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Abstract. We describe the expression of the/~, 
subunit of avian integrin in rodent cells with the pur- 
pose of examining the structure-function relationships 
of various domains within this subunit. The exogenous 
subunit is efficiently and stably expressed in 3T3 cells, 
and it forms hybrid heterodimers with endogenous 
murine a subunits, including t~3 and ors. These hetero- 
dimers are exported to the cell surface and localize in 
focal contacts where both extracellular matrix and 
cytoskeleton associate with the plasma membrane. Hy- 
brid heterodimers consisting of exogenous/3, and en- 
dogenous ot subunits bind effectively and specifically 

to columns of cell-binding fragments of fibronectin. 
The exogenous avian/~, subunit appears to function as 
well as its endogenous murine equivalent, consistent 
with the high degree of conservation noted previously 
for integrins. In contrast, expression of a mutant form 
of avian integrin/3, subunit lacking the cytoplasmic 
domain produces hybrid heterodimers which, while 
efficiently exported to the cell surface and still capable 
of binding fibronectin, do not localize efficiently in fo- 
cal contacts. This further implicates the cytoplasmic 
domain of the/3~ subunit in interactions required for 
cytoskeletal organization. 

C 
ELLS from a wide variety of both vertebrate and inver- 
tebrate species share the ability to adhere to extracel- 
lular matrices. Cell adhesion is a property required 

for cell migration and tissue stability and is central to em- 
bryonic development, wound healing, metastasis and other 
biological processes requiring tethering of a cell to its sub- 
stratum. Cell adhesion also affects cell shape, cell division, 
and cell differentiation. For these reasons, the molecules to 
which cells adhere as well as the constituents of the cell sur- 
face involved in the adhesion process have been subjected to 
intensive investigations (Buck and Horwitz, 1987; Martin 
and Timpl, 1987; for review, see Ruoslahti, 1988). 

Among the receptors playing a major role in cell-substra- 
tum adhesion are the members of a family of surface glyco- 
proteins designated integrins (Hynes, 1987; Ruoslahti and 
Pierschbacher, 1987). Integrins are heterodimers consisting 
of noncovalently associated a and fl subunits. Those integrins 
involved in cell-substratum adhesion are found concentrated 
in or around focal contacts on the ventral cell surface, colo- 
calizing with extracellular matrix (ECM)' molecules and 
cytoskeleton-associated (CSK) molecules (Chen et al., 1985; 
Damsky et al., 1985; Singer et al., 1988; Dejanna et al., 
1988). Integrins are capable of binding directly to ECM mol- 
ecules, including fibronectin, vitronectin, or laminin (Pytela 
et al., 1985a,b; 1986; Horwitz et al., 1985; Akiyama et al., 
1985; Gardner and Hynes, 1985; Johansson et al., 1987a,b; 
1. Abbreviations used in this paper: CSK, cytoskeleton; ECM, extracellular 
matrix; TBM, 50 mM Tris, pH 7.5, 150 mM NaC1, 1 mM MnCl2. 

Wayner and Carter, 1987; Wayner et al., 1988; Gehlsen et 
al., 1988; Ignatius and Reichardt, 1988; Sonnenberg et al., 
1988), and to CSK molecules such as talin (Horwitz et al., 
1986). The integrity of the aft complex is required for bind- 
ing to both ECM and CSK molecules (Buck et al., 1986). 

