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One-dimensional electron gas in 
strained lateral heterostructures of 
single layer materials
O. Rubel  

Confinement of the electron gas along one of the spatial directions opens an avenue for studying 
fundamentals of quantum transport along the side of numerous practical electronic applications, with 
high-electron-mobility transistors being a prominent example. A heterojunction of two materials with 
dissimilar electronic polarisation can be used for engineering of the conducting channel. Extension 
of this concept to single-layer materials leads to one-dimensional electron gas (1DEG). MoS2/WS2 
lateral heterostructure is used as a prototype for the realisation of 1DEG. The electronic polarisation 
discontinuity is achieved by straining the heterojunction taking advantage of dissimilarities in the 
piezoelectric coupling between MoS2 and WS2. A complete theory that describes an induced electric 
field profile in lateral heterojunctions of two-dimensional materials is proposed and verified by first 
principle calculations.

Confinement of electrons along one of the spatial directions results in a two-dimensional electron gas (2DEG) 
that exhibits interesting physical phenomena along the side of useful technological applications. Particular exam-
ples include the field of quantum transport and mesoscopic physics1 as well as high-electron-mobility transistors 
that are used in integrated circuits as digital on-off switches2. The advantage of 2DEG conducting channel is the 
high mobility of charge carriers due to the absence of deleterious effects inherent to ionised impurity scatter-
ing that allows for ballistic transport3. Engineering of 2DEG conventionally requires the use of a modulation 
doping technique4 as in the case of (AlGa)As/GaAs heterostructures. Alternatively, the 2DEG can be achieved 
in undoped structures with an extreme band bending induced by the strong electric field at a heterojunction 
between two dielectric materials with dissimilar electronic polarisation such as (AlGa)N/GaN interface5, 6. It is 
interesting to see whether polarisation effects in two-dimensional (2D) materials can be used to achieve confine-
ments of electrons along one spatial direction?.

2D materials become a perspective avenue for keeping up with latest trends in miniaturisation of electronics, 
culminating in a demonstration of the single layer MoS2 transistor7–9. Unlike group III-nitrides, free-standing 
transition-metal dichalcogenides do not possess spontaneous polarisation due to symmetry arguments. However, 
single-atomic-layer h-BN and monolayer transition-metal dichalcogenides have been theoretically predicted10 
and experimental confirmed11, 12 to show piezoelectricity as a result of strain-induced lattice distortions. Two 
types of heterostructures that involve 2D materials are discussed in the literature: (i) multilayer heterostructures 
produced by stacking of different 2D materials, so-called van der Waals heterostructures13, and (ii) lateral hetero-
structures, which are formed when two materials are covalently bonded within the 2D plane14.

It will be shown that a lateral heterojunction of 2D materials with dissimilar piezoelectric properties can be 
used to achieve additional confinement of charge carriers along the interface, which creates conditions for realisa-
tion of a one-dimensional electron gas (1DEG). A complete theory that describes an induced electric field profile 
in lateral heterojunctions of 2D materials is presented and verified by first principle calculations.

First-principle model
First, we will use an ab initio model to explore the feasibility of achieving conditions for 1D confinement of charge 
carriers in a lateral heterojunction of two single-layer materials. For this purpose, an 80-atoms MoS2/WS2 super-
cell is constructed as illustrated in Fig. 1(a). MoS2 and WS2 are chosen due to an almost identical lattice parameter 
of two materials (less that 0.1% mismatch), which reduces the misfit strain at the interface. One would expect the 
heterostructure to possess no built-in electric field since transition metal dichalcogenides manifest no net polar-
isation unlike group-III nitride bulk semiconductors. This hypothesis can be verified by plotting the potential 
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energy across the heterojunction (Fig. 1b). The potential energy profile shows periodic oscillations with minima 
in the vicinity of nuclei and maxima corresponding to interstitial regions. It is evident that maxima of the poten-
tial energy remain constant within MoS2 and WS2 domains with an abrupt step-like transition at the interface. The 
confinement of charge carriers resembles that in a quantum well (Fig. 1d).

