding to structures in 
Fig. 6c) to particular resonances in Fig. 6d. However, this information is not essential for analyzing the system’s 
kinetics. Therefore, we assumed that Larmor frequency of the reference NH spin (marked in green in Fig. 6c) 
is likely similar when the protonation is in its vicinity (i.e., states A1 and A2 ) contrary to protonation across the 
symmetry plane (i.e., states A3 and A4 ), which results in assignment shown in Fig. 6d. Enantiomeric excess of 
the chiral guest molecule does not influence the spin states (titration with (rac)-CSA produced the same spectral 
behavior of the NH resonances14). Due to the symmetry, both states A′

I and A′
II have the same populations. At 

higher guest concentrations, the resonances in states A′
I and A′

II start to coalesce and enter intermediate then 
fast exchange regimes.

The observed spectral behavior can be described (in terms of reduced equivalent scheme) as the half-sym-
metric three-state exchange with states A′

I , A
′
II and C′ (Table 1b), which is characterized by two independent 

transition rate coefficients kA′ and kA′C′ ( kC′A′ = kA′C′pC′/pA′
I
 is not independent as follows from Eqs. (17a,b) in 

Table 1). The corresponding populations are pA′
I
= pA1 + pA2 , pA′

II
= pA3 + pA4 and pC′ = pC + pD . Resonance 

positions δA′
I
 and δA′

II
 shift upfield (to lower ppm values) at higher acid concentrations due to the increase in 

polarity of the medium upon addition of acid, see green arrow in Fig. 7b. The resonance position δC′ shifts 
downfield (to larger ppm values) during the titration (while δA′

I
 and δA′

II
 still remain constant), see blue arrow in 

Fig. 7b. This is a direct evidence that state C′ consists of two substates C and D because the three-state solution 
in Eq. (13) does not allow shifts of peak maxima in the slow exchange regime. In the current model, the peak 
due to state C′ can shift when populations pC and pD change ( δC′ = pCδC + pDδD ). It is already known that the 
host molecule can bind water with a binding constant KHW = 240± 35 M−138. During experiments it is not 
reasonably possible to prepare CDCl3 solutions of H containing no residual water. Moreover, small quantities of 
water are added together with the hydrophilic guest during the titration process. Hence, the spin state D most 
likely corresponds to a host–water complex (HW). Competitive binding of guest and water is assumed38, i.e., 
complexation with one ligand precludes binding of the other (see Sections S11.3 and S11.4). Because of the high 
mobility of water (small molecule) and low value of KHW we assume infinitely fast exchange between states C 
and D. To summarize, the chemical kinetics description of this system includes competitive host–guest and 
host–water binding. The observed spin exchange kinetics (for host NH signals) can be described using the half-
symmetric three-state model. Fast exchange effectively reduces the number of states to three, enabling the use 
of the reduced equivalent scheme.

Figure 8 shows three different levels of description of chemical kinetics in this system, and the underlying 
equations are given in SI, Section S11.5. Figure 8a shows the simplified chemical kinetics of the processes involved 

Figure 8.   Chemical kinetics schemes for the multi-state system of di-bromobenzylated oxoporphyrinogen 
(host H) in the presence of two ligands, (R)-camphorsulfonic acid (ligand G) and water (ligand W). (a) 
Simplified chemical kinetics scheme corresponding to 1:1 H:G binding with competitive 1:1 H:W binding (see 
Section S11.3 in SI for details). (b) Chemical kinetics scheme describing interconversion of all distinguishable 
chemical species. (c) Expanded chemical kinetics scheme, equal to the full spin kinetics scheme. All relevant 
molecular processes and their reaction rate coefficients are shown. Processes denoted by magenta arrows are fast 
on the NMR timescale.
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assuming the presence of host molecule as three distinct chemical species, H, HG and HW. The simplified chemi-
cal kinetics scheme is sufficient to describe the competitive host–ligand binding characterized by equilibrium 
constants KHG and KHW , the corresponding equations are shown in SI, Section S11.3. The constant KHG accounts 
for the protonation of any of the four sites. The low-temperature spectrum in Fig. 6d suggests that the sites are 
not equivalent since states A1 and A2 are not equally populated with intensity ratio 74:26. The populations cannot 
be determined at room temperature. However, we can treat the sites as equivalent (with equal populations) at 
room temperature with reasonable accuracy since the populations tend to equalize with increasing temperature. 
Hence, the reaction rate coefficient 4κCA in Fig. 8a contains an integer prefactor to account for the four equiva-
lent protonation sites. Protonation of one particular site is characterized by Kmicro

