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Pairing symmetries 
in the Zeeman‑coupled extended 
attractive Hubbard model
Swagatam Nayak1,2, Navketan Batra1,3 & Sanjeev Kumar1*

By introducing the possibility of equal‑ and opposite‑spin pairings concurrently, we show that the 
ground state of the extended attractive Hubbard model (EAHM) exhibits rich phase diagrams with 
a variety of singlet, triplet, and mixed parity superconducting orders. We study the competition 
between these superconducting pairing symmetries invoking an unrestricted Hartree–Fock–
Bogoliubov–de Gennes (HFBdG) mean‑field approach, and we use the d‑vector formalism to 
characterize the nature of the stabilized superconducting orders. We discover that, while all other 
types of orders are suppressed, a non‑unitary triplet order dominates the phase space in the presence 
of an in‑plane external magnetic field. We also find a transition between a non‑unitary to unitary 
superconducting phase driven by the change in average electron density. Our results serve as a 
reference for identifying and understanding the nature of superconductivity based on the symmetries 
of the pairing correlations. The results further highlight that EAHM is a suitable effective model for 
describing most of the pairing symmetries discovered in different materials.

In a conventional s-wave superconductor, described by BCS–Migdal–Eliashberg  theory1–6, a phonon-mediated 
effective attraction causes the electrons to form spin-singlet (with total spin S = 0 ) Cooper pairs with an isotropic 
s-wave orbital order parameter (OP)  symmetry7. Most of the superconductors discovered in the early phase of 
the past century have this type of conventional OP  symmetry8. On the contrary, the general consensus about 
the novel high Tc cuprate superconductors is that they are identified as strong candidates for unconventional 
d-wave  superconductors9–11, which support the formation of spin-singlet Cooper pairs with an anisotropic 
d-wave orbital OP symmetry. In general, Cooper pairs can also be formed in the spin-triplet state, with total spin 
S = 1 and anisotropic orbital  OP12,13. Recent studies revealed that a two dimensional chiral p-wave spin-triplet 
superconductor is a candidate to host Majorana  fermions14–16. A pair of Majorana fermions, bound to topologi-
cal defects, together known as Ising anyons, exhibit non-Abelian exchange statistics and such an object can be 
considered to be the potential building block for decoherence free quantum  computation17. Regardless of their 
technological relevance, superconductors with triplet-superconductivity emerging due to the intrinsic proper-
ties of the material itself are quite rare in nature. While 3He was the first charge-less many body system where 
triplet-pairing state was  realised18–21, it was UPt3 which was identified as the first spin-triplet superconductor in 
charged many body  systems22,23. Strong candidate materials for triplet-superconductivity, so far, include Uranium 
based heavy-fermion superconductors UPt3 , UGe2 , URhGe,  UCoGe24, organic superconductor (TMTSF)2PF6
25 and probably recently discovered heavy-fermion superconductor UTe226–28. We would also like to add that 
Strontium Ruthenate  (Sr2RuO4), which for its most part was understood as a strong candidate for odd-parity 
superconductor, has undergone immense scrutiny. The exact nature of the SC order in  Sr2RuO4 has remained 
an open question for many years now, with a recent study ruling out the existence of a pure odd-parity super-
conducting order, and explaining that the Knight shifts originate from quasiparticles rather than the condensate 
 itself29. Other studies impose constraints on the possible order of  Sr2RuO4 superconducting state—stress-induced 
splitting of onset temperatures for SC and time-reversal symmetry (TRS) breaking has also been  reported30, and 
ultrasound measurements suggests the existence of a multi-component order  parameter31.

In conventional superconductors TRS allows energetically degenerate electron states |k ↑� and | − k ↓� to form 
spin-singlet Cooper pairs. On the other hand, parity symmetry (inversion symmetry in this scenario) along with 
TRS is needed to form odd-parity spin-triplet Cooper  pairs32–35. In case of broken inversion symmetry, there 
is also the possibility of forming Cooper pairs with mixed-parity superconducting (SC)  states32,35–37. Possible 
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occurrence of mixed parity SC states have been reported in several theoretical studies on different contexts, 
including quantized vortices of superfluid 3He38, helical mixed parity SC phase relevant to the unconventional 
SC phases of UPt339, Larkin–Ovchinnikov–Fulde–Ferrell phase with inhomogeneous order  parameter40,41, two-
dimensional superconductors with broken inversion  symmetry36, noncentrosymmetric  superconductors42, vortex 
phase of a d-wave superconductor in presence of paramagnetic  effects43, SC topological insulators in presence 
of surface Dirac  fermions44, and disordered monolayer transition metal  dichalcogenides45. While the search for 
unconventional pairing mechanism has not been an easy path, understanding unconventional pairing symmetries 
of the OP has been of utmost importance since it certainly gives us clues about the possible pairing mechanisms. 
Therefore, understanding and characterizing the unconventional OP symmetries of different spin-triplet and 
mixed-parity SC states remains a problem of crucial importance.

Most interestingly, the response of a superconducting state to an external magnetic field can reveal significant 
details about the pairing state of the Cooper pairs. For example, unlike the fully gapped s-wave superconductors, 
dx2−y2-wave superconductors exhibit gapless quasiparticle spectrum, which allows even a weak amount of Zee-
man field to spin-polarize the quasiparticle excitations, resulting in a stronger response to an external magnetic 
 field46–48. For a two dimensional system it is quite interesting to study the effect of an in-plane (parallel to the 
plane) magnetic field, as the orbital motions of the electrons do not couple with the external magnetic field at 
all, and the Zeeman coupling of the electronic spins to the magnetic field is enough to study the response of the 
superconducting state. The effect of an in-plane magnetic field has been studied in various contexts, including 
quasi-2D systems like cuprates, emergence of a dissipative state in a superconducting Mo0.79Ge0.21 nanostrip, 
anisotropy of the upper critical field in Sr2RuO4 , and magnetic field driven nodal topological superconductivity 
in monolayer transition metal  dichalcogenides49,50.

In this article we provide a detailed study of the competition between different superconducting pairings 
and their response to non-zero temperature and Zeeman field. We consider an extended attractive Hubbard 
model, with on-site and nearest neighbour attractive interaction on a square lattice, and treat the many-body 
interaction terms using mean-field analysis. We decouple the interaction terms into pairing channels without 
imposing any symmetry constraint on the superconducting pairing correlations. By doing so, it allows one to 
compare different superconducting ground states with different symmetries and spin pairings, i.e. a singlet and 
three components of triplet states. We employ the d-vector definition of the triplet order parameter to keep track 
of the triplet pairings throughout our analysis. We demonstrate that in this model numerous superconducting 
states with various symmetries can be stabilized and studied. Therefore, the extended attractive Hubbard model 
can be a universal effective model for studying unconventional, particularly triplet, superconductivity. The rest 
of the article is organized as follows. We start by presenting the model and defining all the parameters involved, 
and subsequently discussing the results: In “Determination of relative phase angle between different pairing cor-
relations” section, using energy minimization arguments we self-consistently reduce the exploration parameter 
space and fix certain relative phase angles between different pairing correlations. Followed by “Competition 
among the different triplet states” section, in which we explore the competition between the three kinds of triplet 
pairings at non-zero magnetic field to lift the spin degeneracy. In “Ground State phase diagrams” section, we 
present the ground state phase diagram of nearest-neighbour attractive strength versus particle density. Next in 
“Finite temperature study” and “Effect of Zeeman coupling” sections, we study the behaviour of different super-
conducting states at non-zero temperatures and Zeeman field respectively. Here we will encounter how different 
triplet and singlet orders react to the Zeeman field. Then we do a further characterization of superconducting 
phases that are stabilized in our study using symmetry and d-vector approach in “Characterization of phases” 
section. Finally, we conclude by summarising our findings. All the methods we employ in this work, to analyse 
the model, are presented in the “Methods” section at the end of the article. In the same section, we also discuss 
the d-vector formalism and its usefulness in characterizing triplet order parameters.

