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Objectives. Carrageenan is well known to cause inflammation and is used in laboratory experiments to study mediators and
treatments of inflammation. However, carrageenan is added to hundreds of processed foods to improve texture. Previous work
indicated that low concentrations of carrageenan in drinking water caused marked glucose intolerance and insulin resistance in
a mouse model. This exploratory, clinical study tested the impact of the no-carrageenan diet in prediabetes. Research Design and
Methods. Participants with prediabetes (n = 13), defined as HbA1c of 5.7%-6.4%, enrolled in a 12-week, randomized, parallel-
arm, feeding trial. One group (n = 8) was provided all meals and snacks with no carrageenan. A second group (n = 5) received a
similar diet with equivalent content of protein, fat, and carbohydrate, but with carrageenan. Blood samples were collected at
baseline and during oral glucose tolerance tests at 6 and 12 weeks. The primary outcome measure was changed in %HbA1c
between baseline and 12 weeks. Statistical analysis included paired and unpaired t-tests, correlations, and 2 × 2 ANOVAs.
Results. Subjects on no carrageenan had declines in HbA1c and HOMA-IR (p = 0:006, p = 0:026; paired t-test, two tailed). They
had increases in C-peptide (p = 0:029) and Matsuda Index (2:1 ± 0:7 to 4:8 ± 2:3; p = 0:052) and declines in serum IL-8, serum
galectin-3, and neutrophil phospho-(Ser307/312)-IRS1 (p = 0:049, p = 0:003, and p = 0:006; paired t-tests, two tailed). Subjects
on the diet with carrageenan had no significant changes in these parameters. Significant differences between no-carrageenan and
carrageenan-containing diet groups for changes from baseline to 12 weeks occurred in C-peptide, phospho-Ser-IRS1, phospho-
AKT1, and mononuclear cell arylsulfatase B (p = 0:007, p = 0:038, p = 0:0012, and p = 0:0008; 2 × 2 ANOVA). Significant
correlations were evident between several of the variables. Conclusions. Findings indicate improvement in HbA1c and HOMA-
IR in participants on no-carrageenan diets, but not in participants on carrageenan-containing diets. Significant differences
between groups suggest that removing carrageenan may improve insulin signaling and glucose tolerance. Larger studies are
needed to further consider the impact of carrageenan on development of diabetes.

1. Introduction

Carrageenan is added to hundreds of processed foods, due to
its ability to improve the texture and the solubility of other
ingredients in processed foods. Following extraction from
red seaweed, carrageenan is obtained and incorporated into
a wide variety of food products, as well as pharmaceuticals,
cosmetics, and other manufactured items. Carrageenan is

composed of sulfated or unsulfated D-galactose residues
which are linked in alternating β-1,4 and α-1,3 galactose-
galactose bonds. Three major types of carrageenan are used
in food products. These are ι (iota), κ (kappa), and λ
(lambda), which vary in the extent and sites of sulfation. Car-
rageenan is found in hundreds of food products, including
ice cream, chocolate milk, yogurt, soymilk, beer, deli meats,
infant formula, salad dressings, nutritional supplements,
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and many other processed foods [1, 2]. Daily intake of car-
rageenan in food was calculated to be about 100mg/day in
adults in the United States in the 1970s [1]. More recently,
intake has been estimated by food industry publications to
be 18-40mg/kg/day, indicating potential intake of several
grams daily [3]. In addition to its use in food products, car-
rageenan is added to a variety of other products, including
toothpaste, room air deodorizers, and cosmetics. Coinci-
dentally with widespread and increasing industrial uses,
carrageenan has been used for decades in thousands of exper-
iments in the scientific laboratory, due to its ability to provoke
inflammation [1, 4]. Carrageenan-induced inflammation has
been used to test the effectiveness of anti-inflammatory thera-
pies and to investigate mediators of inflammation in experi-
mental models, indicated by over 11,000 references in
PubMed. Previous studies showed that carrageenan initiates
inflammation in intestinal epithelial cells by activating a path-
way of innate immunity mediated by TLR4-BCL10 and by
production of reactive oxygen species (ROS) [5–9].

Since insulin resistance is associated with activation of
TLR4-initiated inflammation [10–12], the impact of carra-
geenan exposure on glucose tolerance and insulin signaling
in C57BL/6J mice was tested. When exposed to a low con-
centration of carrageenan in their water supply, the exper-
imental mice were glucose intolerant by six days [13, 14].
Oral carrageenan caused systemic inflammation, leading to
impaired insulin signaling in the mouse liver. Carrageenan
exposure inhibited insulin signaling by effects on both
hepatic phospho-insulin receptor substrate 1 (IRS1) and
growth-factor receptor bound protein 10 (GRB10) [13–15].
Carrageenan increased phospho-(Ser307/312)-IRS1, a nega-
tive regulator of insulin signaling, and reduced phospho-
Tyr-IRS1, a positive regulator of insulin signaling. These
experiments showed that oral exposure to carrageenan pro-
duced extraintestinal inflammatory effects in rodents which
led to glucose intolerance. Animal studies by food industry
scientists have also demonstrated the impact of carrageenan
exposure on glycosuria [16]. Additional mechanisms by
which carrageenan can lead to insulin resistance have been
reported by other investigators [17]. In addition, carra-
geenan increased serum galectin-3 and increased binding
of galectin-3 with the insulin receptor in the carrageenan-
induced mouse model of nonobese diabetes [18]. Since
galectin-3 interaction with the insulin receptor has been
identified as a mechanism of insulin resistance [19], these
findings support an additional mechanism by which carra-
geenan exposure can impair insulin signaling.