Next, the same heterostructure is uniformly strained in the direction perpendicular to the heterojunction, i.e., 
along x-axis (Fig. 1a). The magnitude of strain is deliberately chosen high (10%) in order to magnify observed 
effects. The Poisson’s contraction is simulated by relaxing the second lateral dimension of the supercell to elimi-
nate the macroscopic stress σ22, accompanied by a full relaxation of internal degrees of freedom. It is found that, 
after relaxation, the macroscopic strain of 10% is non-uniformly distributed among both material domains. The 
effective strain in MoS2 is 10.5%, while WS2 accommodates only 9.5%. This result can be attributed to differences 
in stiffness between two materials.

It is also noticed that the external strain breaks 3-fold rotational symmetry, which is responsible for the 
absence of spontaneous polarisation in MoS2 and WS2 due to the cancellation of polarisation dipoles (Fig. 2). 
The symmetry breaking is evident from the disparity in Mo-S bond lengths: 2.52 Å vs 2.41 Å for the bonds ori-
ented along or tilted with respect to the strain direction. The electrostatic potential profile plotted in Fig. 1(c) 
reveals the presence of an electric field in MoS2 and WS2 domains of approximately equal magnitude, but the 
opposite direction. The magnitude of electric field varies (±1%) depending on the coordinates of the line scan 
(see Supplementary information for more details); the average field is approximately 8.2 ± 0.5 mV/Å. The created 

Figure 1. Electron confinement in lateral MoS2/WS2 heterojunction. (a) 80-atoms model of the heterojunction. 
(b,c) Electrostatic potential energy profile across the heterojunction without strain and with the strain of 
ϵ1 = 0.1, respectively. The scan is taken between points with the fractional coordinates (0, 1/2, 0) and (1, 
1/2, 0). The built-in electric field corresponds to a macroscopic slope of the potential energy. (d,e) The 
electron wavefunction amplitude |ψe(r)|2 represents the lowest unoccupied state in unstrained and strained 
heterostructures, respectively. The strain-induced electric field confines electrons forming a one-dimensional 
conducting channel along the MoS2/WS2 interface. The band diagrams show the spatial evolution of the 
conduction band edge (CBE) schematically to assist with interpretation of the wavefunction plot.
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saw-like potential confines charge carriers in the vicinity of the MoS2/WS2 interface (Fig. 1e) producing a narrow 
1D conduction channel along x-axis of the width a few interatomic spacings.

Qualitatively, an origin of the electric field can be attributed to heterogeneity in polarisation induced by the 
strain in MoS2 and WS2 domains (see Fig. 3). To gain a quantitative understanding of the observed effects in 2D 
materials, a model that couples continuum mechanics and Poisson equation is developed below.

Continuum model. The purpose of this model is to describe the electric field profile induced due to pie-
zoelectric effects in 2D strained heterostructures. The problem is similar to that solved by Ambacher et al.6 for 
AlGaN/GaN heterostructures, however, there are peculiarities related to 2D character of the materials in ques-
tion, which warrant repeating some basic steps.

The free electro-elastic energy density stored in a linear medium can be expressed as15

∑∑ ∑∑∈ ∈ ∈ ε= +Ew C E E( , ) 1
2

1
2

,
(1)i j

ij i j
l m

lm l m

where ϵ = (ϵ1, ϵ2, ϵ6) are components of the strain tensor written in the Voigt’s matrix notations, Ei is the electric 
field projection along i axis, Cij are components of the stiffness matrix, εlm are components of the electrical per-
mittivity tensor of the material, and the range of indices i, j = 1, 2, 6, l, m = 1, 2 is adapted to 2D. Oftentimes, the 
macroscopic strain is found by minimising the elastic energy only6 (first term in Eq. (1)). However, it should be 
emphasised that the electric field and strain are coupled through the electric displacement, which takes the form

∑ ∑∈ ε= + + .D P e E
(2)l l

i
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Here P0 is the permanent (spontaneous) polarisation and eli are components of piezoelectric strain tensor. In the 
absence of free charges, the Gauss’s law requires