Results and discussion
For superconductors like high-temperature Cuprates, the electronic band is quite narrow i.e., the orbitals have a 
small overlap between adjacent atoms. We therefore make use of the tight-binding Hamiltonian, which is either 
constructed from atomic orbitals or from Wannier orbitals, to study narrow band behaviours arising from elec-
tronic correlation effects. We, therefore, consider the Extended Attractive Hubbard Model, defined on a square 
lattice to be the doorway to address our problem. In real space, the Hamiltonian corresponding to the Extended 
Attractive Hubbard Model on a two-dimensional square lattice can be written as,

where, Hkin represents the kinetic energy of the electrons, Hµ is the chemical potential term, Honsite
int  is the on-site 

attractive interaction between two different spin projections, Hnn
int is the nearest-neighbor (nn) attractive interac-

tion which would be responsible for all the unconventional superconducting phases, and finally HB contains the 
Zeeman coupling of electron spin to an external magnetic field B. The corresponding operator terms, written in 
the second quantization notation are given as, 

(1)H = Hkin +Hµ +H
onsite
int +H

nn
int +HB,

(2)Hkin = −t
∑

�ij�,σ
c†iσ cjσ +H.c.,

(3)Hµ = −µ
∑

iσ

niσ = −µ
∑

iσ

c†iσ ciσ ,
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In the above, c†iσ(ciσ ) creates (annihilates) an electron with spin σ at ith site of the lattice. The sum over 〈ij〉 
represents the sum over the nearest-neighbor sites of the square lattice. The operator niσ is the electron occupation 
number operator at ith site for σ spin-projection. The total electron occupation number at ith site is, therefore, 
defined as ni = ni↑ + ni↓ . The parameter U is the on-site attractive interaction strength, whereas V is the inter-
site attractive interaction strength. The z-component of the magnetic field is given by B, which lies in the lattice 
plane. t is the usual nearest-neighbor hopping amplitude and finally, µ is the chemical potential as we work in 
the grand canonical ensemble.

Looking closely at the interaction terms individually and expanding them in second quantization notation 
we have:

where we rearranged the Fermionic operators in particle–particle channel or so called pairing channel, using 
anti-commutation rules. Similarly for the inter-site term:

where δ is an index which denotes unit vectors along the direction of two nearest neighbors, namely δ = +x̂ and 
+ŷ . Note that we have grouped terms as A, B, C, and D for the ease of reference. Now terms A and B lead to the 
possibility of triplet solution with Sz = ±1 (ESP states), while terms C and D lead to singlet and triplet solution 
with Sz = 0 (OSP states).

Notice that this model describes the many-particle interaction which in itself is very hard to analyse. We 
therefore make the mean-field approximation and via the Bogoliubov-de Gennes framework, we solve the Ham-
iltonian computationally, and present the results in the following sections. The details to the BdG framework are 
given in “Bogoliubov-de Gennes method” section.

Determination of relative phase angle between different pairing correlations. Before we dis-
cuss the competition among different superconducting states, we consider the possibility of obtaining different 
triplet states from different combinations of pairing mean field parameters.

Triplet combinations from �↑↓(k). 

1. px state (and correspondingly py state): �+
x = −�−

x ∈ C; �+
y = �−

y = 0.
2. px ± ipy state : �+

x = −�−
x = C ∈ C; �+

y = −�−
y = iC.

In general, px and py can be of the form: px + eiθpy . With the help of energetics and self-consistency we have 
checked that θ = π

2

(
−π

2

)
 corresponds to the most stable solution, i.e. it takes the form px ± ipy , independent of 

the external parameters. The energetics suggests that for all external model parameters, the most stable relative 
phase angle between px and py states is π/2 . This allows us to reduce our exploration space {�} . Similarly, we fix 
the phase relation among, �+

x ,�
−
x ,�

+
y  and �−

y .

Triplet combinations from �↑↑(k) and �↓↓(k). 

1. �↑↑(k) = 2iV
[

�
↑
x sin(kx)+�

↑
y sin(ky)

]

.
2. �↓↓(k) = 2iV

[

�
↓
x sin(kx)+�

↓
y sin(ky)

]

.

(4)H
onsite
int = −U

∑

i

ni↑ni↓ = −U
∑

i

c†i↑ci↑c
†
i↓ci↓,

(5)
H

nn
int = −V

∑

�ij�
ninj = −V

∑

�ij�
σ ,σ ′

c†iσ ciσ c
†
jσ ′cjσ ′ ,

(6)HB = −B
∑

i

(ni↑ − ni↓) = −B
∑

i

(c†i↑ci↑ − c†i↓ci↓).

(7)H
onsite
int = −U

∑

i

ni↑ni↓ = −U
∑

i

c†i↑ci↑c
†
i↓ci↓ = −U

∑

i

c†i↑c
†
i↓ci↓ci↑,

(8)

H
nn
int = −V

∑

�ij�
ninj = −V

∑

i,δ

nini+δ = −V
∑

i,δ

(ni↑ + ni↓)(ni+δ↑ + ni+δ↓)

= −V
∑

i,δ

(ni↑ni+δ↑ + ni↓ni+δ↓ + ni↑ni+δ↓ + ni↓ni+δ↑)

= −V
∑

i,δ

c†i↑c
†
i+δ↑ci+δ↑ci↑

︸ ︷︷ ︸

A

−V
∑

i,δ

c†i↓c
†
i+δ↓ci+δ↓ci↓

︸ ︷︷ ︸

B

−V
∑

i,δ

c†i↑c
†
i+δ↓ci+δ↓ci↑

︸ ︷︷ ︸

C

−V
∑

i,δ

c†i+δ↑c
†
i↓ci↓ci+δ↑

︸ ︷︷ ︸

D

,
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Again by comparing energies we find the phase relations between �↑
x and �↑

y  (and correspondingly, between 
�

↓
x and �↓

y  ) i.e., �↑
y = ei�1�

↑
x (and �↓

y = ei�1�
↓
x ). We find that �1 = π

2  minimizes the average energy 〈E〉 
(Fig. 1e) independent of the external parameters. Note that we also allowed ↑ and ↓ parring correlation functions 
to have a relative phase of �2 , and our results are independent of this relative phase. These phase relations reduce 
our parameter space considerably. Though these plots (Fig. 1e) are generated on the basis of mere energetics, we 
also checked the validity of these relations in self-consistent solutions. Notice that these relations only hold for 
the correlation functions {�↑

x ,�
↑
y } (and {�↓

x ,�
↓
y } ) and we cannot, at this stage, comment on the phase difference 

between �↑↑(k) and �↓↓(k) because these results are independent of �2.

Competition among the different triplet states. In this section we compare the energies of the three 
triplet states: |Sz = 0� ≡ 1√

2
(| ↑↓� + | ↓↑�) , |Sz = 1� ≡ | ↑↑� , and |Sz = −1� ≡ | ↓↓� . We expect all three states 

|Sz = 0� , |Sz = 1� , and |Sz = −1� to be degenerate in the absence of magnetic field. Furthermore, we expect this 
degeneracy to be lifted in the presence of magnetic field, and one of the equal spin pairing (ESP) states |Sz = 1� 
or |Sz = −1� will have lower energy in the presence of an in-plane magnetic field depending on its orientation. 
In our formulation, singlet and |Sz = 0� triplet component enter into the Hamiltonian through the supercon-
ducting pairing correlation �↑↓(k) ; and |Sz = 1� , |Sz = −1� triplet contributions enter through the triplet super-
conducting correlations �↑↑(k) and �↓↓(k) . Therefore, we expect this behaviour to translate to the supercon-
ducting pairing correlations as well.

