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Transcription of a chromatin template involves the concerted interaction of many different proteins and protein complexes.

Analyses of specific factors showed that these interactions change during stress and upon developmental switches. However,

how the binding of multiple factors at any given locus is coordinated has been technically challenging to investigate. Here we

used Epi-Decoder in yeast to systematically decode, at one transcribed locus, the chromatin binding changes of hundreds of

proteins in parallel upon perturbation of transcription. By taking advantage of improved Epi-Decoder libraries, we observed

broad rewiring of local chromatin proteomes following chemical inhibition of RNA polymerase. Rapid reduction of RNA

polymerase II binding was accompanied by reduced binding of many other core transcription proteins and gain of chro-

matin remodelers. In quiescent cells, where strong transcriptional repression is induced by physiological signals, eviction

of the core transcriptional machinery was accompanied by the appearance of quiescent cell–specific repressors and rewiring

of the interactions of protein-folding factors and metabolic enzymes. These results show that Epi-Decoder provides a pow-

erful strategy for capturing the temporal binding dynamics of multiple chromatin proteins under varying conditions and

cell states. The systematic and comprehensive delineation of dynamic local chromatin proteomes will greatly aid in uncov-

ering protein–protein relationships and protein functions at the chromatin template.

[Supplemental material is available for this article.]

Many proteins assemble on to DNA to implement gene regulatory
programs and ensure the expression of a subset of genes in agree-
ment with the state and environmental cues of the cell. RNA poly-
merase II (Pol II) is an integral part of this assembly as it catalyzes
the DNA-dependent synthesis of messenger RNA (mRNA).
Regulation of Pol II occurs at different stages of transcription and
involves concerted actions ofmany proteins and protein complex-
es and dynamic post-translational modifications of histones and
the carboxyl-terminal domain (CTD) of Pol II (Sainsbury et al.
2015; Chen et al. 2018; Li et al. 2018).

The process of transcription involves distinct stages: initia-
tion, elongation, and termination (Sainsbury et al. 2015; Chen
et al. 2018; Li et al. 2018). The wrapping of DNA by histones
into nucleosomes presents a barrier for each of these steps.
Chromatin remodelers recruited to promoters can displace nucle-
osomes to open up crucial recognition elements for transcription
factor (TF) binding (Struhl and Segal 2013; Prasad et al. 2016).
For initiation of transcription, Pol II assembles with basal TFs
(TFIIB-H) at the promoter to form the preinitiation complex,
which opens up the DNA, initiates RNA synthesis, and stimulates
the escape of Pol II from the promoter (Sainsbury et al. 2015; Feng
et al. 2016; Hantsche and Cramer 2017). Productive elongation in-

volves recruitment of Pol II associated factor complex (Paf1C), DRB
sensitivity inducing factor (DSIF), Spt4/5, Spt6, and facilitator of
chromatin transcription (FACT) (Xu et al. 2017; Ehara and
Sekine 2018; Vos et al. 2018). Toward the end of genes, transcrip-
tion is terminated and the RNA is processed by the recruitment of
cleavage and polyadenylation factors, which results in the release
of Pol II and the nascent mRNA from the DNA template (Porrua
and Libri 2015). Biochemical and genetic studies have provided a
rich catalog of factors involved in the different stages of transcrip-
tion. However, how themany different interactions are coordinat-
ed at any given chromatin locus in time and under changing
conditions is still poorly understood (Qiu and Kaplan 2019).

Unraveling the relationships between proteins and the hierar-
chies among them at the chromatin template will require measur-
ing the chromatin interactome and monitoring the changes upon
perturbation. A common and convenient strategy to perturb tran-
scription is the use of inhibitors of Pol II (Bensaude 2011). Some of
the commonly used inhibitors of transcription initiation or elon-
gation are not active in live yeast cells because of uptake deficiency
or because the target protein or target site on the protein is not
conserved (Bensaude 2011). However, the addition of the metal
chelators thiolutin and 1,10-phenanthroline (PH) leads to rapid
loss of transcription in yeast. This has, for example, enabled the de-
termination of mRNA half-lives and establishing the role of Pol II
activity in nucleosome positioning (Adams and Gross 1991;
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Grigull et al. 2004; Sun et al. 2013; Hsieh et al. 2015; Vasseur et al.
2016; Lauinger et al. 2017). In addition, 6-azauracil (AU), which
perturbs the supply of ribonucleotides and thereby indirectly af-
fects RNA polymerases, is frequently used to assess transcription
elongation phenotypes in yeast (Handschumacher and Welch
1956; Exinger and Lacroute 1992; Shaw and Reines 2000; Mason
and Struhl 2005; Zhou et al. 2015). Although these chemicals
and related compounds have been used extensively and are conve-
nient and powerful tools to block transcription, little is known
about how the direct and indirect inhibition of transcription af-
fects the interactions of Pol II and its protein partners with the
chromatin template.

