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1  |  INTRODUC TION

It is known that metabolic and nutritional disturbances have various 
negative health consequences in females. In addition, it has been 
well established that reproductive functions are particularly suscep-
tible to metabolic and nutritional status1– 4 and that the hypothala-
mus, which is located on the undersurface of the brain, plays pivotal 
roles in these interactions between reproduction and metabolism/
nutrition.5 A negative energy status, which can be caused by eat-
ing disorders, weight loss due to calorie restriction, or excessive 

exercise, etc., frequently induces ovulatory disorders and/or irreg-
ular menses or amenorrhea and can disrupt sexual maturation.1– 4 It 
can also induce reductions in bone mineral density and increase the 
risk of osteoporosis due to the estrogen deficiency.6– 9 In addition, 
disturbances of energy utilization, such as obesity and diabetes, can 
also cause reproductive dysfunction, even though enough energy is 
stored in these conditions.10– 13

Although it has long been known that metabolic and nutri-
tional status affects reproductive functions, the mechanisms 
underlying these effects were not revealed until the 1970s. In 
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Abstract
Background: It is known that metabolic and nutritional disturbances induce re-
productive dysfunction in females. The main cause of these alterations is reduced 
gonadotrophin- releasing hormone (GnRH) secretion from the hypothalamus, and the 
underlying mechanisms have gradually been elucidated.
Methods: The present review summarizes current knowledge about the effects of 
nutrition/metabolism on reproductive functions, especially focusing on the GnRH 
regulation system.
Main findings: Various central and peripheral factors are involved in the regulation 
of GnRH secretion, and alterations in their activity combine to affect GnRH neurons. 
Satiety-	related	 factors,	 i.e.,	 leptin,	 insulin,	 and	 alpha-	melanocyte-	stimulating	 hor-
mone, directly and indirectly stimulate GnRH secretion, whereas orexigenic factors, 
i.e., neuropeptide Y, Agouti- related protein, orexin, and ghrelin, attenuate GnRH se-
cretion. In addition, kisspeptin, which is a potent positive regulator of GnRH, expres-
sion is reduced by metabolic and nutritional disturbances.
Conclusion: These neuroendocrine systems may be defensive mechanisms, which help 
organisms to survive adverse conditions by temporarily suppressing reproduction.
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1971, the structure of gonadotrophin- releasing hormone (GnRH) 
was identified,14,15 and the reproductive roles of GnRH, the mode 
of secretion of GnRH (pulses and surges), and the regulation of 
GnRH by gonadal hormones and the central nervous system were 
all clarified. In accordance with these advances in the field of re-
productive endocrinology, the mechanisms underlying the effects 
of metabolic and nutritional status on reproductive functions have 
been vigorously evaluated in clinical and experimental studies. 
During the 1980s and early 1990s, it was revealed that decreased 
GnRH secretion from the hypothalamus is the main cause of the re-
productive dysfunction induced by metabolic and nutritional dis-
turbances.16– 19 During the 1990s and early 2000s, it was clarified 
that some peripheral and hypothalamic factors involved in the reg-
ulation of appetite and metabolism also regulate GnRH secretion 
and that changes in their activity due to under-  or overnutrition 
may suppress GnRH secretion and cause concomitant modulation 
of feeding behavior.20– 24 In 2003, it was discovered that kisspeptin 
and its receptor Kiss1r are expressed in the hypothalamus and 
that kisspeptin/Kiss1r signaling is a major stimulus for the secre-
tion of GnRH.25,26	 Subsequent	 studies	 revealed	 that	 kisspeptin	
may be the missing link between sex steroid feedback activity and 
GnRH.27	Similarly,	other	studies	have	shown	that	kisspeptin	activ-
ity is decreased by both under-  and overnutrition, indicating that 
kisspeptin may also be involved in the reproductive dysfunction 
induced by metabolic and nutritional disturbances.28,29 The aim 
of this review is to summarize current knowledge regarding the 
effects of metabolism/nutrition on reproductive functions and the 
neuroendocrine mechanisms underlying these effects, focusing, in 
particular, on the effects of a negative energy balance.