The analysis is summarised in Fig. 1a–d,f–g. In Fig. 1a–d, we plot the variation of average system energy 
corresponding to all possible triplet states (both OSP and ESP) with increasing amplitude of nearest-neighbor 
hopping parameter t. It is to be noted that, in Fig. 1, all energies are measured in units of V/1.8. This slightly 
unusual choice of basic energy scale is unavoidable as in Fig. 1 we are trying to connect the discussion to the 
atomic limit by presenting the effect of variations in the hopping parameter. On the other hand, for the rest of 
the article, we persistently use t = 1 to be the unit for the remaining parameters. As we focus on the energies 
of the triplet states, we pick a specific point in the parameter space ( U = 0 , µ = −(1.5/1.8)V  ) where we found 
pure-triplet ( px ± ipy type) state being stabilized in our previous  study51. As the interaction strength V is kept 
fixed while increasing nearest-neighbor hopping amplitude t, effectively we are moving from a strong-coupling 
limit to a weak-coupling limit.

−9.0

−8.5

−8.0

−7.5

−7.0

〈E〉

(a) (b)

0 0.25 0.5 0.75 1

(1.8t/V )

−9.0

−8.5

−8.0

−7.5

−7.0

〈E〉

(c)

↑↓
↑↑
↓↓

0 0.25 0.5 0.75 1

(1.8t/V )

(d)
0 45 90 135 180

Φ1 (in degrees)

−15.0

−14.5

−14.0

−13.5

〈E〉

(e)

0 2 4 6

(1.8B/V )

−14

−12

−10

−8

−6

〈E〉

(f)

↑↓
↑↑
↓↓

0 2 4 6

(1.8B/V )

−14

−12

−10

−8

−6
(g)

Figure 1.  (a–d) The plots show the variation of average energy 〈E〉 corresponding to three triplet states 
with hopping amplitude t at zero temperature for different magnitudes of the magnetic field, (a) B = 0 , (b) 
B = (0.2/1.8)V , (c) B = (0.5/1.8)V and combinations of pairing mean B = (2.0/1.8)V . (e) Plot shows the 
variation of average energy 〈E〉 with relative phase angle �1 , where �↑

x = 0.5,�
↑
y = 0.5ei�1 ,�

↓
x = 0.5ei�2 

and �↓
y = 0.5ei(�1+�2) . The variation shown here is independent of the choice of external parameters like the 

chemical potential µ , hopping parameter t, magnetic field B , and the relative phase between �↑
δ  and �↓

δ  i.e., �2 . 
This suggests that, independent of the external parameters, the most stable relative phase between �σ

x and �σ
y  is 

�1 = π/2 . (f,g) The plots shows the variation of average energy 〈E〉 for the three triplet states with the magnetic 
field B, for (f) t = 0 and (g) t = (1/1.8)V.
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In the strong-coupling limit, where the electron-pairs are tightly bound, we can appropriately apply the 
well-known physics of spin-singlet and spin-triplet pairing to the spin degrees of freedom associated with the 
electron-pairs. In this limit, absence of magnetic field leads to degenerate states. In fact, absence of magnetic 
field provides the freedom to transform ESP states into specific OSP states, via a suitable choice of quantiza-
tion axis due to rotational symmetry. In the presence of a magnetic field this symmetry is broken and therefore 
the degeneracy is lifted. In the weak-coupling limit, the system gains energy via de-localization of electrons, 
and characterization of different triplet states in terms of local spin operators is not valid. Note that we use the 
phase-lock between different pairing correlations obtained in the previous section—this reduces the exploration 
parameter space significantly and gives us the freedom to use only magnitudes of different correlation functions. 
In Fig. 1a, at t = 0 , we choose these magnitudes in a manner so that all the triplet states, both OSP and ESP, 
remain degenerate. With the increase of nearest-neighbour hopping amplitude t we note that the OSP state ( ↑↓ 
in figure) becomes energetically favourable. Furthermore, at any finite value of Zeeman-coupling, ↑↑-type ESP 
state remain energetically favourable as we expected, while the energy of ↓↓-type ESP state in comparison to 
OSP state behave differently in different coupling regimes. At moderate values of Zeeman-coupling, the system 
prefers OSP state to ↓↓-type ESP state in both weak and strong coupling limits (Fig.1b,c). However, at a larger 
value of Zeeman-coupling, OSP state is completely disfavoured in the weak-coupling limit (Fig.1d). One should 
take a note of the fact that this particular observation is validated by self-consistent solutions presented in the 
forthcoming sections.

Figure 1f,g completes this analysis, as it captures the variation of energy of the triplet states with increasing 
values of Zeeman-coupling in the two limiting cases ( t = 0 and t = (1/1.8)V  ). At strong-coupling ( t = 0 ) limit, 
OSP state is of lower energy compared to ↓↓-type ESP state below a critical Zeeman-coupling ( B ≈ (2/1.8)V  ). 
Beyond such critical value of Zeeman-coupling OSP state becomes completely disfavoured energetically with 
respect to the ESP states. On the other hand, at weak-coupling limit ( t = (1/1.8)V  ), energy of OSP state remains 
comparable with ↓↓-type ESP state at moderate values of Zeeman-coupling, and eventually becomes energeti-
cally disfavoured at higher values of Zeeman-coupling. On one hand this section provides us with the idea of 
how OSP and ESP states behave at two different coupling regimes. On the other hand, it provides us an insight 
into the nature of triplet states and which type is likely to be stabilized at different values of Zeeman-coupling.

Ground state phase diagrams. In the previous  work51 we explored the possibility of stabilizing OSP 
superconducting solutions in the framework of extended attractive Hubbard model defined on a square lattice 
in the absence of a magnetic field. The results were based on the set of order parameters { � } = { 
�s,�s∗ ,�dx2−y2

�px ,�py }, which were obtained using the standard definition of superconducting OPs, defined 
in  literature51, from the original set of pairing correlations { �,�+

δ ,�
−
δ  }. Explicitly writing { � } we have,

Note that δ is an index for the unit vectors δ = x̂, ŷ along two independent directions on a square lattice. So 
{ �,�+

δ ,�
−
δ  } is actually a shorthand notation for { �,�+

x ,�
+
y ,�

−
x ,�

−
y  }.

In this article, we also include the possibility of the ESP-type superconducting solutions along with OSP-type 
solutions. Thus our new set of pairing correlations include four more quantities, namely �↑

x , �↑
y  , �↓

x , and �↓
y  . So, 

our new set of order parameters becomes

where, again we have used a shorthand notation as explained above. Note that, in Eq. (10), we have grouped the 
pairing correlations in two sets, namely OSP and ESP. The OSP group contains pairing correlations ( �,�+

δ ,�−
δ  ) 

that allow the OSP-type triplet states to exist, while the ESP group contains pairing correlations ( �↑
δ ,�↓

δ  ) that 
give rise to ESP-type triplet states. We follow an unrestricted approach, as adopted in Ref.51, where OSP group 
of pairing correlations are allowed to take such forms where they can either make the singlet or the OSP-type 
triplet, or a mixture of them them to be stabilized in different parameter regimes. On the other hand, ESP group 
of pairing correlations allow only ESP-type triplet states to be stabilized because of their symmetrized-spin 
wavefunction (and therefore the orbital part of the wavefunction which is the superconducting gap function, 
should be anti-symmetric) by definition.

Having defined our order parameters in the above manner, we set out to study the variation of magnitudes of 
these order parameters with varying chemical potential µ . Average electron density per site 〈n〉 is calculated for 
each value of µ . This allows one to plot magnitudes of the order parameters, defined in Eq. (10), with varying 〈n〉 . 
In the self-consistent approach, if we start with a random initial configuration of {�} in the absence of magnetic 
field, we find individual magnitudes of the converged solutions to be arbitrarily different for different initial runs 
due to degeneracy. This prevents us to plot a smooth variation of the OPs with 〈n〉 . In the absence of Zeeman 
coupling this is quite expected. As in the absence of Zeeman coupling, there is no fixed quantization axis present 
in the system, possible OSP and ESP-type triplet states can form different linear combinations of corresponding 
pairing correlations, leaving us with a degenerate set of solutions for each value of µ . In this case the d-vector 
formalism, defined in the “d-vector formalism” section, comes to our rescue. We find magnitudes of d0(k) and 

(9)

�s = �,

�dx2−y2 /s
∗ =

[

(�+
x +�−

x )∓ (�+
y +�−

y )

]

/4,

�px/py =
[

�+
x/y −�−

x/y

]

/2.