∇ ⋅ = .D 0 (3)

Figure 2. Strain-induced change in electronic polarisation of hexagonal MoS2. (a) Rectangular unit cell. (b) 
Cancellation of local dipoles p induced by of the charge transfer ±Z* due to the C3 rotational symmetry, which 
results in the vanishing of a spontaneous polarisation P0. (c,d) Symmetry breaking due to uniaxial strain 
induces a macroscopic dipole moment giving rise to the strain-induced polarisation. (e) Under the equal plain 
strain condition (ϵ1 = ϵ2), the symmetry is preserved. Thus no change in polarisation should be observed.
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This implies continuity of the electric displacement at the interface of two domains (see Fig. 3a)

=D D , (4)I II

which includes contributions from permanent, strain-induced, and field-induced electric dipoles in the material. 
The strain ϵ(r) and electric field E(r) distributions can be found by minimising the total electro-elastic energy

∫= r rW w d( ) , (5)

subject to boundary conditions, e.g., an applied macroscopic strain.
2D materials pose a challenge related to defining the integration volume required to evaluate the total free 

energy in Eq. (5). There are attempts in the literature16 to assign an effective thickness to atomically thin monolay-
ers to compare their properties (strength, elastic modulus, or dielectric constant) to bulk materials. However, such 
analysis always bares the element of ambiguity. Alternatively, it seems more logical for 2D materials to use area 
rather than volume for normalising their specific properties. As a result, the stiffness coefficients C acquire units 
of N/m, whereas the piezoelectric coefficients e are expressed in units of C/m in 2D10. To remain consistent, an 
effective 2D dielectric permittivity ε needs to be defined. Then Eqs (1)–(5) can be readily extended to 2D materi-
als, provided the free energy in Eq. (5) is integrated over the surface area, which eliminates ambiguities associated 
with the layer thickness.

Structural, elastic, piezoelectric, and dielectric properties of monolayer MoS2 and WS2 are gathered in Table 1. 
The structural unit and orientation of coordinate axes are illustrated in Fig. 2(a). The calculated lattice parameters 
are in agreement with experiment and other calculations reported in the literature. The hexagonal symmetry of 
a single layer (point group D3h) reduces the number of independent coefficients in the stiffness matrix down to 
two: C11 and C12

17. Our values of C11 and C12 listed in Table 1 agree with those obtained in previous DFT calcula-
tions. The piezoelectric tensor is characterised by a single independent element e11, due to symmetry arguments. 
The calculated values agree well with prior theoretical studies. However, approximately 20% deviation from 
existing experimental data is observed. This deviation is acceptable giving the large uncertainty of experimental 
measurements.

The static dielectric permittivity is one of the least studied properties of single-layer transition metal dichalco-
genides. The present calculations yield the value of ε ε = ./ 4 511

3D
0  for the in-plane relative dielectric permittivity of 

a single-layer MoS2, with ε0 being the permittivity of free space. It should be emphasised that ε3D is an extensive 
property, which is determined by the thickness of the vacuum layer HV that is used for separation between peri-
odical images in the direction perpendicular to the planar structure. To represent a free-standing layer of MoS2, 
the value of HV = 24.6 Å was chosen, which is approximately by a factor of four greater than the spacing between 
layers in bulk. Berkelbach et al.18 proposed evaluation of the effective 2D polarizability χ2D of planar materials 
using the following relationship

Figure 3. Continuum model of lateral MoS2/WS2 heterointerface. (a) The strain along x-axis induces a 
heterogeneity of electronic polarisation P due to differences in the piezoelectric response between two materials. 
(b) Inhomogeneities in polarisation create regions with an opposite electric field E that results in subsequent 
spatial bending of the conduction band minima (CBM) and valence maxima (VBM).
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ε ε χ
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which yields the effective in-plane polarizability of χ = . ⋅ −7 4 1011
2D 20 F, as compared to the value of 

χ = . ⋅ −7 5 1011
2D 20 F obtained for bulk MoS2 (see Table 1).