Transcription is also regulated under physiological condi-
tions during development and differentiation. In budding yeast,
a global change in transcription is observed when cells enter qui-
escence, a survival mode that involves a G1-like cell-cycle arrest,
with increased resistance to stress, metabolic rewiring, and large-
scale reorganization of the genome and cellular machineries
(Radonjic et al. 2005; Aragon et al. 2008; Broach 2012; Miles
et al. 2013; Kuang et al. 2014; Mews et al. 2014; Guidi et al.
2015; McKnight et al. 2015; Rutledge et al. 2015; Young et al.
2017; Sagot and Laporte 2019a,b; Swygert and Tsukiyama 2019).
Quiescence is central to many important biological processes
and is conserved from unicellular eukaryotes to multicellular or-
ganisms (Cheung and Rando 2013; Sagot and Laporte 2019a).
We recently showed that quiescent (Q) cells show a 30-fold drop
in mRNA levels and that this massive transcriptional shutoff is de-
pendent on the conserved histone deacetylase (HDAC) Rpd3
(McKnight et al. 2015). Rpd3 is recruited to the majority of gene
promoters in Q cells, leading to global hypoacetylation of chroma-
tin and gene repression (McKnight et al. 2015). Further, transcrip-
tional shutdown correlates with loss of Rpb3, one of the subunits
of Pol II (McKnight et al. 2015; Young et al. 2017).

To systematically interrogate the chromatin changes at a tran-
scriptionally active locus upon inhibition of transcription,we used
Epi-Decoder, a tag–chromatin immunoprecipitation (ChIP)–bar-
code (BC)-sequencing technology in budding yeast (Korthout
et al. 2018). Epi-Decoder enables the decoding of the proteome
of a single barcoded genomic locus by DNA sequencing and BC
counting. It takes advantage of the power of cellular DNA barcod-
ing (Yan et al. 2008; Fowler and Fields 2014; Vlaming et al. 2016;
Chabbert et al. 2018; Kebschull and Zador 2018; Roy et al. 2018)
and yeast genetics (Duina et al. 2014) and provides a quantitative
approach orthogonal to capture-mass-spectrometry efforts
(Schmidtmann et al. 2016; Wierer and Mann 2016; Myers et al.
2018). Here we describe an expanded library of yeast strains carry-
ing a double-BC transcribed reporter gene integrated at the HO lo-
cus (Epi-Decoder-HO). Of this library,weused a dedicated subset of
approximately 700 (putative) chromatin proteins (for more de-
tails, see Supplemental Materials andMethods) of which the bind-
ing at the reporter locus can be assessed in parallel and in triplicate
with three independent BCs in a single sample. This Chrom-3×BC
library was used to determine the local chromatin-proteome rewir-
ing at the barcoded transcribed locus in response to transcription
inhibition by chemical perturbation and during quiescence.

Results

Generation of improved Epi-Decoder-HO libraries

Tomeasure local proteomedynamics at a promoter and terminator
region upon transcriptional inhibition, we first improved the pre-

viously reported Epi-Decoder-HO library to optimize the compar-
ison of multiple time points and conditions. Epi-Decoder is a
strategy for decoding the local proteome of a single genomic locus
(Korthout et al. 2018). It relies on short (∼16- to 20-bp) DNA BCs
integrated at a common locus in the genome. Here we used the
constitutively expressed KanMX marker gene integrated at the
HO locus and flanked by two BCs—BC_UP (promoter region)
and BC_DN (terminator region)—that are 1.5 kb apart (HO-
Barcoders). The barcoded KanMX cassette is a kanamycin gene
controlled by the heterologous AgTEF1 promoter and terminator
from Ashbya gossypii, a yeast related to Saccharomyces cerevisiae.
This 1.5-kb reporter-gene cassette replaces the coding sequence
of theHO gene and is therefore flanked by the endogenousHO pro-
moter and terminator sequences as well as an origin of replication
(ARS404) 53 bp downstream from BC_DN. This reporter locus has
previously been used in screens for various chromatin- and tran-
scription-related features (Verzijlbergen et al. 2011; Chen et al.
2013; Vlaming et al. 2016, 2019; Korthout et al. 2018). The library
of HO-Barcoders was combinedwith a genome-wide library of pro-
teins tagged with a common epitope tag, a tandem affinity purifi-
cation (TAP) tag (Fig. 1A; Supplemental Fig. S1A). Upon pooling,
cross-linking, ChIP, amplification of the barcoded regions, and
counting the BCs by massive parallel sequencing (Fig. 1B), the
abundance of each BC (ChIP/input) reports on the occupancy of
each tagged protein at its barcoded locus (Verzijlbergen et al.
2011; Vlaming et al. 2016; Korthout et al. 2018). Integral for
high-throughput assessments like this is the ability to multiplex
many individual TAP-tag clones (approximately 4800 in total) in
the ChIP assays using unique BCs and indexing strategies. Here
we expanded the previous set of HO-Barcoders from about 1100
to about 2500 (Douglas et al. 2012), enabling coverage of the full
Epi-Decoder library with only two separate subsets (Fig. 1B;
Supplemental Fig. S1A). The expanded Barcoder-HO library was
combined with the TAP-tag library in three different ways (see
Methods) such that every TAP-tag is linked to three independent
HO-Barcoders (I, II, and III) and that a triplicate TAP-tag subset
of approximately 700 chromatin proteins (Chrom-3×BC) was cre-
ated that can be processed as one pool owing to nonoverlapping
BC pairs in the replicates.