(10){�} =
OSP

︷ ︸︸ ︷

{�, �+
δ , �−

δ ,

ESP
︷ ︸︸ ︷

�
↑
δ , �

↓
δ },
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d(k) , averaged over the whole Brillouin zone, to be the best suited order parameters for the singlet and the triplet 
states respectively, in this scenario. Thus we define our singlet and triplet order parameters in the following way:

Using the newly defined singlet and triplet order parameters in Eq. (11), we study the variation of these 
order parameters with average electron density per site 〈n〉 . In Fig. 2a–d, we plot the variation of singlet order 
parameter �SP and triplet order parameter �TP with 〈n〉 for different values of inter-site attraction V. We keep 
on-site attraction at a fixed value ( U = t ), as it is the inter-site attraction V that plays a role in stabilizing differ-
ent unconventional superconducting orders as deduced from our previous  works51. When inter-site attraction 
V is small ( V = 0.4t ) compared to on-site attraction U, it is the singlet phase that occupies the whole density 
region (Fig. 2a). At V = 1.6t , singlet phase occurs both at lower density region and near half-filling (Fig. 2b). 
Though orbital information of the order parameter is averaged out in defining the singlet and triplet order 
parameters, it’s easy to suggest that the singlet phase near half-filling is dx2−y2 type, while the singlet phase near 
low-density region is of s + s∗ type based off our previous  work51. Pure triplet phase occurs near quarter-filling, 
while singlet–triplet mixed parity phase occurs between pure triplet phase and singlet phase of dx2−y2 type. The 
pure triplet phase consists of all three types of triplet pairings due to absence of magnetic field and therefore 
it is meaningless to give it a specific name. It is important to note that pure-dx2−y2 type singlet phase occurs at 
low-V region, when V is still larger than on-site interaction U. At higher value of inter-site attraction ( V = 3t ), 
pure-dx2−y2 type singlet phase vanishes (Fig. 2c), while singlet–triplet mixed phase occupies the corresponding 
density region (near half-filling). At V = 3t a small window of singlet–triplet mixed phase occurs between s + s∗ 
type singlet and pure triplet phase. If we increase V further ( V = 4t ), most of the density region is occupied by 
dominant singlet–triplet mixed phase, while s + s∗ type singlet phase still occurs at low density region (Fig. 2d).

This variation of order parameters with average electron density motivates us to draw a V-〈n〉 ground state 
phase diagram in the absence of a magnetic field (Fig. 2e). We notice that when the inter-site interaction V is 
less than the on-site interaction, i.e. V < t , the whole density region is occupied by the pure singlet phase (red 
in color). This is expected as a dominant on-site attraction is known to stabilize singlet s-wave SC order. While 
U is stabilizing singlet s-wave SC order, V is also playing an important role in stabilizing the singlet s∗ and the 
unconventional dx2−y2 SC orders in this region along with s-wave. When the lower density region prefers singlet 
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Figure 2.  The color in the background indicates the nature of the SC order as, red: pure-singlet (SP), green: 
pure-triplet (TP), and blue: singlet–triplet mixture (MP). The gray background represents non-superconducting 
region (NS). (a–d) Variation of singlet �SP and triplet �TP order parameter magnitudes with electron density 〈n〉 
at zero temperature for onsite interaction U = t and inter-site interaction strength: (a) V = 0.4t , (b) V = 1.6t , 
(c) V = 3.0t and (d) V = 4.0t . (e) Plot (e) shows the V-〈n〉 ground state phase diagram at B = 0 , U = t . (f,g) 
Variation of singlet �SP and triplet �TP order parameter magnitudes with temperature T in the absence of 
Zeeman-coupling for on-site interaction U = t , inter-site interaction V = 3t , and average electron density: (f) 
�n� = 1.0 and (g) �n� = 0.44.
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s and s∗ SC orders to other phases, near half-filling it is the singlet dx2−y2-wave that prevails. Notice that these 
inferences come from a combination of the present work and the previous  work51. As inter-site interaction V 
becomes larger compared to on-site interaction U, it not only stabilizes singlet s∗ and dx2−y2 SC orders, it also 
helps pure triplet and mixed-parity phases to get stabilized at different density regimes. The pure triplet phase 
(green in color) occurs in a delta-shaped region near quarter filling ( 0.4 ≤ �n� ≤ 0.6 ), when the inter-site attrac-
tion V is higher than the on-site attraction U but not as large as V = 4t . With V getting larger, the mixed-parity 
(blue in color) phase becomes more stable, specially in the higher density region. It’s interesting to note that 
dx2−y2-type singlet phase is prone to get stabilized near half-filling region and pure triplet phase has a tendency 
to get stabilized near quarter-filling. But depending on the strength of inter-site interaction the system gains 
energy by stabilizing a new mixed-parity (possibly d + p-type extrapolating from our previous study) state, near 
the higher density region. It’s also important to note that, in the absence of a magnetic field, the phase diagram 
is very similar to our previous  study51. The only difference is that in the triplet region, we expect the phase to 
be in a superposition of all possible triplet orders, which was not possible earlier because of the limitations of 
our exploration space. In the section where we study the effects of magnetic field, “Effect of Zeeman coupling” 
section, the phase diagram will change drastically since now we have the possibility of a competition between 
different triplet phases. Given that the values of V/t and B/t used in the study are unusually large, we do not 
claim that the model can be directly applicable to a known superconductor. Nevertheless, our results become 
relevant to systems with nearly flat bands that lead to a very small effective t. The model may also be realized in 
optical lattices of ultracold atomic gases. Furthermore, while it appears that the interesting competition between 
different SC phases begins only for V > t (see Fig. 2c), it is important to note that the interesting phases in fact 
show up for V > U51. The choice U = 1 is merely for computational convenience as the lattice sizes required to 
provide stable results are smaller for larger values of U and V (see “Methods” section). In fact, one of the possible 
realizations of inter-site attractive interactions occurs via t − J model where the onsite term is repulsive. This 
leads to a already well studied problem of competition between magnetism and superconductivity. Given that 
our aim here is to study the competition between different SC states, we avoided the scenario where magnetism 
leads to further complexity. We again remind the reader that all the results discussed here are obtained within 
a mean-field approach.

Finite temperature study. After exploring the stability of singlet, triplet, and mixed-parity states in the 
ground state of the extended attractive Hubbard model on a square lattice, we intend to study the behavior 
of the corresponding SC states at finite temperatures. General consensus is that thermal excitations destroy 
superconductivity. So the expectation is that the magnitudes of the superconducting order parameters, defined 
in our system, will decrease and eventually vanish when temperature is increased beyond a critical value. It is 
well-known that beyond this critical temperature Tc superconductors make a transition from superconducting 
state to the normal state. As we limit ourselves to the framework of mean-field theory, it is not our aim to infer 
about the specific values of Tc we obtain in our calculations. We rather intend to study how different SC orders 
react to the onset of finite temperature.

In Fig. 2f,g, we plot the variation of singlet �SP and triplet �TP order parameter with temperature for two 
different points in parameter space taken from the ground state V-〈n〉 phase diagram. In Fig. 2f, we start with a 
mixed-parity state exactly at half-filling �n� = 1 . While the red dashed line represents the singlet order parameter 
�SP , the green dotted line represents triplet order parameter �TP . As temperature is increased, the triplet order 
parameter starts to fall off and around T ≈ 0.38 it vanishes completely. Interestingly, the singlet order parameter 
�SP seems to remain constant, and begins to reduce only when �TP has vanished. On a careful analysis, this 
turns out to be a simple quantitative effect. In the MP state, the total gap has contributions from both singlet 
and triplet order parameters. At low but finite T, excitations across the SC gap suppress the smaller OP relatively 
strongly compared to the larger OP. Consequently, the larger OP appear to remain unaffected as the smaller OP 
completely vanishes. We have explicitly checked that if the two OPs are comparable in magnitude than both 
are simultaneously affected, and in that case the transition is directly from a MP SC state to a non-SC state. At 
T ≈ 0.38 the system makes a transition from a mixed-parity SC state to a pure dx2−y2 type singlet superconduct-
ing state. If temperature is increased further �SP starts to fall off and it completely vanishes at T ≈ 0.68 . Thus 
Fig. 2f depicts how the system makes a transition from a mixed-parity superconducting state to a pure singlet 
superconducting state before making a transition to a non-superconducting state. In Fig. 2g, we start with a dif-
ferent point of the parameter space, again taken from the ground state V-〈n〉 phase diagram. In this case our zero 
temperature initial choice is at density �n� = 0.44 , where we find pure triplet state being stable. Notably with the 
increase of temperature the triplet order parameter �TP falls off exactly the way it did for the previous case and 
the temperature where �TP completely vanishes is exactly same as the previous case, i.e., T ≈ 0.38 . But in this 
case the triplet SC state makes a direct transition to non-superconducting state.