In the typical Western diet, carrageenan is consumed in
greater quantity than in the mice in our experiments. Aver-
age daily carrageenan consumption in the United States
was estimated in one report to be 250mg/day, or ~4.2mg/kg
(250mg/60 kg) [20, 21], considerably less than the amount
reported by the industry [3]. In our experiments in the
C57BL/6J mouse model, carrageenan was supplied in the
drinking water at a concentration of 10μg/ml. With an aver-
age consumption of about 5ml of water per day in mice
weighing about 25 g, daily carrageenan intake was ~2mg/kg
(=50μg/25 g), much less than the conservative estimate of
daily human consumption [13].

This is the first study to directly address whether or not
carrageenan intake in the human diet affects glucose tolerance
and insulin resistance. We hypothesize that carrageenan-
induced effects on insulin signaling and inflammation con-
tribute to glucose intolerance and insulin resistance.

2. Research Design and Methods

2.1. Study Design. This pilot investigation was designed as a
randomized, parallel-arm, clinical trial in which participants
and study personnel who interacted with participants, with
the exception of the study dietician, were blinded as to diet
assignment. The study protocol was approved by the Institu-
tional Review Board of the University of Illinois at Chicago
(UIC), was supported by the American Diabetes Association,
and was registered on the ClinicalTrials.gov website (“Impact
of the no-Carrageenan Diet on Glucose Tolerance in Predia-
betes” NCT02720393). The investigators had no conflict of
interest with regard to the study. All participants provided
written informed consent but were not asked to give consent
for publication of individual data. Data supporting study
conclusions are included within this report, and additional
data are available upon request by written communication
with JKT. CONSORT recommendations for transparent
reporting of clinical trials were observed [22]. The study flow
diagram is presented in Figure 1. Throughout the study,
participants received their medical care from their per-
sonal physicians, who were blinded to the diet assignment.
Data in all study records were anonymized, and records
were compiled with a code for identification. Study proce-
dures ended in June 2018.

The primary outcome measure was changed in HbA1c
after 12 weeks of study participation. The secondary measure
was changed in HOMA-IR, based on fasting glucose and
insulin determinations at the time of glucose tolerance tests
performed at onset of participation and after 12 weeks. Based
on findings in previous mechanistic studies, additional out-
come measures of interest were the inflammatory measures:
serum IL-8, cellular phospho-(Ser307)-IRS1, and phospho-
(Ser473)-AKT1. These had been shown to be modified in
previous studies of carrageenan exposure [13–15].

2.2. Study Recruitment and Enrollment. Participants were
recruited intermittently from January 2015 to February
2018. Potential participants responded to announcements
posted in the General Medicine clinics of UI (University of
Illinois) Health and in e-mails to the University of Illinois
at Chicago (UIC) community. Respondents communicated
by email or telephone to indicate their interest in participa-
tion, completed a telephone screening to assess eligibility,
and scheduled a visit to the Clinical Research Center (CRC)
on the UIC campus. Entry criteria included over 18 years of
age, HbA1c of 5.7%-6.4% for at least 3 months, stable exer-
cise routine, on no medication that affected blood sugar, able
to pick up food weekly at the College of Applied Health Sci-
ences (AHS) kitchen on the UIC campus, stable weight, and
able to complete food questionnaires in English. Exclusion
criteria included: previous diagnosis of diabetes; use of corti-
costeroids; serious underlying medical condition, including
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any disorder that affected red blood cell survival; food aller-
gies or intolerances that impaired ability to adhere to study
diet; or BMI ≥ 40:0 kg/m2. Participants agreed to not increase
their exercise intensity or duration during the study.

2.3. Study Diet and Randomization. Participants were ran-
domized by the study statistician to receive either the no-
carrageenan diet or the comparable carrageenan-containing
diet, including all meals and snacks for 12 weeks, using a
computer-generated random allocation sequence. The
CONSORT diagram (Figure 1) indicates the allocation of
subjects: 21 to no-carrageenan diet group and 20 to
carrageenan-containing diet group. Contents of the study
diets were determined by study dieticians and study
nutritionist-coinvestigator (KV), following conversations
with food companies and evaluation of labels on commercial
food products. Energy from dietary fat (~35-40% of energy),
carbohydrate (~40-50% of energy), and protein (~15% of
energy) at baseline and postintervention (Table 1) were similar
for the no-carrageenan and the carrageenan-containing type
of diet. Similar foods with or without carrageenan were

selected for the majority of the dietary items. Caloric con-
tent was intended to maintain weight and baseline calorie
needs were calculated by the Mifflin equation [23]. At base-
line, subjects were classified as sedentary or lightly active
based on self-reported activity level. The activity factor used
for sedentary individuals was 1.2 and for lightly active indi-
viduals was 1.375.

Food was purchased and packaged in the metabolic
kitchen at the University of Illinois, Chicago. Carrageenan-
containing diets included 5 servings a day of carrageenan-
containing foods (total estimated to be ~250mg/day),
predominantly in dairy food items and in processed deli
meats. The amount of carrageenan consumed was assessed
based on reported carrageenan content in the generic food
products [24]. Participants completed daily logs indicating
their adherence to consumption of the study diet contents
and their consumption of nonstudy diet food items. These
records were reviewed in detail by study investigators and
compliance assessed by calculations of the number of non-
study diet food items consumed and of the number of study
diet items not eaten.