Recent structural and serological data have led to the divi- 
sion of the integrin family into three subfamilies (Hynes, 
1987; Anderson and Springer, 1987). Each subfamily is dis- 
tinguished by a common fl subunit that can associate with a 
limited number of different a subunits. All fl subunits share 
certain structural features (Hynes, 1987; Buck and Horwitz, 
1987; Ruoslahti and Pierschbacher, 1987). For example, the 
major portion of the/~ subunit is the extracellular domain 
which contains 56 conserved cysteine residues including four 
particularly cysteine-rich repeating structures. This is fol- 
lowed by a membrane-spanning domain and a relatively 
short intracellular domain (Marcantonio and Hynes, 1988; 
Mueller et al., 1988). Comparisons of the amino acid se- 
quences of/~ subunits from the three integrin subfamilies re- 
veal a 40-48 % identity while/~ subunits within a single sub- 
family display over 80% identity among diverse vertebrates 
(DeSimone and Hynes, 1988) suggesting a molecule whose 
structure and function are highly conserved. Further evi- 
dence for the structural and functional conservation of por- 
tions of the/~, subunit comes from the observation that an- 
tibodies against the cytoplasmic domain of the avian /~, 
subunit react with fl subunits from many phylogenetically di- 
verse sources (Marcantonio and Hynes, 1988). 
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The/3, subfamily of integrins includes receptors for such 
ECM molecules as fibronectin, certain collagens, and lami- 
nin. This subfamily contains at least six serologically distinct 
a subunits each capable of binding to a common/3m subunit 
(Hemler et al., 1987, 1988; Hynes, 1987). The substrate 
specificity of each receptor is determined by the particular 
combination of c~ and/~ subunits. Thus, t~5/3~ is a fibronec- 
tin receptor (Pytela et al., 1985a; Argraves et al., 1987; 
Wayner et al., 1988), c~2/3~ is a collagen receptor (Kunicki 
et al., 1988; Takada et al., 1988) and a6/3t is a laminin 
receptor (Sonnenberg et al., 1988), while ol3/3~ is a promis- 
cuous receptor thought to bind to several different ECM mol- 
ecules (Wayner and Carter, 1987; Wayner et al., 1988). 

It is clear from these results that integrins are involved in 
a variety of interactions and functions, including subunit di- 
merization, binding of extracellular matrix and cytoskeletal 
proteins, cell adhesion, and cytoskeletal organization. To be- 
gin to dissect the various structure-function relationships of 
integrin subunits, we have expressed the avian integrin/3m 
subunit in rodent cells and assayed its ability to perform vari- 
ous functions in this heterologous context. 

Materials and Methods 

Plasmid Construction 
The restriction enzymes, T4DNA ligase, polynucleotide kinase, Esche- 
richia coil DNA polymerase I large fragment, and Xbal linker, were from 
New England Biolabs (Beverly, MA). Standard recombinant DNA methods 
(Maniatis et al., 1982) were used. 

A 3.15 kb Eco RI fragment containing the entire coding sequence for 
chicken integrin/31 was isolated from the eDNA clone 1D described previ- 
ously (Tamkun et al., 1986). This fragment was then inserted into the Hind 
III cloning site of the SV40 expression vector pESP-SVTEXP (Reddy and 
Rao, 1986) by blunt-end ligation. The resulting plasmid is designated 
pCINT/31. A Xbal linker (CTCTAGAG) including an in-frame stop codon 
was then used to generate the plasmid pCINT/31A761-803, which codes for 
the mutated chicken integrin/31 lacking its cytoplasmic domain (Fig. 6). 
Briefly, the chicken integrin/31 cDNA subcloned in pGEMI (Promega Bio- 
tec, Madison, WI) was propagated in an adenine methylase-deflcient E. coli 
strain GM2163 supplied by New England Biolabs. The purified plasmid 
DNA was then partially digested with restriction enzyme Bcl I and the full- 
length linear DNA was isolated by agarose gel electrophoresis. After filling 
in the ends with E. coil polymerase I large fragment, the linear DNA was 
religated in the presence of kinased Xbal linker (molar excess) and trans- 
formed into E. coil strain HB101. The plasmid having Xbal linker incorpo- 
rated into the second Bcl I site of integrin /31 eDNA was identified by 
restriction analysis and the expected sequence around the junction was 
confirmed by dideoxy sequencing (sequenase; United States Biochemical 
Corp., Cleveland, OH). The altered eDNA fragment was then excised from 
pGEM1 and inserted into the Eco RI cloning site of the SV40 expression 
vector pECE (Ellis et al., 1986) generating the plasmid pCINT/3~A761-803. 