Finally we summarize these results in Fig. 3a, where we present the T-〈n〉 phase diagram to complete the 
analysis of the finite temperature effects. In the T-〈n〉 phase diagram we find that every superconducting phases 
at zero temperature makes a transition from superconducting to non-superconducting phase when temperature 
is increased. While the transition temperature for singlet phase takes a dome-shaped feature as a function of 
density, for triplet and mixed-parity states the transition temperature does not have such sharp feature with 
varying density. As discussed earlier, we find four different sectors of such transition. In three sectors the system 
makes a direct transition from superconducting state to non-superconducting state retaining the specific form 
of pairing symmetry, while the mixed-parity state in the density region 0.5 ≤ �n� ≤ 1.0 makes a transition to 
singlet superconducting state before making a transition to non-superconducting state.



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:22724  | https://doi.org/10.1038/s41598-021-02175-5

www.nature.com/scientificreports/

Effect of Zeeman coupling. After analysing the behaviour of unconventional superconducting phases at 
zero and finite temperature in the absence of a magnetic field, we study the effects of the magnetic field on these 
phases in different regions of the parameter space. We limit our study to the effect of Zeeman-coupling to an 
external magnetic field. Thus, we ignore the effects of an external magnetic field on orbital degrees of freedom 
and confine ourselves to investigate the effects of the magnetic field on the spin degrees of freedom only. An in-
plane magnetic field serves our purpose. Motivated by the zero temperature V-〈n〉 phase diagram presented in 
Fig. 2e, we take interest in knowing how this phase diagram changes with the onset of a Zeeman field. Figure 3b 
shows the V-〈n〉 phase diagram in the the presence of magnetic field with B = 0.1t . The first thing we notice is 
the appearance of a non-superconducting region (gray in color), which is quite expected as the magnetic field 
destroys superconductivity. It is interesting to note that the non-superconducting region appears at lower values 
of V suggesting that for the superconductivity to survive it really is a competition between the inter-site interac-
tion strength and the magnetic field strength.

From the ground state V-〈n〉 phase diagram in the absence of a magnetic field Fig. 2e, we notice that when 
inter-site interaction V is less than the on-site interaction U, the whole density region is occupied by singlet 
superconducting phase. When the Zeeman field is switched on and the strength of the Zeeman field is maintained 
at B = 0.1t , it turns out to be strong enough to destroy superconductivity when V is approximately less than 0.8t. 
So any superconducting phase occurring below V ≈ 0.8t is destroyed by a Zeeman field of strength B = 0.1t . In 
the absence of a magnetic field, there is a pure dx2−y2 type singlet phase, which is stable near half-filling. It appears 
that presence of an external magnetic field of strength B = 0.1t , destroys such pure dx2−y2 type superconducting 
phase, as for any strength of V (within the scale provided in Fig. 3b), only the singlet–triplet mixed state gets 
stabilized. Most interestingly, the region, where pure triplet superconducting phase is stabilized in V-〈n〉 phase 
diagram, gets larger in presence of the Zeeman-coupling suggesting that the pure triplet superconducting phase 
gets enhanced by the onset of a magnetic field, this is due to the allowed ESP superconducting correlations.

Another important aspect we notice is that there is a region of phase separation appearing between the pure 
singlet phase and the pure triplet phase when V is approximately greater than 2t. To look deeper and confirm 
this aspect of phase separation, we study the variation of average electron density per site 〈n〉 with the chemical 
potential µ at two values of Zeeman-coupling, (a) B = 0 , and (b) B = 0.1t presented in Fig. 4. For the purpose 
of the above-mentioned illustration we keep the on-site interaction at U = t , while the inter-site interaction is 
kept fixed at V = 4t . While in the absence of a Zeeman-coupling we see a continuous variation of 〈n〉 with µ , in 
the presence of a Zeeman-coupling, we clearly notice a discontinuity in the electron density at µ ≈ −2.5t . The 
discontinuity in the density is of the order δ�n� ≈ 0.1 , at V = 4t (Fig. 3b).

Figure 3.  The color in the background indicates the nature of the SC order as, red: pure-singlet (SP), green: 
pure-triplet (TP), blue: singlet–triplet mixture (MP), and gray: non-superconducting region (NS). White region 
represents phase separation (PS). (a) T-〈n〉 ground state phase diagram, in the absence of a magnetic field, at 
U = t and V = 3t . (b) V-〈n〉 ground state ground state phase diagram at finite magnetic field, B = 0.1t and 
U = t . (c) B-〈n〉 ground state phase diagram at zero temperature, V = 2t , U = t . (d) B-T phase diagram for 
U = t and V = 3t at half-filling, �n� = 1 . Note that the phases are expected to be symmetric about half-filling, 
�n� = 1.
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To completely understand the effect of Zeeman-coupling on the superconducting phases, we present, in 
Fig. 3c, a zero temperature B-〈n〉 phase diagram at U = t and V = 2t . At B = 0 , U = t and V = 2t , singlet, triplet, 
and mixed-parity superconducting phases occupy different sectors of density regions, as observed in the ground 
state V-〈n〉 phase diagram in the absence of the Zeeman-coupling to an external magnetic field. As the strength 
of the magnetic field is increased it appears that the pure triplet superconducting state becomes favourable. In 
fact, the pure singlet superconducting phase disappears from the whole density region when the strength of the 
magnetic field becomes approximately greater than 0.23t, while the mixed-parity state completely disappears 
from the whole density region when B becomes larger than ∼ 0.4t . Eventually at B > 0.4t only pure triplet 
superconducting phase survives throughout the whole density region. Though we must take a note of the fact 
that a non-superconducting region (gray in color) prevails over the other phases at lower electron densities. The 
information we gather from Fig. 3c is of twofold nature. Firstly, it is clear that Zeeman-coupling to an external 
magnetic field at low strength favours pure triplet superconductivity. Secondly, the disappearance of pure singlet 
and mixed-parity state indicates the possibility of disappearance of OSP type superconducting states and appear-
ance of ESP type superconducting states beyond certain strength of the external magnetic field. As OSP type states 
give rise to singlet states like s,s∗ and dx2−y2 etc., and ESP type states give rise to pure triplet superconducting 
phases, the above-mentioned behavior is well-explained.

We conclude this section by looking at the effect of Zeeman-coupling at finite temperatures. Figure 3d shows 
the B-T phase diagram to describe these effects at a specific point of the parameter space, namely U = t , V = 3t 
and µ = 0 . As expected, we see that for high enough temperatures, the normal state takes over for all kinds of 
superconducting phases. Also notice that at higher magnetic field strength, the superconductivity is destroyed 
at lower critical temperatures, in contrast to the critical temperatures at lower magnetic field strengths.