Assessed for eligibility
(n = 104)

Enrollment

Excluded (n = 63)

Randomized (n = 41)

No-carrageenan group

Allocation

Analysis

Carrageenan group

Follow-up

Allocated to intervention (n = 21)
Received allocated intervention (n = 9)
did not receive allocated intervention

(n = 12)

Lost to follow-up (n = 0)
Discontinued intervention (n = 12)
[did not like the diet, inconvenient]

Lost to follow-up (n = 0)
Discontinued intervention (n = 15)
[did not like the diet, inconvenient]

Analyzed (n = 8)
Excluded from analysis (n = 13)

Analyzed (n = 5)
Excluded from analysis (n = 15)

Allocated to intervention (n = 20)
Received allocated intervention (n = 5)
did not receive allocated intervention

(n = 15)

Figure 1: CONSORTdiagram. The CONSORT diagram shows the number of potential participants who responded to recruitment initiatives,
the number who were excluded, the number who were randomized, the number who completed the study diets, and the number who
completed laboratory procedures. One participant on review was found to have hemoglobin A1c below the cutoff for prediabetes and was
excluded from analysis.

Table 1: Baseline and postintervention food intake by group.

Nutrient
Carrageenan-diet group (n = 5) No-carrageenan diet group (n = 8)

Baseline Postintervention Baseline Postintervention

Energy (kcal/d) 2425 2405 2250 2211

Protein (% of energy) 16 15 14 15

Carbohydrates (% of energy) 42 48 46 49

Fat (% of energy) 42 37 40 36

Fiber (g) 21 22 20 19

Cholesterol (mg) 301 285 336 296
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2.4. Study Procedures. At the initial visit, potential partici-
pants completed informed consent procedures and had a
blood draw to confirm HbA1c level between 5.7% and
6.4%. Food log, campus map, and stool collection kit were
distributed, and arrangements were made for food pickup
at the College of AHS of UIC. Participants were provided
the study diet for one week at a time, including three meals
daily and snacks, in a wheeled, refrigerated container. Partic-
ipants were weighed at the time of food pick up. Two-hour
oral glucose tolerance tests (OGTT) were performed in the
UIC CRC at 0, 6, and 12 weeks following a 12-hour overnight
fast. Food intake was unrestricted prior to the initial OGTT.
Glucose and insulin were measured in blood samples
collected at baseline and at 30, 60, 90, and 120 minutes fol-
lowing administration of 75 g dextrose. C-peptide levels were
measured in OGTT samples collected at 0- and 30-minute
time points at 0 and 12 weeks (Supplementary Table 1).
Participants also submitted stool samples which were tested
for fecal calprotectin and microbiome. Quality of Life SF-36
questionnaires were completed, participants were weighed
and measured, and vital signs were taken.

2.5. Laboratory Tests. Laboratory procedures were performed
using standard techniques [5, 6, 13, 14]. Blood and stool sam-
ples were collected at 0 and 12 weeks, labeled by CRC desig-
nated, random, study identification, and assayed blindly to
group assignment. Serum was separated and frozen for
ELISA assays for IL-6 (DY206, R&D Systems, Bio-Techne,
Minneapolis, MN), IL-8 (DY208, R&D), MCP-1 (DY279,
R&D), insulin (DY8056, R&D), galectin-3 (DY1154, R&D),
phospho-AKT(S473) (DYC-887B, R&D), phospho-IRS(-
Ser307) (#7287, Cell Signaling Technology, Danvers, MA),
calprotectin 30-CALPHU-E01, ALPCO, Salem, NH), insulin
(DY8056, R&D), and C-peptide (DICP00, R&D). Arylsulfa-
tase B (ARSB, N-acetylgalactosamine-4-sulfatase) activity
assay was performed as previously described using the exog-
enous substrate 4-methylumbelliferyl sulfate [25]. Human
hemoglobin A1c assay kit (#80099, Crystal Chem, Elk Grove
Village, IL) was used to measure HbA1c% in whole blood.
Peripheral leukocytes were isolated from whole blood and
separated into mononuclear and polymorphonuclear frac-
tions by Polymorphprep™ (Axis-Shield, Inc., Norton, MA)
[25–27]. Samples were frozen in DMSO, stored in a liquid
nitrogen tank, and labeled by study identification number,
without knowledge of participant diet assignment. Perfor-
mance of some laboratory tests was limited by the volume
of the samples that was available. All assays were performed
using the manufacturer’s recommended procedures, with
technical replicates and known standards. HOMA values,
Matsuda Index, oral disposition index, and QUICKI were
calculated using glucose and insulin values from the OGTT
(Supplementary Table 2) [28–32].