Potential energy profile scans similar to those shown Fig. 1 reveal the presence of a zig-zag electric field even 
in the middle of the vacuum region due to periodic boundary conditions along z-axis (see Supplementary infor-
mation). To capture the energy stored in the vacuum due to the finite electric field, the effective 2D dielectric 
permittivity used in calculation of the free energy density in Eq. (1) is expressed as

ε χ ε= + .H (7)2D 2D
0 v

The additional term ε0HV contributes approximately 25% to the value of ε2D.
Minimization of the total free energy W for the 2D strained lateral heterostructure of MoS2 and WS2 was per-

formed using a Lagrange multiplier approach with respect to the strain tensor ϵI,II and electric field EI,II in both 
domains (see Methods for details). The quasi-2D continuum model with material parameters listed in Table 1 
yields the strain distribution of = .0 10451

I  and  = .0 09551
II , which is in excellent agreement with DFT results. 

The greater strain in MoS2 (domain I) is due to its lower stiffness C as compared to WS2 (see Table 1). The contin-
uum model also properly captures magnitude of the electric field |E| = 8.2·107 V/m, which coincides with the 
average slope of the electrostatic potential profile obtained from first-principle calculations.

Finally, we would like to comment on a practical realisation of the strained heterostructures discussed in this 
paper. MoS2/WS2 lateral heterostructures usually have a morphology of equilateral triangular flakes of the size 
of a few micrometres14, 19. MoS2 forms an inner core surrounded by the WS2 outer layer17. Gong et al.19 reported 
achieving an atomically sharp MoS2/WS2 in-plane interface. The interface is preferentially formed along “zigzag” 
direction (the y-axis in Fig. 3a), which is consistent with the structural model studied here. The strain can be 
applied employing a setup shown in Fig. 4 previously used by Conley et al.20 to measure the band gap shift of MoS2 
with strain. The method involves clamping of a specimen at the surface of a mechanically bent substrate, which 
allows applying of a uniform strain up to 2% in a highly controlled manner. The strain magnitude much less 
than 10% can be sufficient giving a much larger length of real heterostructures in comparison to that modelled 
here. The presence of a strain-induced electric field can be verified by measuring a photoluminescence (PL). In 
unstrained MoS2/WS2 lateral heterostructures, the PL intensity is enhanced at the MoS2/WS2 interface14, 19 due to 
the type-II band alignment21. The PL intensity at the interface that develops 1DEG is expected to diminish when 
the strain is applied due to the induced electric field that separates charge carriers.

Parameter Units

MoS2 WS2

Calculated Other sources Calculated Other sources

a0 Å 3.185 3.16a, 3.19b 3.188 3.15a, 3.19b

C11 N/m 133 130b 146 144b

C12 N/m 33 32b 32 31b

e11 pC/m 359 290 ± 50c, 364b 249 247b

x11 F 7.4·10−20 7.5·10−20,d 7.0 × 10−20 7.0 × 10−20,e

Table 1. Structural parameters and effective 2D elastic, piezoelectric and static dielectric properties of 
single-layer hexagonal MoS2 and WS2 from self-consistent DFT calculations (relaxed-ion approximation). (1) 
Experimental36. (2) Calculated with DFT/GGA10. (3) Experimental12. (4) Obtained using Eq. (6) based on MoS2 
bulk in-plane relative dielectric permittivity of 15 and the interlayer separation of 6.02 Å37. (5) Obtained using 
Eq. (6) based on WS2 bulk in-plane relative dielectric permittivity of 14 and the interlayer separation of 6.06 Å37.