Characterization of phases. Our main aim in this study is to provide an identification, based on explicit 
energy minimization, of distinct-symmetry superconducting order parameters in the presence of a Zeeman 
coupling. So far we have classified these superconducting states in terms of opposite spin pairing (OSP) and 
equal spin pairing (ESP) states, leading to a description of minimum energy solutions in terms of pure singlet, 
pure triplet, and mixed-parity superconducting states. While, the main classification is done based on the nature 
of the spin state of the system we do mention different pairing symmetries, such as s-wave, s∗-wave, px + ipy
-wave and dx2−y2-wave to define the nature of the orbital part of the gap  function51,52. In the case of pure singlet, 
or pure triplet phase the nature of the orbital part can be easily understood, while for mixed-parity states such a 
separation does not exist. In Fig. 5 we look at various quantities related to the superconducting order parameters 
at zero temperature with varying average electron density per site 〈n〉 . Results presented in the first column of 
panels in Fig. 5 correspond to the case when the Zeeman field B = 0.12t . On the other hand, the second column 
represents data for a relatively higher value of the Zeeman field, B = 0.6t . The on-site attraction potential U and 
the inter-site attraction potential V are kept fixed at U = t and V = 2t , for all the plots in Fig. 5.

In Fig. 5a, we plot the singlet and triplet order parameters as defined previously. We observe three different 
sectors in the whole density profile: pure singlet at lower density region, pure triplet near quarter filling, and 
mixed-parity solution around half filling. Further characterization of the singlet phases, based on the definitions 
of s-wave, s∗-wave, and d-wave are shown in the inset of Fig. 5b. Note that near half filling, where the singlet 
phase shows d-type pairing (inset of Fig. 5b), it is a mixed parity state with dx2−y2 as a singlet component. The 
presence of s-wave and s∗-wave character in pure singlet phase and dx2−y2-wave character in the mixed-parity 
phase is consistent with our previous findings when the Zeeman field is  absent51. These pairing symmetries do 
not change with the addition of magnetic field, however, their relative magnitudes do change as discussed in 
the previous sections. Finite values of singlet order parameter �SP and triplet order parameter �TP at different 
sectors of the doping regime confirm the existence of pure-singlet, pure-triplet, and mixed-parity phases in the 
system at a lower strength of the magnetic field, B = 0.12t . The background color indicates the time reversal 
symmetry of the superconducting phase (d-vector formalism also allows us to probe the time reversal symmetry 
in a superconducting phase, refer “d-vector formalism” section). Notice that even though Fig. 5a is generated for 
non-zero magnetic field B = 0.12t , we see the existence of time reversal invariant (TRP-SC) superconducting 
phase appearing for lower densities. This is the enduring s-wave superconducting phase which is present in the 
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Figure 4.  Variation of average electron density 〈n〉 with chemical potential µ for, (a) B = 0 and B = 0.1t . The 
discontinuity in (b) corresponds to a region of phase separation.
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absence of magnetic field at lower densities (Fig. 3). We can see from Fig. 5b that as we increase the magnetic 
field B = 0.6t , the remnant time reversal invariant phase is destroyed. Of course, this transition is smooth with 
the increase of Zeeman field. We also notice that the mixed parity phase breaks time reversal, in order to take 
advantage of the external magnetic field. At a very low electron density, superconductivity completely vanishes, 
giving rise to the non-superconducting (NS) region. Fig. 5a,b shows that, in the presence of a magnetic field, 
it is the ESP-type correlation that becomes more favourable, although at low enough Zeeman fields, other cor-
relations can also survive.

In Fig. 5c,d we plot the magnitudes of the ESP-type correlations, {�↑
x ,�

↓
x ,�

↑
y ,�

↓
y } , for the cases presented 

in Fig. 5a,b respectively. we observe that in the pure triplet state, near quarter filling, �↑
x and �↑

y  become equal 
in magnitude. Similarly magnitudes of �↓

x and �↓
y  also become equal, while �↑

δ  and �↓
δ  acquire different values 

due to the Zeeman coupling. This observation was also inferred from “Determination of relative phase angle 
between different pairing correlations” section. Interestingly, even in the presence of Zeeman field, this relation 
among the triplet ESP correlations appears to change as the dx2−y2 singlet component becomes dominant near 
half filling. The character of dx2−y2 breaks the symmetry between the x and y components of the correlation 
functions, and as dx2−y2 wave state becomes more dominant near half filling, this character also shows up in the 
ESP pairing correlations, forcing �↑

x and �↓
x to become equal in magnitude and similarly for the y component 

as well. Now as we increase the magnetic field, the pure triplet phase takes over most of the density profile and 
naturally, only time reversal breaking character of the ESP pairing correlations remains. There is however, an 
interesting observation that exactly at half filling the ↑ and ↓ symmetry is forced upon the triplet phase, even in 

Figure 5.  The color in the background indicates the nature of the SC order as, cyan: time reversal symmetry 
preserving (TRP) SC order, magenta: time reversal symmetry breaking (TRB) SC order, and gray: non-
superconducting (NS) region. (a,b) Variation of �SP and �TP as a function of average electron density 〈n〉 for (a) 
B = 0.12t , and (b) B = 0.6t . Inset in (b) displays orbital part of the singlet component of SC order plotted in (a). 
Note that the presence of s-wave and s∗-wave in pure-singlet phase, and the presence of dx2−y2-wave character 
in the mixed-parity phase is confirmed from this plot. (c,d) SC pair correlation averages �↑

x , �↓
x , �↑

y , and �↓
y as 

a function of 〈n〉 for (c) B = 0.12t , and (d) B = 0.6t . (e,f) Variation of spin-resolved average electron densities 
( �n↑� and �n↓� ) and �q , representing the non-unitarity of the SC order for (e) B = 0.12t , and (f) B = 0.6t . For 
clarity �q is scaled by appropriate factors in (e,f). We have used U = t , V = 2t , and T = 2× 10−4t for all the 
data shown in this figure. Since there are multiple quantities displayed in each panel, a common y-axis label is 
not possible. The quantities plotted are directly mentioned with the help of legends.
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the presence of strong Zeeman field. Since this formalism is intrinsically particle-hole symmetric, at half-filling 
we see this symmetry showing up as the symmetry between ↑ and ↓ spins which is why all the ESP correlations 
functions, even in the presence of Zeeman field are forced to take the same values.

In Fig. 5e spin-resolved average electron densities are plotted along with the magnitude of the q vector aver-
aged over the Brillouin zone, �q ≡

∑

k |q| . Here q-vector is defined in terms of the d-vector as q = i d × d∗ . 
The q(k)-vector13 physically represents the net spin average present in the pairing state with momentum k . This 
does not always ensure a net total spin moment, averaged over the Fermi surface. However, it entails the fact that 
the pair correlation for ↑-spin electrons is different than that of the ↓-spin electrons, thus non-unitarity of a SC 
order is usually associated with the breaking of time reversal symmetry (TRS)53. Non-unitarity also implies the 
opening of two distinct SC energy gaps, driven by the breaking of TRS. In the pure triplet region we observe the 
possibility of the formation of an effective magnetic moment, however, interestingly enough, even in the presence 
of (small) magnetic field, in the regions where singlet superconducting phases are present, the spin-resolved 
electron densities are always equal and thus the magnetic moment is always zero. The magnitude of the q vector, 
�q tells us that the gap function is non-unitary (unitary when �q = 0 ) in nature when the triplet order parameter 
is finite. Note that non-unitarity of triplet gap function is defined in “d-vector formalism” section. From Fig. 5e,f, 
we see that non-unitarity is enhanced due to Zeeman field which is in correspondence to the enhancement of the 
pure triplet phase. It is again interesting to note that quarter filling seems to be the most favourable region for 
a non-unitary phase to exist and as we go close to half-filling, the non-unitarity is destroyed, consequently, the 
triplet superconducting phase becomes unitary exactly at half-filling due to the symmetry of the Hamiltonian.