Transfection of 3T3 Cells 
NIH 3T3 cells were maintained in DME supplemented with 10% FCS (Gib- 
co Laboratories, Grand Island, NY). 5 × 105 cells plated the previous day 
in 100 mm dishes were co-transfected with 20 #g pCINT~I (or pCINT/31- 
A761-803) and 2 #g pSV2neo (Southern and Berg, 1982) as a calcium phos- 
phate precipitate (WigJer et al., 1979). Cells were incubated for 20-22 h, 
washed with PBS, and fresh medium was replaced. Two days later, the trans- 
fected cells were split 1:10 and incubated in DME supplemented with 10% 
FCS and 0.5 mg/ml G418 (Geneticin, Gibco Laboratories). After "~2 wk, 
G418-resistant clones were isolated and expanded. The 3T3 cell clones ex- 
pressing chicken integrin /31 were identified by indirect immunofluores- 
cence staining using a chicken-specific polyclonal antiserum Chickie II (see 
below). These positive clones were then subcloned by plating ,~500 cells 
onto 100-ram dishes coated with 10 mg/ml gelatin. Individual subclones 
were then isolated and analyzed by immunofluorescence labeling. Sub- 
clones 1E encoding wild type chicken integrin/~1 and A7E expressing mu- 
tant ~l were used for further characterization. 

Antibodies and Peptides 
A polyclonal avian-specific antiintegrin antibody designated Chickie II was 
prepared by injecting CSAT-immunoaffinity-purified avian integrin into 
rabbits and has been used previously (Damsky et al., 1985). A second 
chicken-specific rabbit anti-/~l (366) serum was prepared by injection of 
SDS-gel purified chicken integrin complex and was kindly provided by L. 
Urry (Massachusetts Institute of Technology, Cambridge, MA). CSAT mono- 
clonal antibody was prepared from CSAT hybridomas (Neff et al., 1982) 
and for immunoprecipitation was covalently coupled to protein A Sepharose 
(Sigma Chemical Co., St. Louis, MO) by binding in PBS, washing with 100 
vol, and coupling with 0.04% glutaraidehyde for 1 h at 37°C, followed by 
blocking with 0.5 M ethanolamine pH 8.0 (Gyka et al., 1983). Rabbit anti- 
/31 cytoplasmic domain antibodies were prepared as described (Marcantonio 
and Hynes, 1988). Rabbit anti-or3 and anti-or5 COOH terminal peptide anti- 
bodies were prepared as described (Hynes et al., 1989). Monoclonal antivin- 
culin antibody was a gift of B. Geiger (Weizmann Institute). Rhodamine- 
labeled phalloidin was purchased from Molecular Probes Inc. (Junction City, 
Oregon). 

GRGESP and GRGDSP were synthesized using a peptide synthesizer (Ap- 
plied Biosystems Inc., Foster City, CA) using solid phase t-boc chemistry. 
Peptides were cleaved and deprotected using tfifluoromethane sulfonic acid 
and were desalted on Sephadex G-10. Before use, peptides were purified by 
reverse phase HPLC chromatography on a v)~lac C18 semipreparative column 
(Rainin Instrument Co. Inc., Woburn, MA), eluted with a 0-60% acetonitrile 
gradient in 0.1% TFA. 

Radiolabeling and lmmunoprecipitation 
For metabolic labeling, cells were incubated for l h in DME minus methio- 
nine plus 10% FCS, followed by incubation in methionine-free medium plus 
10% FCS containing 20 #Ci/mi of [35S]methionine (Amersham Corp., 
Arlington Heights, IL) for 6 h. Cells were labeled with Na[125I] (New En- 
gland Nuclear, Boston, MA) and lactoperoxidase (Sigma Chemical Co., St. 
Louis, MO) as a monolayer as described (Hynes, 1973). 107 cells and 1-2 
mCi/mi were used per experiment. Cells were extracted with 0.5% NP-40 and 
immunoprecipitation was performed as described (Marcantonio and Hynes, 
1988). 

In some experiments, extracts were immunoprecipitated using CSAT- 
Sepharose, followed by recovery of the integrin complexes by heating at 
100°C for 2 min in 1% SDS. After cooling, a fivefold excess of Triton X-100 
was added, and the extracts were reprccipitated using polyclonal antibodies 
and protein A-sepharose as described above. 

SDS-PAGE was performed by the method of Laemmli (1970). Separation 
gels were 7.0% acrylamide with a 3% stacking gel. Samples were prepared 
in sample buffer (5% SDS, 100 mM Tris-HCl, pH 6.8, 10 mM EDTA, 10% 
glycerol and bromophenol blue) and boiled for 3 rain. 