2.6. Statistics. Statistical analysis was performed to identify
significant differences between pre- and postintervention test
results in each study group (paired t-test, two tailed) and
between the groups (2 × 2 ANOVA and unpaired t-tests,
two tailed). Unpaired t-tests were used to compare the
changes between baseline (0 weeks) and 12 weeks (postdie-

tary intervention) by group. Correction was performed for
unequal variance when the difference between the squares
of the standard deviations of the group mean change was
more than twofold. Pearson correlation coefficients r and
associated values were determined for the following: hemo-
globin A1c, HOMA-IR, neutrophil phospho-(Ser307/312)-
IRS1, and phospho-(Ser473)-AKT1, serum interleukin-8,
monocyte arylsulfatase B, serum galectin-3, Matsuda Index,
weight, and 0-30-minute difference in C-peptide and insu-
lin values from the OGTTs. No previous data about the
impact of carrageenan withdrawal on HbA1c% were avail-
able to inform the sample size estimate in this pilot study.
High dropout rate was anticipated due to the stringent diet
and 12-week duration. Initial randomization success was
examined by testing group differences in preintervention
data using t-tests. Weight and changes of weight were
tested as potential confounding factors. All statistical tests
were performed while controlling two-sided type I error
probability of 0.05.

3. Results

3.1. Baseline Characteristics of Participants and Compliance
with Study Diet. A total of 104 potential participants
responded to an email notice to the UIC community about
a study of carrageenan in prediabetes (Figure 1). Forty-one
participants passed the screening and were randomized into
carrageenan-containing (n = 20) and carrageenan-free diets
(n = 21). The remaining 63 individuals were excluded due
to a variety of reasons, including health issues, intolerance
or allergy to the diet items, or not being able to commit
sufficient time to the study. Twenty-seven participants
dropped out after the randomization. Thirteen participants
completed the study diets, including 8 participants on the
no-carrageenan diet and 5 participants on the carrageenan-
containing diet. Age range, race/ethnicity, and gender of par-
ticipants were similar in the groups (Table 2).

Participants completed weekly logs about their consump-
tion of the study diet which included all meals and snacks,
and their intake of nonstudy food items. Diet compliance of
participants who completed the study diets was similar in
both groups. Average daily consumption of outside foods
was 0:94 ± 0:62 food items. Average daily consumption of
outside foods containing carrageenan was 0:15 ± 0:16 food
items. The average consumption per participant of
carrageenan-containing foods during the 12 weeks of the
study was 9 in the no-carrageenan group (range: 0-24) and
was 16 (range: 0-39) in the carrageenan-containing diet
group. No harmful effects of the study diet were reported.
Some participants noted that lactose intolerance was aggra-
vated by the study diet, and this was managed by enzyme
supplement and by consultation with the study dietician to
reduce the number of dairy foods while maintaining the pro-
portionate composition of protein, fat, and carbohydrate.

Weights were similar in both groups at baseline, and
there was no significant difference in the change in weight
between the groups. Both groups had declines in weight dur-
ing the course of the study. Average decrease was 3:3 ± 4:2 kg
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for the carrageenan-containing diet group and 2:6 ± 3:1 kg
for the carrageenan-free diet group.

3.2. Major Study Outcome Measures: Hemoglobin A1c % and
HOMA-IR. Prediet and postdiet hemoglobin A1c (HbA1c)
and homeostatic assessment of insulin resistance (HOMA-
IR) results were compared between onset and at 12 weeks
in participants on the carrageenan-containing study diet
(Group 1; n = 5) and on the carrageenan-free study diet
(Group 2; n = 8).

Baseline hemoglobin (Hb) A1c values were similar in the
groups. Average HbA1c for the carrageenan-free diet group
declined significantly (p = 0:006, paired t-test, and two tailed),
whereas the value for the carrageenan-containing diet group
was unchanged (p = 0:95) (Figures 2(a) and 2(b)). The differ-
ence between the groups was not significant (p = 0:12, unpaired
t-test, two tailed, and unequal variance) (Figure 2(c)).

The baseline values for HOMA-IR had no significant dif-
ference between the groups. The average decline for the
carrageenan-containing controlled diet group was 1:00 ±
1:67 (p = 0:25, paired t-test, and two tailed) (Figure 2(d)).
In contrast, the HOMA-IR of the carrageenan-free diet group
declined by 2:69 ± 2:71 (p = 0:026, paired t-test, and two-
tailed) (Figure 2(e)). The difference between the two groups
was not significant (Figure 2(f)).

3.3. Insulin, C-Peptide, andMatsuda Index from Oral Glucose
Tolerance Tests by Group at 0 and 12 Weeks. Values for
the change between 0 and 30 minute values of insulin
(mIU/L) obtained during oral glucose tolerance tests

(OGTT) at 0 and 12 weeks are shown (Figures 3(a) and
3(b)). Paired t-tests indicated significant differences in par-
ticipants on the no-carrageenan diet, but not on the
carrageenan-containing diet. The distribution of the
changes in the groups between 0 and 12 weeks is pre-
sented (Figure 3(c)). No significant differences were dem-
onstrated between the groups (unpaired t-test and 2 × 2
ANOVA).

Changes in C-peptide values between 0 and 30 minutes
were compared between baseline and 12 weeks in each group.
Paired t-tests showed significant increases in the C-peptide
values (p = 0:029) in the no-carrageenan diet group, but not
in the carrageenan-containing diet group (p = 0:123)
(Figures 3(d) and 3(e)). The difference between the two
groups was significant (Figure 3(f)) (p = 0:006, unpaired t-test,
two tailed, and unequal variance; p = 0:0072, 2 × 2 ANOVA).