Figure 4. (a) Schematic illustration of a four-point bending setup for straining a triangular MoS2/WS2 lateral 
heterosctructure. (b,c) 1DEG is formed at the zigzag interface oriented perpendicular to the applied strain.
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Conclusions
One-dimensional conductivity channel is obtained in a lateral MoS2/WS2 heterojunction. Conducting 
electronic states are confined along the interface by an inhomogeneous electric field that is induced by 
differences in the piezoelectric and elastic response of two materials thereby creating a one-dimensional 
electron gas. An effective model that captures interactions between electric and elastic degrees of freedom 
in low-dimensional heterostructures is developed. The model accurately predicts the magnitude of macro-
scopic electric field induced in the strained heterostructure as verified by ab initio calculations. This reali-
sation of 1D electron gas creates an alternative to a quasi 1D conducting channel formed in the 2D electron 
gas of GaAs/(AlGa)As heterostructures by electrostatic gating22, 23 that can be potentially used for low-power 
switching applications.

Methods
Calculation of structural, elastic, and dielectric properties. Electronic structure calculations of 
single-layer hexagonal MoS2 and WS2 have been performed in the framework of the density functional theory 
(DFT)24 using Perdew-Burke-Ernzerhof generalized gradient approximation (GGA-PBE) for the exchange-cor-
relation functional25. Structural, elastic, and dielectric properties were modelled using the Vienna ab initio sim-
ulation program (VASP) and projector augmented-wave (PAW) potentials26–28. The structure was represented 
by a single layer of MoS2 or WS2 with a vacuum separation, which is approximately equal to a quadruple value 
of the equilibrium spacing between layers of the bulk 2H-MoS2. The structural optimisation was carried out in 
conjunction with relaxation of the in-plane lattice parameter α. The structure was considered optimised when 
the magnitude of Hellmann-Feynman forces acting on atoms dropped below 2 meV/Å. The Brillouin zone of the 
primitive unit cell was sampled using 16 × 16 × 1 Monkhorst-Pack grid29. The mesh was appropriately scaled 
when supercells are considered.

A hard PAW potential was used to represent sulphur (S_h). Semi-core electrons were included as valence 
electrons in molybdenum (Mo_sv) and tungsten (W_pv). The cutoff energy for a plane wave expansion was set 
at 500 eV, which is 25% higher than the value recommended in the pseudopotential file. The higher cutoff energy 
was essential for obtaining accurate, converged lattice parameters.

The elastic tensor was determined using a finite differences technique from the strain-stress relationship cal-
culated in response to finite distortions of the lattice taking into account relaxation of the ions. The total of eight 
strained structures that represent various permutations of the strain ϵ1,2 = {−0.02, 0, +0.02} were considered.

The relaxed-ion dielectric tensor was calculated using the finite external electric field of the magnitude 
1 meV/Å. The tight energy convergence of 10−9 eV was required to achieve the accuracy of 0.1 for the relative 
dielectric permittivity.

Calculation of piezoelectric coefficients. Calculations of piezoelectric coefficients were performed using 
a full potential linear augmented plane wave method implemented in Wien2k package30 in conjunction with 
BerryPI extension31 that utilises a Berry phase approach32 for computing macroscopic polarization. Piezoelectric 
strain coefficients are conventionally defined as

=e Pd /d , (8)ij i j

where dPi is the change in macroscopic polarisation along i-axes observed in response to the increment in 
j’s strain component dϵj. It seems straight forward to evaluate the coefficients using a finite difference, which 
involves computing the polarisation of strained and unstrained structures. However, this approach introduces 
complications related to the choice of a reference structure that must remain commensurate with the strained 
cell to serve as a reference. A similar approach was introduced by Posternak et al.33 to assess the spontaneous 
bulk polarisation of wurtzite BeO, where the zinc blende structure served as a reference due to symmetry 
arguments.

In the case of hexagonal transition metal dichalcogenides, the polarisation of an unperturbed layer can be 
taken as a reference zero due to the cancellation of local dipoles resulted from the 3-fold rotational symmetry as 
illustrated in Fig. 1. Any strain tensor that preserves this symmetry (e.g., ϵ1 = ϵ2) produces no change in polarisa-
tion. This result translates into a symmetry of the piezoelectric coefficients34

= −e e , (9)11 12

which is inherent to D3h point group. It turns out that no change in the Berry phase results from the strain ϵ1 = ϵ2. 
However, there is a sizeable change in polarisation originated from the increment in the cell volume that is incom-
patible with symmetry-imposed constraints in Eq. (9). To resolve this contradiction, the piezoelectric coefficients 
were redefined in terms of the Berry phase