Interrogation of protein binding with multiple DNA BCs

Epi-Decoder uses DNA BC counting as a reporter for protein bind-
ing (Korthout et al. 2018). With the three independent Epi-
Decoder-HO libraries (Fig. 1B), we first assessed to what extent var-
iation in quantification of protein binding is caused by the BC se-
quences. The protein-binding patterns in each of the three Epi-
Decoder-HO libraries strongly correlated between the replicates
(Fig. 1C) for both BC_UP and BC_DN (Supplemental Fig. S1B,C;
Supplemental Table S1), and this was further confirmed by the
analysis of individual clones (see below). Although it is possible
that specific BC sequences could cause a bias for detection of cer-
tain proteins, in general our results show that the inferred pro-
tein-binding scores are largely independent of the short BC
sequences. The use of multiple Tag-Barcode combinations further
increases the confidence of single-BCmeasurements. For example,
we have previously shown that Ssl2 and Tfa2, two factors known
for their roles in transcription initiation, also show high binding
at the HO terminator region (Korthout et al. 2018). By replicating
this finding with three independent barcodes, we can now negate
the possibility that BC effects caused binding of Ssl2 and Tfa2 at
theHO terminator region (Supplemental Table S1). The consistent
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and robust binding of Ssl2 and Tfa2 at
the terminator region in the absence of
other basal TFs suggests a noncanonical
function of these factors.

A chromatin TAP-tag subset library

for capturing dynamic local chromatin

proteomes

Having confirmed that Epi-Decoder pro-
vides a robust assay to quantitatively
measure protein binding at a single locus
of thousands of proteins in parallel, we
focused on the chromatin TAP-tag subset
(Chrom-3×BC; see Methods) (Fig. 2A) to
determine the dynamics of the local
chromatin proteome following chemical
inhibition of Pol II. The antifungal agent
PH is a metal ion chelator that sequesters
Zn2+ ions, which are essential for the ac-
tivity of RNA polymerases (Scrutton
et al. 1971; Markov et al. 1999; Cramer
et al. 2000; McCann et al. 2012). The ad-
dition of PH to cells rapidly affectsmRNA
levels (Grigull et al. 2004; Miller et al.
2011; Wada and Becskei 2017). AU is
an inhibitor of IMP dehydrogenase
(IMPDH), the rate-limiting enzyme in
de novo GTP synthesis (Grigull et al.
2004; Kaplan et al. 2012; Ljungdahl and
Daignan-Fornier 2012). The treatment
of cells with AU results in depletion
of intracellular nucleotide pools, there-
by affecting transcription elongation
(Handschumacher and Welch 1956;
Exinger and Lacroute 1992; Shaw and
Reines 2000; Shaw et al. 2001; Mason
and Struhl 2005). To investigate the con-
sequences of inhibition of Pol II at the
chromatin template, the Chrom-3×BC
Epi-Decoder library was incubated with
PH and AU, and the local proteomes
were determined at several subsequent
time points (Fig. 2A). All experiments
were performed at low temperature
(16°C) to facilitate the capturing of dy-
namic binding events. In addition, cells
were arrested inG1 to avoid cell-cycle-de-
pendent effects (Supplemental Fig. S2A;
O’Duibhir et al. 2014). Independent trip-
licate measurements in the Chrom-3×BC
pool and sample multiplexing enabled
efficient analysis of the dynamics of
known chromatin proteins across multi-
ple conditions and time points.

We confirmed that PH and AU are
active under these conditions: Both com-
pounds inhibited cell growth (Supple-
mental Fig. S2B), and addition of PH led
to induction of ZRT1 mRNAwhereas ad-
dition of AU led to induction of IMD2
mRNA (Fig. 2B; Supplemental Fig. S2C),

B

A

C

Figure 1. Outline of expanded and optimized Epi-Decoder analysis. (A) Three Epi-Decoder-HO libraries
were generated by crossing the TAP-tag library to an expanded HO-BC library in three different ways to
combine each TAP-tag protein with three independent barcodes (BCs) (see also Supplemental Fig. S1A).
The HO-BC locus consists of a constitutively expressed 1.5-kb KanMX resistance gene integrated at the
HO locus, controlled by the heterologous AgTEF1 promoter and terminator from Ashbya gossypii, and
flanked by a promoter-proximal BC_UP and a terminator-proximal BC_DN. Downstream from BC_DN
lies an origin of replication (ARS404). (B) Clones of each Epi-Decoder-HO library are combined and pro-
cessed in two separate pools and used for ChIP of TAP-tagged proteins (spheres with black handle). The
BCs (colored lines), which flank the KanMX reporter gene (gray box) at the HO locus, are amplified from
ChIP and input and indexed, allowing for the pools to be combined and counted by massive parallel se-
quencing. The relative BC count (IP/input) reports on protein abundance of each TAP-tagged protein
(approximately 4250) at the barcoded locus. (C) Comparison of the binding scores (IP/input) of both
BC_UP and BC_DN of chromatin binders (as determined previously by Korthout et al. 2018) in the three
Epi-Decoder-HO libraries. Indicated are the Spearman’s correlation coefficients, and the diagonal line
represents x= y. Density plots show the distribution of the BC counts in each of the three replicates.
For counts of all proteins examined, see Supplemental Table S1. The results for BC_UP and BC_DN sep-
arately are shown in Supplemental Figure S1, B and C.
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which is in agreement with previous observations (Shaw and
Reines 2000; Grigull et al. 2004) that inhibition of transcription
by these drugs is not complete. Under these experimental condi-
tions and time points, we observed little decay of mRNA levels of
the barcoded KanMX gene or other genes examined (Fig. 2B; Sup-
plemental Fig. S2C), in agreement with the observed temperature
effects on RNA decay kinetics (Lotan et al. 2005). In contrast, glob-
al inspection of binders at the barcoded KanMX gene showed that
the addition of PH or AU led to many rapid and pronounced
changes at the chromatin level at BC_UP and BC_DN (Fig. 2C).
Generally, changes in protein binding were stronger in PH than
in AU, confirming that the observed effects are specific for the
treatment.