2  |  CONCEPT OF BR AIN ENERGY 
AVAIL ABILIT Y

In the 1970s and early 1980s, it was reported that the reproductive 
functions of females were disrupted by a lack of energy or a large 
energy drain. For example, the onset of puberty was markedly 
delayed in dancers who continued undergoing physical training 
involving a large energy drain.30 Although their sexual develop-
ment and menarche were promoted when their exercise schedule 
was decreased and/or they were forced to rest due to injury, an 
amenorrheic state recurred after they returned to their original 
exercise	schedule.	Similarly,	menstrual	dysfunction	or	amenorrhea	
was induced in athletes, and these changes were related to a de-
creased body fat percentage.31,32 In addition, our study evaluating 
the causes of irregular menses or secondary amenorrhea associ-
ated with the hypothalamic- pituitary system indicated that 38% of 
cases were induced by body weight loss, and 3% were induced by 
psychological stress or exercise33 (Figure 1). As it had long been 
speculated that these effects of body weight loss and exercise on 
reproductive functions were induced by changes in hypothalamic 
function, the concept of brain energy availability was proposed in 
1984.34 Namely, the brain appears to monitor the balance between 

the availability of calories and their utilization, and reproductive 
functions are transiently suppressed when the balance is unfavora-
ble in order to survive such conditions.

3  |  THE EFFEC TS OF LOW ENERGY 
AVAIL ABILIT Y ON GNRH

As noted above, although it has long been known that metabolic 
and nutritional status affects reproductive functions, the mecha-
nisms underlying these effects were not revealed until the 1970s. 
In 1948, Harris proposed the hypothesis that hypothalamic neurons 
may secrete some neurohormones into the hypophyseal portal vein 
to regulate the levels of anterior pituitary hormones.35	McCann	and	
Ramirez demonstrated the biological existence of GnRH (referred 
to as luteinizing hormone (LH)- releasing factor), and Guillemin and 
Schally	subsequently	identified	the	structure	of	GnRH	in	1971.14,15 
Further studies revealed that reproductive functions are mainly 
regulated by the hypothalamic- pituitary- gonadal (HPG) axis, i.e., 
the GnRH- gonadotrophins- gonadal steroids axis, in humans and 
animals. Among these factors, hypothalamic GnRH acts as a central 
regulator of the HPG axis, and it also plays pivotal roles in brain 
energy availability. Previous studies have shown that reductions 
in energy availability suppress HPG activity by inhibiting GnRH, 
thereby decreasing gonadotrophin secretion from the pituitary 
gland. As the secretion of GnRH from hypothalamic neurons into 
the hypophyseal portal vein is difficult to measure, most of these 
studies measured serum LH levels as an index of GnRH secretion, 
i.e., the pulsatile secretion of LH reflects the pulsatile secretion 
of GnRH, and the surge secretion of LH reflects GnRH surge se-
cretion. The mean plasma LH levels of females with hypothalamic 

F I G U R E  1 The	causes	of	irregular	menses	or	secondary	
amenorrhea associated with the hypothalamic- pituitary system 
(adapted from ref 33)
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amenorrhea, whose symptoms were mainly caused by weight loss, 
were lower than those of normal females, and the LH pulse fre-
quency was lower in females with hypothalamic amenorrhea than 
in normal females during the early follicular phase.16 In addition, 
it was found that LH pulse frequency does not decrease linearly 
along with energy status, but rather is disrupted when energy avail-
ability falls below a threshold level.19 Furthermore, a study evalu-
ating GnRH secretion into the hypophyseal portal vein in female 
sheep revealed that both the frequency and amplitude of GnRH 
pulses were decreased in growth- restricted hypogonadotropic 
sheep,36 and the pulsatile administration of GnRH induced ovula-
tion in patients with hypothalamic amenorrhea,37,38 supporting the 
hypothesis that a reduction in pulsatile GnRH secretion is the main 
cause of the reproductive dysfunction induced by a negative en-
ergy balance.

4  |  THE ROLES OF ORE XIGENIC 
AND ANORE XIGENIC FAC TORS IN THE 
REGUL ATION OF GNRH UNDER LOW 
ENERGY AVAIL ABILIT Y

As mentioned above, the reproductive dysfunction associated with 
a negative energy status is mainly induced by decreased GnRH pul-
satile secretion. These alterations can be reproduced in some ex-
perimental animal models by energy restriction, and hence, such 
animal models have been used to investigate the neuroendocrine 
and hormonal mechanisms underlying these phenomena. As a result, 
it has been revealed that some appetite-  or metabolism- regulating 
factors affect GnRH neurons and that changes in their activity may 
suppress pulsatile GnRH secretion in the presence of under-  or 
overnutrition (Figure 2). Generally, satiety- related factors, such as 
leptin, insulin, alpha- melanocyte- stimulating hormone (αMSH),	and	

proopiomelanocortin	 (POMC),	 have	 direct	 and	 indirect	 facilitative	
effects on GnRH, whereas orexigenic factors, such as neuropeptide 
Y (NPY), Agouti- related peptide (AgRP), orexin, and ghrelin, have 
suppressive effects on GnRH.20– 24 In low energy availability condi-
tions, the activity levels of satiety- related factors are decreased and 
those of orexigenic factors are increased, and consequently GnRH 
secretion is decreased. The detailed effects of each factor on GnRH 
neurons are described below.