HG = KHG/4 . The microscopic 
equilibrium constant Kmicro

HG  is also equal to the ratio of reaction rate coefficients for the molecular processes of 
protonation and deprotonation, i.e., Kmicro

HG = κCA/κAC . In fact, the protonation forms two different tautomeric 
species ( +)-HG and (−)-HG as discussed above, see Fig. 6c. This situation is captured by the chemical kinetics 
scheme in Fig. 8b. Both tautomers can be formed in two different ways, hence the integer prefactor in 2κCA . Other 
processes denoted as ‘guest-mediated prototropic tautomerization’, characterized by κA and κ∗A , are present in this 
scheme. These interconvert spin states A1 , ..., A4 and hence also ( +)-HG and (−)-HG chemical species, and occur 
when an incoming acid guest protonates the host while the initial protonation is removed. When the protonation 
is interchanged at the same side of the molecule with respect to the mirror symmetry plane σ (see Fig. 6a), the 
process is described by κ∗A ( A1 ↔ A2 or A3 ↔ A4 in spin kinetics) otherwise by κA . This interconversion between 
the two tautomeric forms can occur in two ways implying overall reaction rate coefficient κA + κ∗A (Fig. 8b). It 
is a second order reaction since the guest molecule has to collide with the host–guest complex. Details of these 
tautomerization processes, including structure of transition states, are given in SI Section S11.6.

The chemical kinetics scheme can be further expanded to remove degeneracy from all microstates, see in 
Fig. 8c. Here, all chemically distinct species in all spin states (as listed in Fig. 6) are shown as separate entities, so 
that no prefactors or sums of reaction rate coefficients are present for the reaction rate coefficients.  Correspond-
ing spin states are denoted in superscripts at the chemical species, e.g., HC , HGA1 . The processes characterized by 
κ∗A   have low energy barriers and therefore are fast at room temperature (fast processes are denoted by magenta 
arrows in Fig. 8c). This makes κ∗A indeterminable by lineshape analysis. The expanded chemical kinetics scheme 
is equal to the full spin kinetics scheme and forms a basis for the connection between chemical kinetics and 
observed spin kinetics as explained in the next paragraph.

Due to fast exchange (large κ∗A , κCD and κDC ), the kinetics scheme in Fig. 8c must be contracted from six to 
three states, which results in the spin kinetics scheme in Fig. 9a. Then this scheme expressed in reaction rate 
coefficients can be directly compared to the corresponding scheme expressed in transition rate coefficients in 
Fig. 9b, and subsequently, the relations between reaction and transition rate coefficients can be established. In 
addition, the concentration dependence of the transition rate coefficients is obtained. Details of this procedure 
are described in SI, Section S11.5. The resulting equations are 

 The transition rate coefficient kA′C′ , which corresponds to decay of HG complex, is independent of concentra-
tion. On the other hand, formation of a complex is a bimolecular reaction, therefore kC′A′ is proportional to [G] . 
Also, the guest-mediated prototropic tautomerization is a bimolecular reaction (based on the suggested reaction 
scheme in SI, Section S11.6), implying kA′ is proportional to [G].

(26a)kA′ = 2κA[G] ,

(26b)kA′C′ = κAC ,

(26c)kC′A′ = 2κCA[G] .