Rewiring of the core transcription

machinery at chromatin upon inhibition

of Pol II

The global overview of the dynamic
chromatin proteomes (average of three
replicates) (Fig. 2C) revealed broad rear-
rangements, especially of protein com-
plexes related to transcription. Other
proteins were unaffected, such as the rep-
lication proteins specifically associated
with BC_DN proximal to the origin of
replication ARS404. This was further il-
lustrated by the analysis of individual
replicate measurements of proteins rep-
resenting different aspects of chromatin
biology (Fig. 3A). Because these three
replicates were based on different BC
pairs, the reproducible results indicate
that BC sequences did not generally af-
fect the protein-binding measurements
in Epi-Decoder. As observed previously
(Korthout et al. 2018), Pol II and tran-
scription elongation factors were found
at BC_UP and were more abundant at
BC_DN, initiation factors and basal TFs
were more enriched at BC_UP, and tran-
scription termination factors and replica-
tion proteins were specifically bound
to BC_DN (Figs. 2C, 3A; Supplemental
Table S2). To determine the consequenc-
es of transcription inhibition for the
transcription machinery in more detail,
we focused on Pol II and transcription
elongation factors. All the Pol II sub-
units present in our Epi-Decoder library
showed a pronounced and progressive
loss of binding upon addition of PH at
BC_UP and BC-DN. In AU, Pol II binding
was also reduced but to a lesser extent
(Fig. 3B). Therefore, we here focused on
the changes following treatment with
PH. Loss of binding can be caused by low-
er levels of the protein owing to protein
degradation or by redistribution of the
protein. To distinguish between these
two possibilities, we determined the pro-
tein level of Rpo21, the largest subunit of
Pol II, by immunoblot analysis and

found that treatment with PH did not lead to reduced Rpo21 pro-
tein levels (Fig. 3C; Supplemental Fig. S3A), whereas treatment
with AU showed a modest decrease (Fig. 3D; Supplemental Fig.
S3B). Therefore, the reduced binding of Pol II subunits in PH was
not accompanied by increased Pol II protein degradation.

Finally, the strong reduction in Pol II binding observed in Epi-
Decoder in PH at the barcoded KanMX gene under the control of
the AgTEF1 promoter and terminator could be validated by
ChIP-qPCR at the 5′ and 3′ ends of the endogenous TEF1 gene
(Fig. 3E; Supplemental Fig S3C). Thus, in addition to the current
knowledge that Pol II activity is inhibited directly by PH and indi-
rectly by AU (Scrutton et al. 1971;Markov et al. 1999; Cramer et al.
2000; McCann et al. 2012), our results show that chemical

BA

C

Figure 2. Chromatin-proteome dynamics at the Barcoded-HO locus upon chemical inhibition of tran-
scription. (A) Three versions of the chromatin TAP-tag subset, each containing a unique set of BC pairs,
were combined into one pool (Chrom-3×BC). The culture was incubated with a-factor pheromone to
synchronize the cells in G1, after which PH or AU was added and samples were collected at the time
points indicated for Epi-Decoder analysis, RNA analysis, and flow cytometry. A sample treated with vehi-
cle was collected at the last time point, and a control sample was taken of a G1-arrested culture without
treatment. All experiments were performed at 16°C to facilitate capturing dynamic binding events.
(B) Analysis of mRNA changes over time by RT-qPCR confirmed the decay of most transcripts and an in-
crease in the PH-responsive ZRT1 gene under conditions shown in panel A. RNA levels are relative to un-
treated (Pre) and normalized to a transcript from a spike-in of untreated Schizosaccharomyces pombe cells
(see Methods) to correct for global changes (mean of three biological replicates ± SD). (C) Heatmap of
the binding scores (mean IP/input of three biological replicates) of selected proteins with a binding score
>0.5 at any of the four local proteome time series indicated. For mean binding scores of all proteins ex-
amined in the Chrom-3×BC library, see Supplemental Table S2. Proteins were manually clustered and
ranked in functional subcategories.

Poramba-Liyanage et al.

638 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.256255.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.256255.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.256255.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.256255.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.256255.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.256255.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.256255.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.256255.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.256255.119/-/DC1


inhibition of Pol II also leads to partial eviction of the core Pol II
machinery from the chromatin template.

Epi-Decoder uncovers protein–protein relationships

Several proteins and protein complexes have been biochemically
or genetically linked to the process of transcription elongation
(Koerber et al. 2009; Venters and Pugh 2009; Kwak and Lis 2013;
Pufall and Kaplan 2013; Cucinotta and Arndt 2016; Van Oss
et al. 2017; Chen et al. 2018; Vinayachandran et al. 2018).
However, how the interactions between the core transcriptional
machinery and elongation factors are dynamically orchestrated
on the chromatin template is still incompletely understood

(Mayer et al. 2010; Vinayachandran et al. 2018). Inspection of
the dynamic proteomes at the HO locus showed that elongation
factors did not all respond equally to inhibition of Pol II by PH
(Fig. 4A) and AU (Supplemental Fig. S4A). The conserved elonga-
tion factors Elf1, Spn1, Spt6, and DSIF (Spt4/5) were rapidly and
progressively evicted from chromatin, closely resembling the dy-
namics of Pol II upon PH treatment (Figs. 3B, 4A). This indicates
that most elongation factors depend on Pol II for recruitment
and maintenance. The treatment with AU, performed and pro-
cessed in parallel, showed more modest effects on binding of Pol
II and the elongation factors (Supplemental Fig. S4A,B).