4.1  |  Leptin

Leptin is an adipocyte- derived satiety- controlling peptide, and it 
plays pivotal roles in the regulation of appetite and reproduction. 
Leptin modulates appetite and metabolic rates through hypotha-
lamic orexigenic and anorexigenic factors and prevents excessive 
weight gain and obesity in humans and animals.39– 41 In addition 
to these effects on nutrition, leptin plays pivotal roles in sexual 
maturation and fertility in adulthood. Leptin- deficient ob/ob mice 
exhibit disturbed sexual maturation and infertility due to low gon-
adotrophin levels, and chronic leptin treatment increased their 
serum gonadotrophin levels and restored puberty and fertility.42,43 
In addition, chronic leptin administration accelerated the onset of 
puberty in normally nourished female mice,44 and it also normal-
ized serum gonadotrophin levels and restored estrous cyclicity in 
undernourished adult female mice.45 Although the facilitative ef-
fects of leptin on gonadotrophins are primarily mediated through 
the stimulation of GnRH neurons, GnRH neurons themselves do 
not express leptin receptors.46 In addition, the ablation of the 
leptin receptor from all forebrain neurons prevented the onset of 
puberty and induced infertility in male and female mice, indicat-
ing that leptin may indirectly act on GnRH neurons through some 
other forebrain factors.47

F I G U R E  2 Hypothesis	regarding	
the mechanisms responsible for the 
reproductive dysfunction seen under low 
energy availability conditions
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4.2  |  Insulin

It has been reported that insulin is also involved in the regulation of 
GnRH secretion. Neuron- specific disruption of the insulin receptor 
(IR) gene induced a reduction in serum LH levels followed by hypo-
gonadism in female mice.48 On the contrary, both male and female 
mice that were subjected to selective ablation of the IR from GnRH 
neurons displayed normal pubertal timing and fertility.49 These find-
ings indicate that insulin also indirectly influences GnRH neurons to 
regulate reproductive functions. Interestingly, mice that were sub-
jected to the deletion of insulin- like growth factor 1 (IGF1) showed 
low gonadotrophin levels and delayed pubertal development, indi-
cating that IGF1 may directly affect GnRH neurons.49

4.3  |  POMC and αMSH

Proopiomelanocortin is a precursor protein, which is used to pro-
duce	biologically	active	peptides.	POMC	neurons	within	the	hypo-
thalamic arcuate nucleus (ARC) play a critical mediating role in leptin 
and insulin signaling and act as a vital anorexigenic factor.50	POMC	
neurons project into the medial preoptic area (POA), where GnRH 
neurons are concentrated, and some of them make a synaptic con-
tact with GnRH neurons.51 αMSH	is	one	of	the	cleavage	products	of	
POMC,	and	it	acts	as	an	anorexigenic	neuropeptide	by	binding	to	the	
melanocortin	4	 receptor	 (MC4R).52	GnRH	neurons	express	MC4R,	
and the central administration of αMSH	increased	the	serum	LH	lev-
els of mice and rats.53,54	In	addition,	MC4R-	deficient	mice	exhibited	
a decreased ovulation rate, and the normalization of melanocortin- 
signaling ameliorated subfertility in leptin receptor knockout db/db 
mice.54,55 These findings suggest that αMSH	mediates	leptin	activity	
and directly stimulates GnRH secretion.

4.4  |  NPY, AgRP, orexin, and ghrelin

Neuropeptide Y, AgRP, orexin, and ghrelin are hypothalamic orexi-
genic factors. NPY neurons come into close contact with GnRH 
neurons and directly signal into GnRH neuron cell bodies and nerve 
terminals via the NPY Y1 receptor.56 Food deprivation increases hy-
pothalamic NPY neuronal activity and mRNA expression, and con-
comitantly decreases LH secretion.57 In addition, the administration 
of NPY reduced gonadotrophin levels in female rats,58,59 whereas 
gonadotrophin levels were not affected by fasting in NPY- deficient 
mice.60 Furthermore, although obesity and infertility are seen in 
leptin- deficient ob/ob mice, these phenotypes are ameliorated in 
NPY- deficient ob/ob mice, suggesting that NPY functions as a cen-
tral effector that mediates the effects of leptin on the appetite and 
reproductive systems.61 AgRP, which is a hypothalamic orexigenic 
factor, is co- expressed with NPY in the neuronal population found 
in the ARC and is negatively regulated by leptin. It has been shown 
that AgRP has inhibitory effects on LH secretion in monkeys, and the 
ablation of AgRP- expressing neurons in ob/ob mice restored their 