Matsuda Index was calculated using the results of the
OGTT.Differences betweenbaseline and12-week resultswere
calculated for each group by paired t-tests (Figures 3(g) and
3(h)) (p = 0:64 with carrageenan and p = 0:052 in the no-
carrageenan group). In the no-carrageenan diet group, mean
Matsuda Index increased from 2:1 ± 0:7 to 4:8 ± 2:3 and in
the carrageenan-diet group, Matsuda Index increased from
3:8 ± 2:7 to4:4 ± 2:4.Differences in thegroupswerenot signif-
icant by unpaired t-test and 2 × 2ANOVA (Figure 3(i)).

3.4. Impact of Diet on Inflammation: Effects on Serum
Interleukin-8 and Fecal Calprotectin. The distribution of
the initial values for the inflammatory parameters was
similar for the two groups. The average result for IL-8 in

Table 2: Baseline characteristics of study participants.

Characteristic Carrageenan-diet group (n = 5) No- carrageenan diet group (n = 8)
Male : Female 1 : 4 1 : 7

Age (years) 41:6 ± 14:9 50:4 ± 9:9
Age range (years) 22-63 31-64

Race/ethnicity

Asian 1 1

African-American 3 6

Caucasian 1 0

Hispanic or Latino 0 1

Not Hispanic or Latino 5 7

Body weight (kg) 103 ± 22 87 ± 19
BMI (kg/m2) 34:5 ± 5:3 31:2 ± 5:5
Baseline hemoglobin A1c (%) 6:09 ± 0:19 5:94 ± 0:17
Baseline fasting glucose (mg/dl) 96:2 ± 19:5 94:5 ± 11:6
Baseline 2-hour glucose in OGTT (mg/dl) 139:3 ± 75:1 164:4 ± 53:0
Baseline fasting insulin (μIU/ml) 17:7 ± 17:5 16:6 ± 9:8
Baseline 2-hr insulin in OGTT (μIU/ml) 69:1 ± 49:7 86:8 ± 46:7
Baseline C-peptide (ng/ml) 0:86 ± 0:61 1:06 ± 0:51
Baseline Matsuda Index 3:83 ± 2:73 2:12 ± 0:71
Baseline serum galectin-3 (ng/ml) 8:90 ± 1:84 8:86 ± 3:03
Baseline arylsulfatase B (nmol/mg protein/h) 52:1 ± 2:44 55:5 ± 4:08
All values are reported as mean ± SD (standard deviation).
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Figure 2: Continued.
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the carrageenan-containing diet group showed no signifi-
cant change (p = 0:12, paired t-test, two tailed, n = 5)
(Figure 4(a)). In contrast, the carrageenan-free diet group
had a significant decline (p = 0:049, paired t-test, two tailed,
n = 8) (Figure 4(b)). The difference in the changes in values
for the two groups was not significant (Figure 4(c)). Measure-
ments of fecal calprotectin (Figures 4(d)–4(f)), IL-6, and
MCP-1 (not shown) were not significantly different between
baseline and final values in either group or between groups.

3.5. Impact of Diet on Cell-Based Inflammatory Parameters;
Effects on Neutrophil Phospho-(Ser307/312)-IRS1 and Phospho-
(Ser473)-AKT1. Phospho-(Ser307/312)-IRS1, a marker of
inhibition of insulin signaling at the intersection of inflam-
matory and insulin signaling pathways, was compared in
neutrophils from the participants. The distribution of the ini-
tial values was similar in the two groups. The carrageenan-
containing diet group showed no significant change between
onset and final values (p = 0:82, paired t-test, and n = 4)
(Figure 5(a)). In contrast, the no-carrageenan group had a signif-
icant decline (p = 0:006, paired t-test, two tailed, and n = 6)
(Figure 5(b)). The difference between the groups was not signif-
icant (p = 0:08, unpaired t-test, two tailed, and unequal variance)
(Figure 5(c)).

Neutrophil phospho-(Ser473)-AKT1,2 increased in all
individuals tested on the no-carrageenan diet (p = 0:001,
paired t-test, two tailed, and n = 6) following 12 weeks of
intervention. The carrageenan-containing diet group had
no significant change by paired t-test (p = 0:70, n = 4)
(Figures 5(d) and 5(e)). Baseline values were similar between
the no-carrageenan and carrageenan-containing diet groups.
The changes between the groups were significant (p = 0:001,
unpaired t-test, two tailed, and equal variance; p = 0:0012
2 × 2 ANOVA) (Figure 5(f)).

3.6. Impact of Diet on Mononuclear Arylsulfatase B and
Serum Galectin-3. Arylsulfatase B (ARSB; N-acetylgalactosa-
mine-4-sulfatase) activity was measured in circulating mono-
nuclear cells, since it was previously shown to decline when
colonic epithelial cells were treated with carrageenan and
may be useful as a surrogate marker for carrageenan expo-
sure [33]. Distribution of the initial values was similar
(Figures 6(a) and 6(b)). Following the no-carrageenan diet,
all ARSB activity values increased. Average values increased
significantly, from 55:5 ± 4:1nmol/mg protein/h to 74:9 ±
4:2nmol/mg protein/h (p = 0:001, paired t-test, two tailed,
and n = 6). The average result for the carrageenan-containing
diet group was 52:1 ± 2:4nmol/mg protein/h at baseline and
52:2 ± 1:5nmol/mg protein/h at 12 weeks, showing no signifi-
cant change (p = 0:98, paired t-test, and n = 4). The difference
in the changes between the two groups was significant
(p = 0:0008, unpaired t-test, two tailed, and unequal variance;
p = 0:0008, 2×2 ANOVA) (Figure 6(c)).