π
φ

=
Ω

.e a
2

d
d (10)

ij
i i

j0

Here ai is the lattice parameter associated with the crystallographic axis i, Ω0 is the volume of the unperturbed 
unit cell, and φi is the Berry phase along direction i that includes both ionic and electronic components. A least 
square fit technique was used to calculate piezoelectric coefficients for the total of eight strained structures that 
represent various permutations of the strain (the same as for elastic properties). Additional relaxation of atomic 
positions was performed for each stained structure.
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Visualization of atomic structures was performed using VESTA 3 package35.

Free energy minimization. The objective is to find a set of strains and electric fields

     E E E E, , , , , , , , , (11)1
I

2
I

6
I

1
I

2
I

1
II

2
II

6
II

1
II

2
II

that minimise the internal energy of the system W defined by Eq. (5) for a specific case of the strained lateral 
heterostructure shown in Fig. 3. The optimization is subject to constrains, such as an applied macroscopic strain 
ϵ1 = 0.1, continuity of both the electric displacement (Eq. 4) and matter. From the mathematical standpoint, it is 
a constrained optimisation of an objective function represented by a quadratic form (Eq. 1). The problem can be 
solved using a method of Lagrange multipliers.

First, a matrix is constructed to represent linear coefficients of the partial derivatives ∂w/∂xk, where xk is any 
variable from the list (11). When strain variables in the first domain are concerned, the linear coefficients are 
simply components of the elastic stiffness matrix

 =













C C

C C

C

0

0

0 0

,

(12)
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11
I

12
I

12
I

11
I

66
I

which is written taking into account symmetry imposed by the lattice. Similarly, the dielectric permittivity tensor


ε

ε
=













0

0 (13)

I 11
I

11
I

represents the linear coefficients of the partial derivatives ∂w/∂xk for variables that correspond to the electric field 
components. Generalising to all optimisation variable related to the domain I, the matrix of linear coefficients 
takes the form

 (14)

Our objective function is not the energy density w, but rather the total internal energy of the system W, which 
takes into account the individual area occupied by each domain. For the lateral junction of two domains that 
share the same width but may have different length LI and LII (Fig. 3), linear coefficients of the partial derivatives 
∂w/∂xk form a matrix

 (15)

Now the following boundary conditions need to be incorporated

+ + − − − =e e E e e E 0 (16a)11
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II II
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I II
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II
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The first condition stems from Eqs (2) and (4) that capture the essence of piezoelectric coupling between the 
strain and electric field. It is implied that the spontaneous polarisation is zero in both materials (P0 = 0) when 
unstrained. The second and third requirements account for the continuity of the heterostructure along the direc-
tion of the applied strain and perpendicular to that. The difference −a a0

II
0
I corresponds to a lattice mismatch 

between two materials. The left-hand-side of Eq. (16a–c) can be transformed into a matrix form


ε ε

=







− − −

−







e e e e

L L
a a

0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
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I II
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where columns correspond to the optimisation variables in Eq. (11). The symmetry of piezoelectric strain coeffi-
cients (e11 − e12) is taken into account during this transformation.

Finally, the energy terms and constraints are combined in a matrix

 (18)

that represents Lagrangian of the problem . Unknowns
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 λ λ λ= E E E E( , , , , , , , , , , , , ) (19)T
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are obtained by solving a linear equation

L X R⋅ = (20)

with the right hand side being a column vector

 = + − .L L a a(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ( ), ) (21)T
1

I II
0
II

0
I

The first ten elements of  are zero due to the requirement of ∂ ∂ =x/ 0k  at the optimum for each variable 
listed in Eq. (11). The remaining elements represent the right hand side of Eq. (16). Here λ’s are Lagrange 
multipliers.

Data availability. Crystallographic information files (CIF) with atomic structures used in calculations can 
be accessed through the Cambridge crystallographic data centre (CCDC deposition numbers 1520213–1520216).
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