The FACT complex, composed of Spt16 and Pob3, is known
to be recruited to chromatin by the act of transcription and its

E

B

A

C D

Figure 3. Treatment with phenanthroline (PH) leads to rapid loss of Pol II and transcription-associated proteins. (A) Differential and dynamic binding
behavior of proteins representing different chromatin processes upon treatment with PH and AU. The lines indicate the three different BC pairs of the
indicated TAP-tagged proteins in the Chrom-3×BC library (Log2 IP/input at time points indicated in Fig. 2). (B) Zoom-in of heatmap of Figure 2 show-
ing the Pol II subunits present in the library. (C,D) Immunoblot analysis of the largest subunit of Pol II (Rpo21-TAP) with and without PH and AU
treatment in G1-arrested cells at 16°C. Pgk1, Hmo1, and a nonspecific band (∗) were used as loading controls. (E) ChIP-qPCR analysis of Rpo21 bind-
ing at the BC_UP and BC_DN regions in G1-arrested cells treated with (15 and 60 min) and without (Pre) PH at 16°C (average of three biological
replicates ± SD).
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associating factors Nhp6a and Nhp6a, two high mobility group
(HMG) proteins (Ruone et al. 2003; Kwak and Lis 2013;
McCullough et al. 2015; Martin et al. 2018; Pathak et al. 2018).
At BC_UP, FACT eviction was delayed compared with eviction
of Pol II upon PH treatment (Fig. 4A,B), suggesting that FACT
binding might depend on more stable factors at transcribed genes
such as histones or histone modifications (Martin et al. 2018;
Vinayachandran et al. 2018). At BC_DN, the two core FACT
subunits Spt16 and Pob3 were rapidly lost upon addition of PH,
closely resembling the behavior of Pol II and other elongation
factors. In contrast, the HMG proteins Nhp6a and Nhp6b did
not show reduced binding after Pol II inhibition (Fig. 4A,B). This
difference may reflect the ability of HMG proteins to bind DNA

and nucleosomes directly, independently of other chromatin
proteins.

Recent structural studies show that Paf1C, DSIF (Spt4/5), and
Spt6 can form an intricate protein network around elongation-per-
missive Pol II (Vos et al. 2018; Xie et al. 2018). Indeed, likeDSIF and
Spt6, most Paf1C subunits showed reduced binding to chromatin
when Pol II was inhibited and evicted by PH and AU (Fig. 4A,B;
Supplemental Fig S4A,B). However, binding of Ctr9, the largest
subunit and a key scaffold protein of Paf1C (Deng et al. 2018;
Vos et al. 2018; Xie et al. 2018), was largely unaffected in PH,
with a small decrease only observed at later time points (Fig. 4A,
B). We confirmed the delayed loss of Ctr9 by ChIP-qPCR analysis
of the barcoded promoter and terminator regions (Fig. 4C), as

E

BA

C

D

Figure 4. Differential response of transcription elongation factors to chemical inhibition of Pol II. (A) Zoom-in on the heatmap of Figure 2 (PH treatment),
showing proteins annotated to transcription elongation. (B) Independent replicates of proteins related to FACT and Paf1C (Log2 IP/input at time points as in
Fig. 2). The lines show the three different BC pairs of the indicated TAP-tagged proteins in the Chrom-3×BC library. (C ) ChIP-qPCR analysis of Ctr9 binding
at the BC_UP and BC_DN regions in G1-arrested cells treated with (15 and 60 min) and without (Pre) PH at 16°C (average of three biological replicates ±
SD). (D) Immunoblot analysis of Ctr9-TAP and Paf1-TAP with and without PH treatment in G1-arrested cells at 16°C. Pgk1 and H3 were used as loading
controls. (E) ChIP-qPCR analysis of Srm1 binding in G1-arrested cells at 16°C, treated for 15minwith vehicle (V) or PH (average of three biological replicates
± SD). Analyzed loci are the BC_UP and BC_DN regions, the 5′ and 3′ end of the endogenous TEF1 gene, the ADH1 promoter, the PMA1 open reading
frame, and a nontranscribed locus (for more details, see Supplemental Table S5; van Welsem et al. 2018).
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well as the endogenous TEF1 locus (Supplemental Fig. S4C). The
differences in kinetics were not caused by differences in protein
abundance, because Ctr9 showed very similar global expression
levels as the Paf1 and Pol II subunits (Supplemental Fig. S4D).
We also testedwhether the delayed loss of Ctr9was caused by a dif-
ference in crosslinking sensitivity (Zaidi et al. 2017; De Jonge et al.
2019). However, Paf1 and Rpo21 were not more sensitive to short-
er cross-linking conditions than was Ctr9 (Supplemental Fig. S4E).
Finally, addition of PH did not lead tomajor changes in the expres-
sion level of Rpo21 and Paf1, compared with Ctr9, the latter re-
maining bound when Rpo21 and Paf1 had already been evicted
upon PH treatment (Fig. 4D). Together, our results show that bind-
ing of Ctr9 at transcribed chromatin is independent of Pol II and
Paf1C subunits, suggesting that Ctr9 has a transcription elonga-
tion–independent mechanism to bind to DNA, perhaps mediated
by its known interactions with DNA and nucleosomes (Musso
et al. 2000; Deng et al. 2018; Vos et al. 2018). These binding activ-
ities may be responsible for anchoring Ctr9 to PH-perturbed chro-
matin in the absence of its complex partners and Pol II. Of note,
under conditions of transcriptional repression in Q cells, Ctr9 fol-
lowed the pattern of the other Paf1C members (see below), show-
ing that its dynamics are context dependent.