Decline in ARSB leads to increased chondroitin 4-sulfate
(C4S), since ARSB is required for the degradation of C4S.
Previously, galectin-3 was shown to bind less to chondroitin
4-sulfate when ARSB was reduced [34], and to bind with the
insulin receptor and contribute to insulin resistance [19].
Hence, increased ARSB activity may lead to a decline in
serum galectin-3 and to reduced insulin resistance. To test
this potential mechanism by which carrageenan can contrib-
ute to insulin resistance, serum galectin-3 levels were mea-
sured in study participants. Galectin-3 values were similar
at study onset and declined significantly in the no-
carrageenan diet group, from 8:56 ± 2:93ng/ml to 7:25 ±
2:23ng/ml (p = 0:003, paired t-test, two tailed, and n = 8)
(Figure 6(e)), with no change in the carrageenan-containing
diet group (p = 0:94, paired t-test, and n = 5) (Figure 6(d)).

p = 0.19 paired t-test
p = 0.24 2×2 ANOVA

Change in HOMA-IR

Carrageenan No carrageenan
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1
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–3
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–5
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–8
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×
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(f)

Figure 2: Major study outcome measures: hemoglobin A1c % and HOMA-IR. (a) Baseline (0 week) and 12-week values of hemoglobin (Hb)
A1c (%) for the group on the carrageenan-containing diet are shown and were not significantly different (p = 0:95, paired t-test, two tailed,
n = 5). (b) The difference between the 0-week and 12-week HbA1c values were significantly different for participants on the no-carrageenan
diet (p = 0:006; paired t-test, two tailed, n = 8). (c) The distribution of changes between the two groups was not significant (p = 0:12, unpaired
t-test, two tailed, unequal variance; p = 0:068, 2 × 2 ANOVA). (d) The differences between baseline and 12-week HOMA-IR scores were not
significantly different for individuals on the carrageenan-containing diet (p = 0:25, paired t-test, two tailed, n = 5). (e) The differences between
the baseline and 12-week HOMA-IR values were significantly different for the individuals on the no-carrageenan diet (p = 0:026, paired t-test,
two tailed, unequal variance, n = 8). F. The changes in HOMA-IR scores between the no-carrageenan and carrageenan-containing groups
were not significantly different.
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Figure 3: Continued.
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The overall difference between carrageenan-free and
carrageenan-containing diets was not significant (Figure 6(f)).

3.7. Correlations between Variables of Interest. Correlations
between variables for which paired t-tests or 2 × 2 ANOVA
were significant were determined (Table 3). The most signif-
icant positive correlations were between the changes between
baseline and 12 weeks in: HbA1c and p-Ser-IRS1 (r = 0:94,
p < 0:0001); galectin-3 and p-Ser-IRS1 (r = 0:89, p = 0:0006);
C-peptide and insulin values, using the differences between 0
and 30 minutes from the OGTTs (r = 0:88, p = 0:0004);
and arylsulfatase B and phospho-AKT1 (r = 0:88, p =
0:0009). Other significant results, including the negative cor-
relation between phospho-Ser-IRS1 and phospho-Ser-AKT
(r = −0:72, p = 0:018), are consistent with established insulin
signaling pathways.

4. Discussion

Study results indicate that participants on the no-
carrageenan study diet had declines in HbA1c and
HOMA-IR (paired t-tests). In contrast, the participants
who received the carrageenan-containing study diet did
not have any significant declines in HbA1c or HOMA-IR.
Other significant before-after changes in the participants on
the no-carrageenan diet include declines in serum IL-8,
serum galectin-3, and neutrophil phospho-(Serine307/312)-
IRS1. Increases include arylsulfatase B, phospho-(Ser473)-
AKT1, C-peptide, and Matsuda Index. Significant differences
between groups occurred in neutrophil phospho-(Ser473)-
AKT and neutrophil phospho-(Ser307/312)-IRS1, C-peptide,
and mononuclear ARSB activities. These results suggest
that the decline in carrageenan exposure led to improved
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Matsuda Index - carrageenan-containing diet
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p = 0.19, unpaired t-test
p = 0.19 2×2 ANOVA
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–6

–8
No carrageenan

×
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(i)