We conclude the section by presenting, in Fig. 6, the angular variation of the superconducting energy gaps 
corresponding to the two pseudo-spin degrees of freedom, in the presence of the Zeeman field. We choose a 
representative point at U = t , V = 2t , and �n� ≈ 0.6 . In the presence of the Zeeman field, the non-interacting 
Fermi surface splits into two, resulting in separate Fermi surfaces for ↑-spin (see Fig. 6c) and ↓-spin (see Fig. 6f) 
electrons. Interactions lead to a gap opening at these Fermi surfaces, resulting in two gaps as the solution of a 
4× 4 matrix at a given kF-point leads to two pairs of ±E(kF) eigenvalues. Although it may not be straightforward 
to measure these two gaps in experiments, we nevertheless provide the description in terms of two distinct gaps. 
In Fig. 6a,b we plot the magnitude of these two distinct superconducting energy gaps at ↑-spin Fermi surface. 
Similarly, in Fig. 6d,e we plot the magnitude of gaps at ↓-spin Fermi surface. This angular variation of the super-
conducting energy gaps encodes the symmetry of the underlying superconducting state: while at B = 0 , a dx2−y2

-wave character is prominent from the symmetry of the gap, at B = 0.12t the chiral px ± ipy seems to be the 
dominant symmetry present in the gap structure. Interestingly, at a higher value of the magnetic field, B = 0.6t , 
one of the SC gaps approaches an isotropic form (see Fig. 6a,d) while the other one retains the px ± ipy character 
see Fig. 6b,e. Note that each of the two gaps at the up and down spin Fermi surfaces contains a linear combina-
tion of various OPs. Therefore, one can conclude that for larger values of the magnetic field, one of these linear 
combinations is such that all angular dependence gets canceled out. A slight difference in anisotropy between 
gap structure in panels (b,e) can also be noticed for larger B. This is related to the B-induced difference in the 
shapes of the up and the down spin Fermi surfaces.

Conclusions
Using the unrestricted BdG mean-field approach to the EAHM, we study the competition among different types 
of superconducting orders. The unique aspect of our study is that we rely on energetics for obtaining the super-
conducting solutions with different order parameter symmetries. We find rich ground state phase diagrams with 
exotic phases such as unitary, non-unitary, pure triplet and mixed parity states. Based on energetics, we provide 
an understanding of specific phase relations between different superconducting order parameters. We find an 
interesting competition between the anti-aligned, w.r.t. the Zeeman field, ↓↓ ESP state and the OSP state. At mod-
erate values of the Zeeman field, the system prefers the OSP state however, at larger values of Zeeman-coupling, 
OSP state is completely disfavoured in the weak-coupling limit. The ↑↑ ESP state is favoured in the presence of 
Zeeman field. We use the d-vector formalism to further distinguish and characterize the different triplet phases. 
Pure triplet phase is stable near quarter filling and singlet–triplet mixed phase is favoured near half-filling. The 
definition of the triplet order parameters being rotationally invariant allows us to study their behaviour even 
in the presence of magnetic field consistently. Finite temperature study shows transitions from a mixed parity 
ground state to a pure singlet phase of dx2−y2-type, and finally to a non-superconducting phase. In the presence 
of Zeeman field, the pure triplet phase dominates the phase diagram, suppressing the pure singlet and mixed par-
ity phases. It is interesting to note that the mixed parity phase is relatively more robust against the Zeeman field 
as compared to the pure singlet phase. Finally, we discuss the key distinction between different phases in terms 
of the angular shapes of the gap functions that are experimentally measurable. Our results will be particularly 
useful in understanding the effect of planar magnetic fields on the nature of superconducting states stabilized 
in quasi two-dimensional systems, such as atomically thin conducting interfaces between insulating oxides.

Methods
Mean‑field decoupling in pairing channel. Both the interaction terms, the on-site interaction and the 
inter-site interaction term, are represented by two-body operator terms in the second quantization formalism. 
To reduce the complexity of these terms, we consider the mean-field treatment, where the many-body inter-
action effects are mimicked via the interaction of a single electron system with a mean-field created by the 
aggregated effect of rest of the electrons. Mathematically speaking, such a two-body operator term X̂Ŷ  can be 
approximated as
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where we have neglected the second order correction contribution. In practice, we can apply this idea of mean-
field decoupling to the interaction terms of the Hamiltonian using different channels, such as density channel 
or pairing channel. Where density channel decoupling leads to the mean-fields of the form 〈c†c〉 , and pairing 
channel decoupling leads to mean-fields of the form 〈c†c†〉 . As we are specifically interested in superconducting 
solutions, we carefully choose pairing channel decoupling for our system and allow the superconducting cor-
relation functions to take non-zero values to minimize energy.

Applying the mean field approximation described above on the interaction Hamiltonian (Eq. 7), and treating 
X̂ = c†i↑c

†
i↓ and Ŷ = ci↓ci↑ , we get:

(12)

X̂Ŷ =
{
�X̂� + (X̂ − �X̂�)

}{
�Ŷ� + (Ŷ − �Ŷ�)

}

= �X̂��Ŷ� + �X̂�(Ŷ − �Ŷ�)+ �Ŷ�(X̂ − �X̂�)+ (X̂ − �X̂�)(Ŷ − �Ŷ�)
≈ X̂�Ŷ� + Ŷ�X̂� − �X̂��Ŷ�,
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Figure 6.  Angular variation of the superconducting energy gaps corresponding to the two pseudo-spin 
degrees of freedom, for different values of Zeeman field strength B = 0 , B = 0.12t , and B = 0.6t . The values of 
other parameters are fixed as U = t , V = 2t , �n� ≈ 0.6 for all the panels in this figure. (a,b) Superconducting 
energy gaps, corresponding to two pseudo-spins, at the ↑-spin Fermi surface in the presence of magnetic field. 
(c) ↑-spin Fermi surface for different values of Zeeman field strength B = 0 , B = 0.12t , and B = 0.6t . (d,e) 
Superconducting energy gaps, corresponding to two pseudo-spins, at the ↓-spin Fermi surface in the presence 
of magnetic field. (f) ↓-spin Fermi surface for different values of Zeeman field strength B = 0 , B = 0.12t , and 
B = 0.6t.
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where, �i = �ci↓ci↑� is defined as the on-site pairing correlation at ith site. Similarly, applying the mean field 
approximation to the terms A, B, C and D of Eq. (8), and decoupling into all possible pairing channels, we get:

where, we have defined the inter-site pairing correlations as:

After combining all the terms together, our effective mean-field Hamiltonian in real space looks like:

This Hamiltonian allows for spatially varying superconducting solutions since all the correlations are site 
dependent. However, working with the periodic boundaries and a uniform structure of superconducting cor-
relation functions so that the translational invariance in preserved has a nice advantage. It allows us to block 
diagonalize the Hamiltonian by working in the Fourier space which drastically simplifies the problem. This is 
what we do in the next section.

Effective Hamiltonian in momentum space. Observing the effective mean-field Hamiltonian in real 
space Eq. (16) it is apparent that the effective Hamiltonian is a function of 

1. a set of external parameters: t, µ , U, V, B, and
2. a set of complex superconducting configurations (pairing correlations): �i , �+

iδ , �
−
iδ , �

↑
iδ , and �↓

iδ.

In this article, we treat a clean system on a square lattice. Thus we exclude the possibility of inhomogeneity in 
our solutions, i.e., we expect our superconducting solutions to respect translational symmetry of the underlying 
lattice. This particular choice of translational symmetry makes Bloch basis to be more suitable to describe the 
effective Hamiltonian. Thus we apply the following transformation from Wannier basis to Bloch basis:

where Ns is the total number of lattice points. This essentially block diagonalize the Hamiltonian and simplifies 
the problem. In Bloch basis, the effective mean-field Hamiltonian looks like:

where,

(13)

H
onsite
MF = −U

∑

i

[

c†i↑c
†
i↓�ci↓ci↑� + ci↓ci↑�c†i↑c

†
i↓�

]

+ U
∑

i

[

�c†i↑c
†
i↓��ci↓ci↑�

]

= −U
∑

i

[

�ic
†
i↑c

†
i↓ +H.c.− |�i|2

]

,

(14)

H
nn
MF = −V

∑

i,δ

[

�
↑
iδc

†
i↑c

†
i+δ↑ +H.c.− |�↑

iδ|2
]

− V
∑
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�
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†
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†
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†
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†
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,

(15)
�

↑
iδ = �ci+δ↑ci↑�; �

↓
iδ = �ci+δ↓ci↓�

�+
iδ = �ci+δ↓ci↑�; �−

iδ = �ci↓ci+δ↑�.