Figure 9.   Reduced equivalent spin kinetics schemes for the multi-state system of di-bromobenzylated 
oxoporphyrinogen (host H) in the presence of two ligands, (R)-camphorsulfonic acid (ligand G) and water 
(ligand W). Schemes refer to the central NH protons of the host molecule. (a) Spin kinetics in terms of reaction 
rate coefficients as obtained from contraction of the scheme in Fig. 8c. (b) Corresponding spin kinetics in 
terms of transition rate coefficients. It has the form of half-symmetric three-state exchange. Comparison with 
(a) gives the relationship between transition and reaction rate coefficients in Eq. (26). This scheme represents 
experimentally observed spin kinetics. It was used for lineshape fitting, see SI Section S12 for details.
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The use of three-state reduced equivalent spin kinetics scheme enables us to describe the observed spectra 
with only two transition rate coefficients kA′ and kA′C′ . At guest concentrations higher than 1 equiv. the two-state 
model with transition rate coefficient kA′ is sufficient because the state C′ is unpopulated. During the fitting 
procedure, the parameter δC′ , which describes the averaged frequency of the state C′ , is fixed exactly at the 
corresponding peak position in the spectra, frequencies of the states A′

I and A′
II are also fixed, for details see 

Section S12 in SI. To show the actual usefulness of the three-state model, we have also fitted the states A′
I and A′

II 
with the two-state model over the concentration range studied (fitting parameter kA′ ). From Fig. 7c it is obvi-
ous that the three-state model systematically shifts kA′ to lower values than obtained using the two-state model 
(presence of the third state C′ causes broadening of the peaks due to states A′

I and A′
II ). An example of actual 

fitted spectra is shown in Fig. S24a,c in SI.
After the values of kA′ and kA′C′ were obtained from the raw spectra (green and blue points in Fig. 7d), fitting of 

the concentration dependence of kA′ (using Eq. (26a)) was conducted simultaneously with other changes in spec-
tra. This is discussed together with other technical details of the fitting procedure in SI, Section S12. The resulting 
fitted curve for kA′ (red line in Fig. 7c) describes the experimental values from the three-state exchange model 
with good accuracy and confirms the assumption of proportionality to [G] for the guest-mediated prototropic 
tautomerization, expressed in Eq. (26a). The value of equilibrium constant KHG = (7.4± 3.0)× 104 M−1 was 
also obtained. This value is comparable with the result of our previous analysis14 KHG = (8.0± 5.0)× 104 M−1 , 
which did not take into account the competitive binding of water and the concentration dependence of kA′ . The 
concentration dependence of kC′A′ was determined using the formula kC′A′ = 2κCA[G] = KHGkAC[G]/2 , see 
Fig. 7d. The value of kC′A′ is calculated directly from fitted values of kA′C′ up to 1 equiv. (red points in Fig. 7d). For 
higher guest concentrations, the population of state C′ is negligible, and values of kA′C′ could not be determined 
by three-state lineshape fitting. The fitting procedure also provides concentrations of all species present in the 
sample, see Fig. 7f,g. Values of equilibrium constants and reaction rate coefficients are listed in Table 2 and an 
overview of all parameters used during the fitting procedure is given in Table S6 in SI.

The concentration dependence of kA′ can also be expressed in the form of a power law as kA′ ∝ [G]nt  (for con-
stant [H]t ). The exponent n can easily be extracted from the log-log plot in Fig. 7c as the gradient (first derivative) 
of the red curve. The concentration dependence of the power law exponent is shown in Fig. 7e. It can be seen 
that for low and high guest concentrations n = 1 . However, between these limit cases, the power law exponent 
reaches values over n = 3 . It is interesting to mention that the kA′ dependence on free guest concentration [G] 
has a simple linear relationship (see Eq. (26a)) while its dependence on total guest concentration [G]t has a 
nonlinear form with the largest deviation from linearity around 1 equiv. of total guest concentration (Fig. 7e).

The chemical kinetics, according to Fig. 8b, can also be viewed in terms of the Gibbs energy landscape as 
shown in Fig. 7h. The energy barriers are calculated from the corresponding reaction rate coefficients using the 
Eyring equation, Eq. (23), at T = 298 K with the transition probability η = 1 . Standard reaction Gibbs energies 
for both HG and HW complexes were calculated from the equilibrium constants Kmicro

HG  and KHW , respectively. 
All parameters of the Gibbs energy profile are listed in Table 2. The barrier between states C and D was not 
determined since it is very low (i.e., fast exchange regime).