Ajffinity Chromatography 
Purified human plasma fibronectin was purchased from the New York Blood 
Center (New York, NY). The 120-kD cell-binding fragment of fibronectin 
was purified from a chymotryptic digest of fibronectin as described by 
Pierschbacher et al. (1981). Columns were prepared by coupling 1 mg/mi of 
purified 120-kD fragment to CNBr-activated Scpharose (Pharmacia Fine 
Chemicals, Piscata~way, NJ) in 0.2 M NaHCO3 pH 8.5. 

Affinity chromatography of 3T3 cell extracts on l-nil columns was per- 
formed using a modification (Gailit and Ruoslahti, 1988) of the procedures 
of Pytela et al. (1985a). Briefly, ,x,107 cells were labeled with [12~I] as de- 
scribed above and extracted using 200 mM octyl-/~-o-glucopyranoside in 50 
mM Tris, pH 7.5, 150 mM NaCI, 1 mM MnCI2 (TBM). These extracts were 
loaded onto the 120-kD fragment columns over 1 h at 4°C, and then washed 
with 10 vol of TBM. Columns were eluted with 1 vol of TBM containing 1 
mg/ml of control pcptide (GRGESP), followed by 2 vol of "IBM, and then 
1 vol of TBM containing 1 mg/ml of GRGDSP. Column fractions were ana- 
lyzed by immunoprecipitation or directly by SDS-PAGE. 

l m m u n o f l u o r e s c e n c e  

Cells were plated in DME with 0.5% FCS overnight on coverslips previ- 
ously coated with human plasma fibronectin (0.02 mg/ml). Cells were 
rinsed twice in PBS and fixed for 15 min in a freshly prepared 4% solution 
of paraformaldehyde (Fluka Chemical Co., Buchs, Switzerland) in PBS, 
rinsed and permcabilized with 0.5% NP-40 in PBS for 15 rain. Cells were 
stained with primary antiserum in 10% normal goat serum in PBS for 30 
min at 37°C. After three washes with PBS, the second antibody mixture 
(rhodamine-conjngated goat anti-rabbit IgG and fluor~cein-conjngated 
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goat anti-mouse lgG in 10% normal goat serum in PBS; Organon Teknika- 
Cappel, Malveru, PA) was added and incubated for 30 rain at 37°C. After 
three washes, coverslips were mounted in gelvatol and examined using an 
axiophot microscope (Carl Zeiss. Inc,. Thornwood, NY) and photographed 
(Tri-X film; Eastman Kodak Co., Rochester, NY). 

Quantitative lmmunoprecipitation Analysis of 
lntegrin Expression 
Quantitative immunoprecipitation of clone IE t25I-labeled extracts was per- 
formed. 106 TCA-precipitable cpm of extract were incubated with increas- 
ing amounts of 363 or 366 antisera followed by immunoprecipitation and 
SDS-PAGE as described above to determine the maximum recovery of inte- 
grins. Bands corresponding with the Bm subunit were excised from the gel 
and counted using a gamma counter. 

Quantitation of the ratio of ot/fl subunit and the relative amounts of the 
chicken and mouse integrin subunits was performed by integration of peaks 
obtained from scans of the autoradiographs using an LKB ultrascan XL la- 
ser densitometer (LKB Instruments, Gaithersburg, MD). 

Results 

Expression of Avian Integrin fll Subunit 
The eDNA sequence of avian integrin fl~ subunit has been 
described (Tamkun et al., 1986). A full length cDNA clone, 
1D, was used for the analysis reported here. A 3.15-kb Eco 
RI fragment containing the entire coding region was isolated 
and subcloned into an SV40-based expression vector (Reddy 
and Rao, 1986) to generate pCINT~ (see Materials and 
Methods for details). This plasmid was cotransfected with 
pSV2neo (Southern and Berg, 1982) into murine 3T3 cells 
and clones resistant to (3418 were selected and expanded as 
described in Materials and Methods. 