In addition to uncovering protein-binding dynamics within
well-known protein complexes, the parallel analysis of hundreds
of proteins also offers the possibility to obtain more insight into
proteins of which the chromatin functions have been less well an-
notated. Here we more closely examined Srm1 (also known as
Prp20), a homolog of human Regulator of Chromosome
Condensation 1 (RCC1). Srm1/RCC1 is a guanine nucleotide ex-
change factor that localizes to the nucleus, binds nucleosomes in
a dynamic way, and occupies a large part of the yeast genome
(Nemergut et al. 2001; Koerber et al. 2009; Makde et al. 2010;
Wu et al. 2011; Bierbaum and Bastiaens 2013; McGinty and Tan
2016). In the Epi-Decoder analysis, all proteins are examined in
one pool and with the same tag, thereby delivering qualitative as
well as relative quantitative information. The high BC counts ob-
served for Srm1 show that it binds efficiently to chromatin, in
the same range as the abundant transcription elongation factors
mentioned above (Fig. 4A; Supplemental Fig. S4A). Analysis of
Srm1 by ChIP-qPCR confirmed the efficient binding of this pro-
tein and an increase after PH treatment at the reporter locus as
well as endogenous loci, including a nontranscribed region (Fig.
4E). This, together with the genome-wide binding pattern
(Koerber et al. 2009), indicates that Srm1 should be considered
as a common component of yeast chromosomes. However, the dis-
tribution and kinetic behavior of Srm1 did not mirror that of the
transcription elongation factors: Upon treatment with PH, Srm1
binding increased (Fig. 4A,E), whereas binding of Pol II and most
elongation proteins decreased. Although not quantitatively the
same, the behavior of Srm1 ismore similar to that of the chromatin
remodelers INO80 and RSC, several metabolic enzymes (Fig. 2C),
the heat shock protein Ssa2 (Fig. 3A; Supplemental Fig. S4F), and
HMG protein Hmo1 (Supplemental Fig. S4F). In contrast, the
HMG-like protein Spt2, a chaperone involved in histone recycling
over transcribed regions of active genes (Nourani et al. 2006; Chen
et al. 2015), was decreased in active regions (Supplemental Fig.
S4F). The dynamic behavior of Srm1, Ssa2, Hmo1, and Spt2 after
PH treatment was not caused by changes in global protein levels
(Supplemental Fig. S4G). Together, these results suggest that
Srm1 is an abundant chromatin proteinwith the potential to affect
chromatin structure and function but that it might not act as a ca-
nonical transcription elongation factor.

Rearrangement of the chromatin proteome of the barcoded HO
locus upon entry in quiescence

Finally, we investigated how the chromatin proteome of the bar-
coded HO locus was altered by the strong physiological transcrip-
tional shut down during quiescence. Chrom-3×BC Epi-Decoder
library pools were grown in YEPD for 7 d at 30°C , which causes
cells to arrest in saturationwithG1DNA content. Stationary phase
cultures consist of two populations: Q cells, which are more uni-
form, long-lived, and stress resistant, and nonquiescent (NQ) cells,
which are more heterogeneous, short-lived, and stress sensitive
(Allen et al. 2006; Aragon et al. 2008; Li et al. 2013; Young et al.
2017; Sagot and Laporte 2019a,b). NQ cells were also isolated
and processed as a reference.

Analysis of the RNA Pol II machinery, transcription elonga-
tion factors, basal TFs, and transcription termination andRNApro-
cessing factors showed a pronounced loss of the core transcription
machinery in Q and NQ cells (Fig. 5A,B; Supplemental Fig. S5A–E;
Supplemental Table S2). Overall, the magnitude of the changes
was higher than that observed in the G1 cells treated with PH
with several exceptions. The FACT-associating factors Nhp6a and
Nhp6a showed increased chromatin binding in Q cells (Fig. 5B;
Supplemental Fig. S5A), in contrast to PH-treated cells (Fig. 4;
Supplemental Fig. S4). Tho1, a protein associated with transcribed
chromatin, showed increased abundance in Q and NQ cells but
not in PH (Fig. 5B; Supplemental Fig. S5A), suggesting that Tho1
might have Q/NQ cell–specific functions and that its recruitment
is independent of ongoing transcription, in contrast to canonical
transcription elongation proteins.

To gainmore insight into the transcriptional repression of the
barcoded HO locus, we inspected transcriptional regulators at the
BC_UP promoter region (Fig. 5C; Supplemental Fig. S5B). Q cells
showed binding of the quiescence-specific transcription repressor
Xbp1, which was absent from mid-log cells and during PH treat-
ment. This protein is known to recruit the HDAC Rpd3, mediating
the global shutdown of gene expression in Q cells (McKnight
et al. 2015). Indeed, Rpd3 and members of the Rpd3L complex
were mostly undetectable in mid-log but readily detected in Q
cells. Members unique for the Rpd3S complex were not detected
(Supplemental Table S3). This well-established repression pathway
was accompanied by increased abundance of several TFs such as
Mcm1, Mbf1, Tbf1, Abf1, and Swi6 (Fig. 5C; Supplemental Fig.
S5B).