Conclusion
In the theoretical part of this work, we have summarized the method of analytical calculation of spectral exchange 
lineshapes for general N-state spin kinetics (in the absence of J-coupling). We have reviewed the analytical solu-
tion for the two-state case and calculated the solution for the three-state case. Using the analytical solution in 
the case of symmetric two-state exchange, corrections to the well-known formula for the coalescence point are 
given, and the concept of coalescence has also been generalized to the asymmetric case. Several special cases 
of two-state, three-state and four-state spin kinetics and their relevance to host–guest binding or isomerization 
processes, including examples from literature, have been investigated in detail. These examples illustrate the 
importance of differentiating between ‘reaction rate coefficients’, which describe chemical kinetics, and ‘transi-
tion rate coefficients’, which describe spin kinetics. We have emphasized the possibility of multiple processes 
occurring between two states and illustrate this using several literature examples, and discussed the possible 
presence of a steady-state mode (constant populations but non-zero population flux) in some kinetic schemes. 
An analysis of the Michaelis-Menten mechanism of enzyme-catalyzed reactions has been provided as an exam-
ple of a system where a steady-state can be achieved. An interesting result of our theoretical analysis, which 

Table 2.   Parameters of Gibbs energy profile at T = 298 K. a In the Eyring equation, the assumption for 
transition probability η = 1 was used.

Equilibrium constants/reaction 
rate coefficients

Gibbs energy 
parameters (kJ mol−1) Mutual relationship

KHG (7.4± 3.0)× 104 M−1 �G
◦
HG

−27.8± 1.0 �G
◦
HG

= −RT lnKHG

K
micro
HG

(1.9± 0.8)× 104 M−1 �G
◦micro
HG

−24.3± 1.0 �G
◦micro
HG

= −RT lnKmicro
HG

KHW 240± 35 M −1 �G
◦
HW

−13.6± 0.4 �G
◦
HW

= −RT lnKHW

κAC 47± 6 s −1 �G
‡
AC

63.4± 0.3 Eyring equationa

κCA (9± 4)× 105 M −1s−1 �G
‡
CA

39.0± 1.1 Eyring equationa

κA (10± 1)× 105 M −1s−1 �G
‡
A

38.7± 0.2 Eyring equationa
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employs the analytical spectral lineshapes, is the introduction of the concept of ‘reduced equivalent schemes’ 
for spin kinetics containing a fast-exchanging state. These schemes contain fewer states with modified transition 
rate coefficients, which still contain a physical meaning. A procedure for their construction has been provided 
together with several literature illustrations.

In the experimental part, a system consisting of di-bromobenzylated oxoporphyrinogen host complexed 
with (R)-camphorsulfonic acid guest in the (unavoidable) presence of water has been analyzed quantitatively 
using NMR lineshape fitting. A competitive host–ligand binding model with multi-state exchange was applied 
to describe the chemical kinetics and spin kinetics of the central NH reference proton. The model accounts for 
the concentration dependence of transition rate coefficients. Overall, the methods presented in this work can 
be used to describe molecular kinetics in a wide range of interesting systems with a variety of intra- or intermo-
lecular processes. Analytical solutions for NMR exchange lineshapes allow construction of reduced equivalent 
schemes for the spin kinetics and fitting of the experimentally observed spectra. Thus, the possible applications 
of this work range from simple chemical systems, such as those involving host–guest binding, to increasingly 
elaborate systems, such as those involving enzymatic reactions or nontrivial conformational dynamics of proteins 
or other complex molecules.

Supplementary information
contains additional details concerning multi-state NMR exchange: derivation of analytical solutions for spectral 
lineshapes and codes for computer implementation; analysis of two-state exchange with two processes; analysis 
of steady-state modes; analysis of coalescence in two-state exchange; description of models for the di-bromoben-
zylated oxoporphyrinogen host–guest system and in-depth discussion of the lineshape fitting procedure. In 
addition, one Excel spreadsheet and two Mathematica notebooks (also in pdf versions), illustrating data fitting, 
are included. The material is available free of charge at https://​doi.​org/​10.​1038/​s41598-​022-​20136-4.

Data Availability
The majority of data generated or analyzed during this study are included in this published article and its sup-
plementary information files: 1× pdf file, 1× Excel spreadsheet, and 2× Mathematica notebooks (and their pdf 
versions). Raw NMR spectra used during the current study are available from the corresponding author on 
reasonable request.
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