(16)
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�ij�,σ
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.

(17)

ciσ = 1√
Ns

∑

k

e−ik·ri ckσ and

c†iσ = 1√
Ns

∑

k

eik·ri c†kσ ,

(18)

HMF =
∑

k
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∑
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here σ = 0, 1 represent the spins {↑,↓} . To make use of translational invariance, we assumed spatial homogeneity 
of superconducting pairing correlations. So the set of variables: { �i ,�

↑
iδ ,�

↓
iδ ,�

+
iδ and �−

iδ } becomes independ-
ent of site index i and our new set of variables becomes: { �,�

↑
δ ,�

↓
δ ,�

+
δ  and �−

δ  }. In this effective Hamiltonian, 
ǫ↑(k) describes the kinetic energy of ↑-spin electrons with respect to an effective chemical potential µ↑

eff = µ+ B . 
Similarly ǫ↓(k) describes the kinetic energy of ↓-spin electrons with respect to an effective chemical potential 
µ
↓
eff = µ− B . It is evident that the presence of a magnetic field breaks the spin-degeneracy in the system via 

Zeeman coupling. It’s worth mentioning that we work in the regime where magnetic field couples only with 
spin-degree of freedom. Orbital degree of freedom remains completely unperturbed by the presence of magnetic 
field, which leaves us with the freedom to ignore the Peierls substitution. In the above mentioned Hamiltonian 
Eq. (18) �↑↑(k) and �↓↓(k) represent superconducting correlations corresponding to equal spin pairing (ESP) 
states, while �↑↓(k) represents superconducting correlations corresponding to opposite spin pairing (OSP) 
states. While the on-site attraction strength U controls OSP states only, which is evident from the definitions 
of these pairing correlations Eq. (19), inter-site attraction V controls both OSP and ESP states. This very fact 
suggests that V is meant to play an important role in stabilizing non-trivial superconducting orders with variety 
of pairing symmetries.

Bogoliubov‑de Gennes method. The mean field Hamiltonian HMF Eq. (18) can be written in terms of 
Nambu spinors �k as:

where, Nambu spinor �k is a column vector of the form, �k = (ck↑ c†−k↓ ck↓ c†−k↑) and HBdG(k) is a 4× 4 
Hamiltonian matrix of the form:

HBdG(k) is known as the mean field Bogoliubov-de Gennes Hamiltonian. We can diagonalize the BdG Ham-
iltonian by defining new Fermionic quasi-particle operators that mix the electronic operators as,

The prime on the summation is a restriction to include only those states in the summation that will lead to 
a positive energy excitation spectrum of the diagonal Hamiltonian. Using this transformation, the Hamiltonian 
is diagonalized in the following form,

here {Ekα} is the excitation spectrum for the Bogoliubov quasiparticles. The physical constraint of non-negativity 
on the excitation energies is implemented by discarding the negative energy states from the definition of the 
Bogoliubov transformation. This results in {Ekα} to be a set of positive eigenvalues, and γ †

kα(γkα) creates (anni-
hilates) a Bogoliubov quasiparticle with momentum k and pseudo-spin α . The BdG quasiparticles describe 
elementary excitations of the condensate, Eg being the ground state energy of the condensate.

d‑vector formalism. In the absence of magnetic field, all the triplet superconducting solutions should be 
degenerate. However, while performing self-consistency, a randomized initial configuration should converge to 
a configuration with minimum energy. Due to degeneracy in the absence of magnetic field, whichever initial 
triplet configuration we provide, the self-consistency approach tends to throw out an arbitrary configuration. To 
bypass this issue, we divide all the superconducting configurations into different classes based on the characteris-
tics we are most interested in, namely, singlet and triplet pairing. We do so by employing the d-vector formalism.

(19)

ǫσ (k) = −2t[cos(kx)+ cos(ky)] − µ− (−1)σB

�↑↓(k) = −U�− V
∑

δ

[

�+
δ e

−i(k·δ) +�−
δ e
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]

�σσ (k) = −V
∑

δ

�σ
δ e

−i(k·δ),

(20)HMF =
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k

�
†
kHBdG(k)�k ,
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









ǫ↑(k) �↑↓(k) 0 �
↑↑
s (k)
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s (k))∗ 0

0 �
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s (k) ǫ↓(k) − (�↑↓(−k))

(�
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











.

(22)

ck↑ =
′

∑

k,α

uαk↑γkα + (vαk↑)
∗γ †

−kα

ck↓ =
′

∑

k,α

uαk↓γkα + (vαk↓)
∗γ †

−kα .

(23)HMF = Eg +
∑

kα

Ekαγ
†
kαγkα ,
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The most general superconducting gap function can be represented in a matrix form as,

In this, the elements correspond to the spin state of the electrons that constitute the Cooper pair. Furthermore, 
we may write the Cooper pair wavefunction as,

where, ψσσ ′(k) is the Cooper pair wavefunction with σσ ′ pairing. The first term, �0(k) , is the superconducting 
gap function for the singlet type of superconductor, whereas, the three-components of the triplet superconducting 
gap function is related to the complex vector d(k) . The advantage of writing it in this form is that a rotation of 
spin quantization axis in spin space would be equivalent to a 3D rotation of d(k) vector. A rotation of d(k) vec-
tor, would in turn adjust the superconducting gap functions corresponding to the three spin triplet components 
accordingly, and therefore, it makes it easier to track them. Now, since the length of d(k) vector (and averaged 
over k space) will remain invariant of spin-quantization axis, we may use this quantity to track down the overall 
triplet component of superconductivity. We therefore use,

as our definitions for the singlet superconducting gap function and triplet superconducting gap functions, 
respectively.

This formalism also gives us an handle on several properties of the superconducting state for example uni-
tarity of the superconducting wavefunction and time reversal symmetry. A superconducting gap function, in 
matrix form, �(k) is called unitary if the product �(k)�†(k) is proportional to the unit matrix, otherwise the 
superconducting gap function, in matrix form, is known as non-unitary. With this definition, it is clear that only 
triplet pairing matrices can be non-unitary since,

where q = i(d × d∗) . The measure of �q ≡
∑

k |q| tells us if the superconducting phase is unitary. Also, the time 
reversal symmetry can easily be checked by,

Therefore, using the d-vector approach we can infer many properties of the superconducting wavefunction.

Self‑consistency and minimization. In this section we lay out how the method of self-consistency is 
implemented computationally. We set electronic hopping parameter t = 1 as the basic energy scale, then we are 
left with four independent external parameters in the Hamiltonian, viz., µ,U ,V ,B . Corresponding to these, we 
will obtain a set of self-consistent SC pairing correlations, {�} that defines the SC OP. To solve the BdG equations 
numerically, an initial guess of {�} is fed into the Hamiltonian at some external parameter value. This Hamil-
tonian is diagonalized and eigenvalues and eigenvectors are calculated. The obtained eigenspectrum is used to 
further redefine the Hamiltonian and is re-diagonalized. This set of steps is labelled as an iteration and the cycle 
of iteration is repeated until the averages converge within a specified error, which was set to 10−5 in our calcula-
tions. The ground state (at T = 0 ) energy is calculated by summing over all the positive energy states. Therefore, 
the problem now reduces to minimizing the total energy w.r.t. the set {�} of pairing correlations. Since we do 
not fix any constraint on the nature of the pairing correlation, energy minimization shall result in the most 
energetically favourable pairing correlation symmetry that may either by singlet like or triplet like or even some 
strange combination of these two. This method of calculating averages self-consistently is actually equivalent to 
the energy minimization. We use 64× 64 k-grid for V ≥ 2t , and a 512× 512 k-grid for the cases V < 2t.

Code availability
All the codes are written from scratch, in Python or Fortran. Plots are generated using Python scripts.
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