To analyze the expression of avian fl~ integrin, we used 
the CSAT monoclonal antibody specific for this subunit 
(Buck et al., 1986). Fig. 1 shows CSAT immunoprecipitates 
from [35S]methionineqabeled transfected 3T3 cells. SDS- 
PAGE analysis of immunoprecipitates from four independent 
clones of cells transfected with pCINTfl~ are shown in lanes 
B-E. The immunoprecipitatcs contain heterodimers typical 
of members of the integrin family. The lower molecular mass 
ll0-kD band migrates in about the same position on non- 
reduced SDS-PAGE as the fl~ subunit found in a control im- 
munoprecipitate from avian cells (Fig. 1, lane A). No mate- 
rial was immunoprecipitated from 3T3 cells transfected with 
vector containing insert in the reverse orientation (Fig. 1, 
lane G) or from control 3T3 cells transfected only with 
PSV2neo (Fig. 1, lane F). That the ll0-kD band contained 
the avian fl~ subunit was confirmed by reaction in immuno- 
blots with a second monoclonal antibody, G (Buck et al., 
1986), which is also specific for the avian fl~ subunit (data 
not shown). These results clearly demonstrate the expression 
of the avian ~, subunit in the cloned transfected 3T3 cells. 
Subsequent experiments concentrated on one of these clones, 
1E (Fig. 1, lane E). 

The Exogenous ~1 Subunit Forms Heterodimers with 
Endogenous ~ Subunits 
The presence of additional polypeptides in the CSAT im- 
munoprecipitates from transfected cells suggested that the 
avian fit subunit could combine with endogenous murine c~ 
subunits. To document this, and to examine whether or not 
such complexes could be transported to the cell surface, 
clone 1E and control cells were surface labeled with ~25I. 
Detergent extracts were then immunoprecipitated with sev- 

Figure 1. SDS-PAGE analysis of immunoprecipitates from trans- 
fected and control cells. NP-40 extracts from [3SS]methionine cells 
were immunoprecipitated with the monoclonal antibody CSAT 
specific to the avian fl~ subunit. Immune complexes were sub- 
jected to SDS-PAGE under nonrextucing conditions. Lane A, im- 
munoprecipitates from control chick fibroblasts. The 110-kD pro- 
tein is the avian fit subunit. Lanes B to E, four independent clones 
of 3T3 cells transfected with pCINTfl~. Lane F, control 3T3 cells 
transfected with pSV2neo only. Lane G, 3T3 cells transfected with 
the vector carrying insert in the reverse orientation. 

eral different antibodies (Fig. 2). Antiserum 363 was raised 
against a/3, cytoplasmic domain peptide (Marcantonio and 
Hynes, 1988). This antiserum reacts exclusively with the cy- 
toplasmic domain of/3t subunits regardless of species. Fig. 
2, A and B, shows that this antibody precipitates/3, subunits 
together with at least two u subunits from both control and 
transfected 3T3 cells. A second antiserum, 366, was raised 
against SDS gel-purified avian /3~ subunit and reacts only 
with the avian subunit (Fig. 2, A and B; Urry, L., and R. O. 
Hynes, unpublished observations). It immunoprecipitates 
the avian Bj subunit and associated ct subunits from cells 
transfected with pCINTfl~ (Fig. 2 B), but not from control 
3T3 cells (Fig. 2 A) or from cells transfected with pSV2neo 
alone (data not shown). Immunoprecipitates using the mono- 
clonal antibody CSAT were included in these experiments as 
a control for specificity as well as for comparison of integrin 
subunit behavior on SDS-PAGE. Comparison of the relative 
intensities of the ot and fl bands in the different immunopre- 
cipitates suggests that the avian/3~ subunit associates with 
the murine a subunits as efficiently as does the endogenous 
murine /3~ subunit. Quantitative comparisons of the total 
surface level of all fl~ integrins (363 immunoprecipitates) 
with that of avian/~ integrin (366 or CSAT immunoprecip- 
itates) shows that in stably transfected clone 1E cells, inte- 
grins containing the avian subunit make up 40-60% of the 
total/3~ integrins expressed by these cells. In several experi- 
ments, no consistent differences were detected in the ratios 
of a to/3 labeling in total integrins and in integrins containing 
the chicken/~ subunit. 