fertility.62,63 These findings indicate that AgRP is also involved in the 
central effects of leptin deficiency. Orexin, which is produced by hy-
pothalamic neurons, is involved in the control of appetite and arousal. 
Orexin neuron cell bodies are located in the lateral hypothalamus, 
and their fibers project into various areas of the brain, including the 
POA and ARC, where GnRH neurons are concentrated.64,65 In addi-
tion, approximately 80% of GnRH neuron cell bodies express orexin 
receptors in rats, and orexin suppresses GnRH neuron activity in 
mice.66,67 In previous studies, we showed that the intracerebroven-
tricular injection of orexin decreased the GnRH pulse frequency 
and that these effects were partially mediated by β- endorphin and 
corticotropin- releasing hormone receptors.21– 23 These results indi-
cate that orexin has direct and indirect suppressive effects on GnRH 
neurons and that it might play a role in reducing GnRH secretion in 
low energy availability conditions. Ghrelin, which is found in endo-
crine cells in the gastric submucosa and the hypothalamic ARC, fa-
cilitates growth hormone secretion and promotes feeding behavior 
during fasting.68,69 As is the case for other orexigenic factors, it has 
been shown that ghrelin also suppresses GnRH secretion in many 
species. The central or peripheral administration of ghrelin caused 
reductions in the GnRH pulse frequency and serum LH levels in rats, 
sheep, monkeys, and humans,70– 74 and ghrelin also suppressed the 
release of GnRH from hypothalamic explants from rats.75 In addi-
tion, we previously showed that these effects of ghrelin on GnRH 
are partially mediated by β- endorphin and NPY.24,76

5  |  THE ROLES OF KISSPEPTIN IN THE 
REGUL ATION OF GNRH UNDER LOW 
ENERGY AVAIL ABILIT Y

Kisspeptin is a hypothalamic peptide, which directly stimulates the 
release and synthesis of GnRH through its receptor Kiss1r.25,26,77– 80 
Kisspeptin neurons are concentrated in the ARC and anteroventricu-
lar periventricular nucleus (AVPV) in several species and are consid-
ered to mediate feedback signaling by estrogen. Namely, kisspeptin 
in the ARC mediates negative feedback from estrogen, whereas 
kisspeptin in the AVPV mediates positive feedback from estrogen.27 
In addition to these physiological roles, it has been suggested that 
kisspeptin plays some pathophysiological roles in the reproductive 
dysfunction induced by negative energy availability (Figure 2).

5.1  |  The effects of low energy availability on 
hypothalamic kisspeptin signaling

Several	 studies	 have	 shown	 that	 kisspeptin	 is	 highly	 sensitive	 to	
metabolic and nutritional status, i.e., a negative energy balance 
had a negative impact on hypothalamic kisspeptin levels in rodents 
of various ages.29,81– 84 Undernutrition reduced the hypothalamic 
expression of the Kiss1 gene, which encodes kisspeptin, and dis-
turbed sexual maturation and the onset of puberty in prepubertal 
female rats; however, the administration of exogenous kisspeptin 
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normalized gonadotrophin secretion and the timing of puberty.85 
Similarly,	acute	fasting	disturbed	estrous	cyclicity	and	caused	con-
comitant reductions in Kiss1 mRNA expression and gonadotrophin 
levels.83	 Some	 studies	 have	 shown	 that	 the	 effects	 of	 a	 negative	
energy balance on kisspeptin are different in each hypothalamic 
nucleus. For example, fasting reduced Kiss1 mRNA expression 
in the ARC in gonadally intact female rats,83 whereas it reduced 
Kiss1 mRNA expression in the AVPV in ovariectomized female rats.86 
Similarly,	Kiss1 mRNA expression in the ARC was lower in lean ova-
riectomized ewes than normal- weight ewes,87 and the number of 
kisspeptin immunoreactive neurons in the ARC was also lower in 
fasted lambs than in fed lambs.88 Interestingly, it has been reported 
that disturbances of energy utilization, such as obesity and diabetes, 
also affect the hypothalamic kisspeptin- Kiss1r system. For exam-
ple, hypothalamic Kiss1 mRNA expression and gonadotropin levels 
were reduced in streptozotocin- induced diabetic male rats, and the 
administration of kisspeptin restored normal serum gonadotropin 
levels.89	 Similarly,	 high-	fat-	diet-	induced	 obesity	 reduced	 hypotha-
lamic Kiss1 mRNA expression and caused infertility in female mice.90 
These findings indicate that the kisspeptin expressed on GnRH neu-
rons integrates a range of metabolic inputs.