Besides the core transcriptional machinery, TFs, and Rpd3L,
we observed several other changes in the chromatin proteomes
(Fig. 5C–E; Supplemental Fig. S5B–G). Yeast Histone H1 (Hho1)
showed increased abundance in Q and NQ cells (Fig. 5C;
Supplemental Fig. S5B). HMG protein 1 (Hmo1), which has been
shown to function as a linker histone and promote chromatin
compaction (Panday and Grove 2016), showed the same trend
(Fig. 5C; Supplemental Fig. S5B). In contrast, the negative regulator
of transcription Spt2 left the chromatin in Q andNQ cells, as it did
in PH-treated cells. These changes were paralleled by the recruit-
ment of the ATP-dependent chromatin remodeling complexes
INO80 and RSC, as well as several heat shock proteins and other
factors involved in protein folding (Fig. 5E; Supplemental Fig.
S5C,F). In addition, changes were seen in the binding ofmetabolic
enzymes (Supplemental Fig. S5G). Future functional studies will be
required to determine the role of these dynamic interactions in the
global transcriptional repression occurring in Q cells.

Finally, quiescence also affected the organization of replica-
tion proteins at the origin of replication (ARS404) proximal to
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BC_DN (Fig. 5D). In contrast to PH treatment, cells in quiescence
showed a complete loss of the minichromosome maintenance
complex (MCM), the replicative helicase. Q cells are arrested in a
G1–like state, but binding ofMCMwasmaintained in cells arrested
in G1 by mating pheromone (Fig. 5D; Liang and Stillman 1997).
The loss of MCM was accompanied by increased abundance of

the members of the origin-recognition
complex (ORC) (Fig. 5D). This altered
balance is consistent with a competition
model that has been proposed for the
MCM and ORC (Aparicio et al. 1997).
Replication origin licensing, which in-
volves the binding of ORC and subse-
quently the assembly of an inactive
form of the replicative helicaseMCM, oc-
curs during latemitosis and the G1 phase
of the cell cycle. After formation of a rep-
lication complex, during S phase the
helicase is activated and the replication
initiates (Siddiqui et al. 2013; Bell and
Labib 2016). It is possible that clearing
MCM fromorigins inQ cells is important
for eliminating any inappropriate activa-
tion of replication origins during the pro-
longed state of arrest. The mechanism
causing the absence of MCM and the
role thereof in Q-cell biology will require
further study, but it should be noted that
similar dynamics have been observed
in the mouse and Schizosaccharomyces
pombe (Madine et al. 2000; Sun et al.
2000; Namdar and Kearsey 2006). Our re-
sults suggest that replication origin li-
censing must be re-established when
cells re-enter the cell cycle.

Discussion

Determining the changes to chromatin
composition in response to cell signal-
ing or stress can reveal insights into com-
mon mechanisms of gene regulation.
Obtaining a comprehensive understand-
ing of chromatin changes, although
highly informative (Kim et al. 2010;
Weiner et al. 2012; Vinayachandran
et al. 2018), is often laborious and there-
fore not applicable to multiple condi-
tions. Epi-Decoder provides a strategy
for identifying and quantifying in an un-
biased and systematic manner the prote-
ome of an individual genomic locus
by DNA sequencing. Here we used a ded-
icated comprehensive chromatin library
(Chrom-3×BC) to determine the changes
in local chromatin proteomes upon inhi-
bition of Pol II by chemical means or by
physiological signals during quiescence.

PH is a potent inhibitor of Pol II and
has fungistatic activity against a broad
range of pathogenic fungi and bacteria
(McCann et al. 2012). PH and thiolutin,

which acts in a similar way, are often used to determine the conse-
quences of perturbation of transcription in yeast. However, the
consequences at the chromatin level have not been well character-
ized even though RNA processing, RNA export, and other down-
stream processes are linked to transcription and are influenced
by chromatin modifying factors. Inhibition of Pol II with PH

E

BA

C

D

Figure 5. Chromatin-proteome rewiring upon transcriptional repression in quiescence. (A) Heatmap
of the HO Epi-Decoder binding scores in mid-log, Q, and NQ cells (mean IP/input of three biological rep-
licates). For mean binding scores of all proteins examined in the Chrom-3×BC library, see Supplemental
Table S3. Proteins were manually clustered and ranked in functional subcategories as in Figure 2C. (B–E)
Zoom-in of heatmap of panel A (promoter region BC_UP, except replication for which terminator BC_DN
next to the origin of replication was used) showing proteins in the indicated annotated clusters. PH treat-
ment during G1 arrest (vehicle, 5 and 12 min) is shown for comparison.
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resulted in rapid remodeling of the local chromatin proteomes at
the HO locus (Fig. 2C). Pol II was evicted, probably reflecting a
structural rearrangement caused by PH. This idea is in agreement
with observations that mutants of Pol II with altered catalytic ac-
tivity show reduced Pol II occupancy at genes (Malik et al. 2017).
We did not observe changes in overall abundance of the evicted
proteins Rpo21 and Paf1 and several other proteins, indicating
that the factors evicted in PH were not subject to degradation.
Besides inhibiting Pol II, PH—a metal chelator—is known to also
affect the activity of metalloproteases, including a proteasome-
associated deubiquitinating enzyme (Verma et al. 2002; McCann
et al. 2012). Therefore, the stability of the proteins evicted by PH
may at least in part be explained by inhibition of proteasome-me-
diated degradation. The nature and scale of the changes observed
after PH treatment, particularly the loss of the core transcription
machinery, suggests that inhibition of Pol II can have widespread
effects on many nuclear processes in the cell. This should be con-
sidered when interpreting downstream effects of chemical inhibi-
tors of transcription, such as mRNA processing and stability.