Figure 3: Impact of diet on changes in 0-30minute insulin and C-peptide levels in oral glucose tolerance tests and on changes in Matsuda
Index between 0 and 12 weeks. (a). Serum Insulin was measured at baseline and at 30, 60, 90, and 120 minutes following administration
of oral glucose load in glucose tolerance tests. The differences between 0 and 30 minutes were determined, and these levels at baseline and
after dietary intervention for 12 weeks are shown. No difference was evident for individuals on the carrageenan-containing diet (paired t
-test, two tailed, and n = 5). (b). For individuals on the no-carrageenan diet, there was no significant difference between the baseline and
12-week levels (n = 7). (c). No significant differences between the no-carrageenan and carrageenan-containing diet groups were detected
(p = 0:073, unpaired t-test, two tailed, and unequal variance; p = 0:087, 2 × 2 ANOVA) for the change from 0 to 12 weeks in the difference
between 0 and 30 minutes. (d). Serum C-peptide levels were measured at baseline and at 30 minutes following administration of oral
glucose in the OGTT. The differences between the 0 and 30 minutes values were compared between baseline and 12 weeks. No difference
was detected in the individuals on the carrageenan-containing diet (p = 0:12, paired t-test, two tailed, and n = 5). (e). For participants on
the no-carrageenan diet, there was a significant difference between the baseline and the 12-week levels (p = 0:029, paired t-test, two tailed,
and n = 6). (f). The differences between 0 and 30minutes were compared and were significant (p = 0:006, unpaired t-test, two tailed, and
unequal variance; p = 0:007, 2 × 2 ANOVA) between the change from 0 to 12 weeks in the no-carrageenan vs. the carrageenan-diet group.
(g). Matsuda Index was calculated at baseline and 12 weeks using the values of insulin and glucose from the OGTT. No significant
difference was detected between baseline and 12 weeks for subjects on the carrageenan-containing diet (n = 5). (h). The difference between
individuals on the no-carrageenan diet approached statistical significance (p = 0:053, paired t-test, two tailed, n = 6). (i). No significant
difference was evident between the groups.
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Figure 4: Impact of diet on inflammation: effects on serum interleukin-8 and fecal calprotectin. (a). Baseline and 12-week levels of serum IL-8
levels (pg/ml) were not significantly different in participants on the control diet (n = 5). (b). In contrast, the change in IL-8 levels between 0
and 12 weeks was significant for the participants on the no-carrageenan diet (p = 0:049; paired t-test, two tailed, unequal variance, and n = 7).
(c). The changes in IL-8 postdietary intervention were not significantly different between the groups. (d). Fecal calprotectin was not
significantly changed between 0 and 12 weeks in participants on the diet with carrageenan (n = 5). (e). The difference between baseline
and study end was not significantly different for participants on the no-carrageenan diet (p = 0:13; paired t-test, two tailed, n = 7). (f). No
difference between groups was detected.
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Figure 5: Impact of diet on cell-based inflammatory parameters; effects on neutrophil phospho-(Ser307/312)-IRS1 and phospho-(Ser473)-
AKT1. (a). Baseline and 12-week values of neutrophil phospho-(Ser307/312)-IRS1, measured as optical density (O.D.)/mg cell protein,
were similar for the carrageenan-containing diet group (n = 4). (b). In contrast, the 0- to 12-week decline was significant in the no-
carrageenan group (p = 0:006, paired t-test, two tailed, and n = 6). (c). The changes in neutrophil phospho-(Ser307/312)-IRS1 between
the no-carrageenan and carrageenan-containing diet groups were not significantly different (p = 0:08, unpaired t-test, two tailed, and
equal variance; p = 0:00122 × 2 ANOVA). (d). Phospho-(Ser473)-AKT1 (ng/mg protein) was measured by ELISA in neutrophils from
participants. There was no significant difference between the baseline and 12-week results in subjects on the carrageenan-containing
study diet (p = 0:70, paired t-test, two tailed, n = 4). (e). In contrast, participants on the no-carrageenan diet had marked increase in
phospho-(Ser473)-AKT1, consistent with the decline in phospho-(Ser307/312)-IRS1 (p = 0:001, paired t-test, two tailed, and n = 6). (f).
There was a significant difference between carrageenan-containing and no-carrageenan diet groups (p = 0:0012, unpaired t-test, two
tailed, and equal variance).
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insulin signaling. Although study numbers are small, the
data show significant improvement in neutrophil mediators
of insulin signaling in participants on the no-carrageenan
diet, with increased phospho-(Ser473)-AKT1 and reduced

phospho-(Ser307/312)-IRS1. These findings are consistent
with our previously published findings in hepatic tissue of
carrageenan-exposed mice, in which carrageenan exposure
increased phospho-(Ser307/312)-IRS1 and reduced phospho-
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Figure 6: Impact of diet on mononuclear arylsulfatase B and serum galectin-3. (a). Mononuclear ARSB activity (nmol/mg protein/h) was not
significantly different between baseline and 12 weeks in the participants on the carrageenan-containing diet (p = 0:98, paired t- test, two tailed,
and n = 4). (b). In the no-carrageenan diet, the mononuclear ARSB activity increased significantly (p = 0:001, paired t-test, two tailed, and
n = 6). (c). The changes in mononuclear ARSB activity were different between the carrageenan-free and carrageenan-containing diet
groups (p = 0:0008, unpaired t-test, two tailed, and unequal variance). (d). Serum galectin-3 was similar at 0 and 12 weeks in the
carrageenan-containing diet group (p = 0:94, paired t-test, two tailed, n = 4). (e). In the carrageenan-free diet group, serum galectin-3
declined significantly between baseline and 12 weeks (p = 0:003, paired t-test, two tailed, n = 6). (f). The difference in the change in serum
galectin-3 between the two groups was determined (p = 0:13, unpaired t-test, two tailed, and unequal variance).
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(Ser473)-AKT1, and thereby inhibited insulin signaling and
impaired glucose tolerance [13, 14, 18]. The unexpected
increase in C-peptide in the participants on the carrageenan-
free diet suggests that removal of carrageenan may also lead
to increased insulin production or secretion.

Although the study diets were not intended for to weight
loss, mean weight declined in both groups. There was no sig-
nificant difference in the weight change between the groups,
and average weight loss was less in the no-carrageenan diet
group. Although it is unclear why subjects lost weight, the
participants may have found the three-day rotating menu
to be unappealing for 12 weeks. They may have underre-
ported their lack of consumption of the study diet, since food
allotment was adjusted to provide enough calories to main-
tain weight. To our knowledge, participants did not increase
their physical activity during study participation. A decline in
HbA1c did not occur in the carrageenan-exposed group,
although average weight loss was greater than in the no-
carrageenan group. In our previously reported mouse
studies, carrageenan exposure, in contrast to high-fat diet,
was not associated with weight gain and the carrageenan
model of diabetes is a nonobese model [14, 18]. Additional
studies are needed to determine how carrageenan exposure
or removal of carrageenan might affect obesity-associated
inflammation in individuals with diabetes or prediabetes.