5.2  |  Mechanisms underlying the effects of low 
energy availability on kisspeptin

Although the exact mechanisms underlying the effects of low en-
ergy availability on kisspeptin remain unclear, it has been suggested 
that leptin, AgRP, and NPY might affect the neuronal activity of 
kisspeptin (Figure 2). It has been established that leptin acts as a 
positive regulator of GnRH neurons in many species; however, the 
leptin receptor is not expressed by GnRH neurons.46 Regarding 
this contradiction, some studies have suggested that hypothalamic 
kisspeptin may mediate the stimulatory effects of leptin on GnRH 
neurons. Namely, kisspeptin neurons in the ARC express the lep-
tin receptor,91,92 and the downregulation of leptin activity reduced 
hypothalamic Kiss1 mRNA expression in mice and monkeys.93,94 In 
addition, hypothalamic Kiss1 mRNA expression is reduced in dia-
betic rats and ob/ob mice, but the administration of leptin restores 
normal Kiss1 mRNA expression levels.89,90 These findings support 
the hypothesis that the reductions in leptin levels induced by low 
energy availability suppress the effects of kisspeptin on GnRH, 
and these alterations may consequently induce reproductive dys-
functions. On the contrary, it has been shown that the deletion of 
the leptin receptor from hypothalamic kisspeptin neurons did not 
have any effect on sexual maturity or fertility in mice,95 indicating 
that the effects of kisspeptin on reproductive functions might not 
mediated by leptin. Thus, we should be aware that the relationship 
between leptin and kisspeptin has not been fully clarified. As is 
the case for leptin, AgRP and NPY are also considered to be impli-
cated in the regulation of kisspeptin. Inhibitory synaptic connec-
tions exist between AgRP and kisspeptin neurons, and kisspeptin 

neurons received less marked presynaptic suppression when AgRP 
neurons were ablated.96,97 In addition, kisspeptin neurons express 
NPY receptors; however, the neuroendocrine interactions between 
kisspeptin and NPY have not been clarified.96 These findings indi-
cate that AgRP and NPY may suppress GnRH secretion and sub-
sequently reduce fertility, and that kisspeptin may, at least in part, 
mediate these effects of AgRP and NPY.

5.3  |  The effects of overnutrition on hypothalamic 
kisspeptin signaling

As is seen in low energy availability conditions, kisspeptin activ-
ity is also reduced by overnutrition. Hypothalamic Kiss1 mRNA 
expression is reduced in diet- induced obese female mice; never-
theless, the serum leptin levels of these mice are elevated.90 In 
addition, the administration of leptin did not activate the leptin- 
signaling molecules phosphorylated signal transducer and acti-
vator	 of	 transcription	 3	 (pSTAT3),	 pSTAT5,	 and	 phosphorylated	
ribosomal	protein	S6	in	AVPV	kisspeptin	neurons	in	these	animals,	
indicating that diet- induced obesity may induce leptin resistance 
affecting central reproductive functions.90	Similarly,	a	recent	study	
has shown that Kiss1 mRNA expression in the ARC was reduced in 
diet- induced obese rats and suggested that this alteration may be 
the initial pathological change in hypogonadotropic hypogonadism 
in these animals.13

6  |  CONCLUSION

Reproductive functions are affected by metabolic and nutritional 
conditions, and the suppression of GnRH secretion is the main 
cause of these impairments. Central and peripheral factors, such as 
appetite- regulating factors and kisspeptin, are involved in the regu-
lation of GnRH secretion, and alterations in their activity combine 
to affect GnRH neurons. These neuroendocrine systems may be de-
fensive mechanisms that help organisms survive adverse conditions 
through the temporary suppression of reproduction. Recently, the 
number of couples who use assisted reproductive technology has 
been increased year by year. Although advanced techniques, such 
as	IVF/ICSI,	might	be	able	to	overcome	the	effects	of	metabolic	and	
nutritional disorders, it is also important to remember that improve-
ment of metabolic and nutritional conditions is needed in terms of 
preconception care.98,99
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