During quiescence, global changes in histone modifications
have been observed (Mews et al. 2014; Young et al. 2017), as well
as global repression by Rpd3 (McKnight et al. 2015), chromatin
compaction by condensin (Swygert et al. 2019), and reduced Pol
II binding (Young et al. 2017). However, the extent to which the
epigenome of Q cells is remodeled to support this important devel-
opmental state and to allow re-entry into vegetative growth re-
mains poorly understood (Swygert and Tsukiyama 2019).
Application of Epi-Decoder to the barcoded HO locus revealed
that upon loss of transcription during quiescence, the chromatin
proteome of a transcribed region undergoes a major rewiring
that affects transcriptional proteins and replication complexes.
In addition, we observed the recruitment of structural proteins,
chromatin remodelers, and protein-folding machineries, as well
as changes in metabolic enzymes. Although many changes be-
tween mid-log and Q cells were also observed upon PH treatment,
we observed Q-cell-specific changes as well, including increased
occupancy of other transcription-related proteins (Fig. 5C),
Hho1, changes in specific metabolic enzymes (e.g., Tdh1, Arg1;
Supplemental Fig. S5E), and differential binding of several heat
shock proteins (e.g., Ssa1 versus its paralog Ssa2) (Fig. 5E;
Supplemental Fig. S5E). We note that some of the observed dy-
namics in Q and NQ cells might, at least in part, be driven by al-
tered expression of the proteins in the different cell states.
Determining the functional roles of these Q-cell-specific and
NQ-cell-specific changes will require further mechanistic studies.

AlthoughQ cells and NQ cells showed overlap in the changes
compared with mid-log cells, we also observed important differ-
ences, in agreement with the different fates of the long-lived Q
and short-livedNQ cells (Li et al. 2013) and the differences in glob-
al histone modifications (Young et al. 2017). NQ cells lacked effi-
cient recruitment of Xbp1, which correlated with lower levels of
Rpd3L and INO80. In addition, the loss of the MCM complex
was incomplete in NQ cells. Together these changes may contrib-
ute to the poor fitness of these cells. Furthermore, the binding of
Cdc48 at the BC_UP promoter region and BC_DN terminator re-
gion in NQ cells is a possible indicator of the general short-lived
nature of NQ cells (Fig. 5E). Cdc48, known as VCP in humans, is
an essential and conserved AAA+ ATPase that functions as an
unfoldase or segregase, facilitating the extraction of proteins
from macromolecular complexes, including chromatin, to enable
subsequent degradation by the proteasome (Dantuma et al. 2014;
Franz et al. 2016). The recruitment of protein quality-control fac-

tors to the chromatin agrees with recent observations that effective
and diverse protein quality-control mechanisms are active in the
nucleus (Jones and Gardner 2016; Prasad et al. 2018; Frottin
et al. 2019; Jones et al. 2019).

Our results show that Epi-Decoder provides a powerful strat-
egy for capturing the temporal binding dynamics of chromatin
proteins under varying conditions. We expect that future studies
on local chromatin-proteome maps under different conditions
and at other genomic loci will offer powerful resources for detailed
molecular and functional annotation of chromatin proteins and
their interactions and relationships at the genome.

Methods

Yeast strains and libraries

Yeast strains used in this study are listed in Supplemental Table S4.
Library manipulations on solid media were performed using
synthetic genetic array (SGA) technology (Tong and Boone
2006) and a ROTOR instrument (Singer Instruments). Yeast media
were prepared as previously described (Tong and Boone 2006;
Korthout et al. 2018). Details of library construction and growth
conditions are provided in the Supplemental Materials and
Methods.

RNA isolation and reverse transcription

RNAwas isolated using the RNeasymini kit (Qiagen) using the pro-
tocol for yeast cells, with a few modifications, essentially as previ-
ously described (Korthout et al. 2018) andwith a spike-in reference
(A8545; a gift from R. Allshire) as described in the Supplemental
Materials and Methods. RT-qPCR was performed with the primers
described in Supplemental Table S5. Each sample was measured in
two technical duplicates, and the average value was taken when
combining biological replicates.

Epi-Decoder

Epi-Decoder was performed and analyzed essentially as described
previously (Korthout et al. 2018). Protein binding at BC_UP and
BC_DN was analyzed separately with specific primers (Supple-
mental Table S5). Libraries of the PCR products were mixed in an
equimolar fashion and sequenced (single read, >50 bp) on a HiSeq
2500/MiSeq platform (Illumina), using one or a mix of custom se-
quencing primers (Supplemental Table S5). Details of the Epi-
Decoder protocol and analysis and the BC counting can be found
in the Supplemental Materials and Methods.

ChIP-qPCR

ChIP-qPCR experiments were performed with IgG Sepharose 6
fast flow beads or epoxy-activated Dynabeads as described previ-
ously (Korthout et al. 2018; Vlaming et al. 2019) and in the
Supplemental Materials and Methods. Each ChIP was performed
in triplicate.

Protein detection by immunoblot and antibodies

For immunoblotting, strains were grown to mid-log phase or ar-
rested in G1 and processed as described previously (Korthout
et al. 2018; Vlaming et al. 2019). Antibodies used and detailed pro-
tocols can be found in the Supplemental Materials and Methods.
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Data access

All raw sequencing data generated in this study and corresponding
reference tables (Supplemental Tables S6–S11) have been submit-
ted to the NCBI BioProject database (https://www.ncbi.nlm.nih
.gov/bioproject/) under accession number PRJNA610036, and
to the NCBI BioSample database (https://www.ncbi.nlm.nih
.gov/biosample/) under accession numbers SAMN14271070,
SAMN14271071, and SAMN14271072. All processed data are
within the paper and the Supplemental Material.
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