The implications of the study findings are limited by the
small sample size, since a type 1 error cannot be excluded.
Initial recruitment was high, but retention of recruited study
participants was less than anticipated. Participants indicated
dissatisfaction with being on the restricted study diet for 12
weeks and with the inconvenience of picking up their food
weekly. Abstinence from beer, which generally contains car-
rageenan, was a major factor in the reluctance of some indi-
viduals to follow the study diet. Other study limitations
included the relatively short duration of the study and the
occurrence of weight loss in participants, who likely did not
eat all of the food provided in the study diets due to their per-
sonal preferences. Also, most study participants were female,
so findings may be related to gender. No specific biomarker
of carrageenan consumption is available, limiting confirma-
tion of dietary compliance/noncompliance, and no lipid data
are available for study participants. Another study limitation
is the lack of specific information about volume and intensity
of exercise throughout the study. Although a criterion of par-
ticipation was agreed to not modify exercise during the study,
it is possible that change in exercise contributed to weight
loss and improved glucose tolerance.

Study findings support and build upon our previous find-
ings with carrageenan-fed mice and carrageenan-treated
human cells, which linked carrageenan exposure with glu-
cose intolerance and insulin resistance. Previous findings elu-
cidated the pathways by which carrageenan interferes with
the insulin response, by effects on signaling cascades medi-
ated by ROS, phospho-IRS1, and GRB10. Now, we include
effects of carrageenan on ARSB and galectin-3 as additional
mechanisms which may contribute to impaired insulin sig-
naling. Identification of the impact of carrageenan with-
drawal on mononuclear arylsulfatase B activity and on
serum galectin-3 is biochemical evidence that ingestion of

carrageenan can affect the metabolism of sulfated glycosami-
noglycans (GAGs) and the molecular pathways regulated by
more or less binding with the sulfated GAGs. The observed
decline in serum galectin-3 is consistent with previous
reports of mimicry by carrageenan of the naturally occurring
sulfated GAGs, particularly chondroitin 4-sulfate (C4S) [35].
Carrageenan was shown to reduce activity of ARSB, and the
binding of galectin-3 to C4S was reported to decline when
ARSB activity was less and C4S was thereby increased [34].
Hence, carrageenan exposure may also impact insulin signaling
through ARSB and chondroitin 4-sulfate-mediated changes in
free galectin-3, as suggested by the findings in this report and
animal studies [18]. Li et al. reported that hematopoietic-
derived galectin-3 binds to the insulin receptor and inhibits
downstream signaling [19]. We suggest that carrageenan-
induced changes in ARSB and C4Smay impact galectin-3 avail-
ability and contribute to the effect on HbA1c that we report.
Also, in other works, a decline in ARSB led to increased C4S
and increased binding of C4S with SHP2 (PTPN11), the ubiq-
uitous nonreceptor tyrosine phosphatase [36–38]. Increased
binding of SHP2 with C4S reduced SHP2 activity, leading to
sustained phosphorylation of several mediators, including
phospho-ERK1/2, phospho-JNK, and phospho-p38 MAPK.
Inhibition of SHP2 has been linked to changes in insulin signal-
ing [39], and it is possible that effects of carrageenan, mediated
through ARSB and chondroitin sulfation, may modify SHP2
activity and impact insulin signaling through these pathways.

Different types of dietary interventions have been pre-
viously evaluated for effectiveness in prevention of T2D
[40–45]. The effects of these interventions have often been
attributed to effects on beta cells, although effects on inflam-
mation have also been considered. The impact of carrageenan
on beta cells is unknown, and the increase in C-peptide in this
study is a new finding. Maintenance of weight loss and sus-
tained long-term dietary modification beyond the duration
of study participation are well-recognized challenges in diabe-
tes prevention through dietary intervention [45].

This report suggests that in individuals with prediabe-
tes removal from the diet of the common food additive
carrageenan is a novel intervention that may help prevent
T2D. The study diet completely eliminated the proinfla-
mmatory, commonly used food additive carrageenan from
the diet. In twelve weeks, HbA1c declined by an average of
0.12% in study participants on the no-carrageenan diet. It
is uncertain whether or not the HbA1c would continue to
decline with ongoing removal of carrageenan from the
diet. Further studies are needed to clarify the precise
mechanisms by which the specific elimination of
carrageenan-containing foods can affect glucose tolerance
in the long term. Although food industry scientists have
published several studies in support of the safety of carra-
geenan [3, 46], the overwhelming evidence in the literature
and that reported on PubMed indicates that carrageenan
exposure predictably causes inflammation and leads to sig-
nificant physiological consequences [47]. The impact of
removing carrageenan from the diet in patients with estab-
lished diabetes and impaired beta cell function needs
further investigation. Effects of carrageenan on the fecal
microbiome, lymphocyte subsets, lipid parameters, and

14 Journal of Diabetes Research



other inflammatory parameters may also contribute to the
impact of carrageenan on glucose metabolism and human
health.
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