The identity of the accompanying a subunits was deter- 
mined by sequential immunoprecipitations. Clone 1E cells 
were iodinated, extracted and immunoprecipitated with the 
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Figure 2. Immunoprecipitation of mouse and 
chicken integrins. A and B, extracts of Iz~I-surface- 
labeled control 3"1"3 cells (A) and clone IE cells ex- 
pressing chicken integrin #~ subunit. (B) were 
incubated with broad spectrum anti-~ peptide se- 
rum (363), anti-chicken ~ serum (366) or mono- 
clonal anti-chicken #~ (CSAT) Sepharose. Immu- 
noprecipitates were recovered directly (CSAT) or 
indirectly using protein A-Sepharose (363, 366) 
and analyzed by SDS-PAGE. C, A nondenatured 
extract of ~2SI-surface-labeled clone 1E cells was 

immunoprecipitated using CSAT monoclonal anti-chicken ~/~-Sepharose. The recovered complexes were denatured in SDS, after which 
a fivefold excess of Triton X-100 was added. The denatured integrins were then incubated with anti-c~5 peptide serum, anti-a3 peptide se- 
rum, or anti-~t peptide serum. The samples were immunoprecipiated using protein A-Sepharose and analyzed by SDS-PAGE. Thus, in 
the transfected cells, chicken ~ is present at the cell surface, and associates with the endogenous mouse o~ subunits, predominantly c~3 
and Ors. 

avian-specific monoclonal antibody CSAT. The resulting 
precipitates were dissolved in SDS and then reprecipitated 
with rabbit antisera raised against peptides from specific 
integrin c~ subunits (Hynes et al., 1989; see Materials and 
Methods). Results from such an experiment are shown in 
Fig. 2 C. The three bands immunoprecipitated by CSAT can 
be reprecipitated by antisera to c~5, ~3, and {/~ after SDS 
denaturation (Fig. 2 C). The or3 and ~5 subunits are the ma- 
jor ~/~ subfamily c~ subunits expressed in 3T3 cells (Marcan- 
tonio, E., unpublished observations). These data prove that 
the avian ~ subunit expressed in transfected 3T3 cells is 
transported to the cell surface and associates with the appro- 
priate murine c~3 and c~5 subunits. 

Hybrid lntegrin Heterodimers Bind Fibronectin 

To assay the function of hybrid receptors, we analyzed the 
ability of the complexes to bind to columns containing the 
120-kD cell-binding fragment of fibronectin. The c~5~t 
complexes from a variety of species bind specifically to such 
columns and can be eluted with peptides containing the RGD 
sequence (Pytela et al., 1985a, 1986; Wayner and Carter, 
1987; Wayner et al., 1988; Gailit and Ruoslahti, 1988; 
Hynes et al., 1989). Clone 1E cells were iodinated and ex- 
tracted with ~/-octylglucoside in buffer containing MnCI2 
(see Materials and Methods). The extracts were passed over 

columns of fibronectin cell-binding fragment and eluted se- 
quentially with GRGESP and GRGDSP peptides. Total inte- 
grin content of the eluate was demonstrated by immunopre- 
cipitation with antiserum 363 (Fig. 3 A). The fraction of the 
eluted integrins consisting of hybrid receptors was identified 
by immunoprecipitation with antiserum 366 specific for the 
avian B~ subunit (Fig. 3 B). As can readily be seen, inte- 
grins were eluted specifically with GRGDSP. The eluate in- 
cluded integrins containing the avian ~ subunit (Fig. 3 B). 
The doublet form of the a bands in the eluted fractions is fre- 
quently observed (Hynes et al., 1989). Both portions of this 
doublet react with antisera raised against a5 peptides (data 
not shown). The hybrid heterodimers consisting of avian ~ 
and murine c~ subunits are clearly able to bind to columns 
containing fibronectin cell-binding fragment. Quantitation 
shows that the hybrid heterodimers bind to the columns as 
efficiently as do the endogenous murine integrins. That is, the 
ratio of avian/~ to total fit is the same in the bound material 
as in the total extract, and the ratios of a and fl are the same 
in the total integrins and the integrins containing avian Bt. 

The Avian [31 lntegrin Subunit Becomes Localized in 
Focal Contacts 

We next examined whether the exogenous avian/3~ subunit 
could be correctly localized in focal contacts in the same 

Figure 3. Binding of hybrid integrins to fibronec- 
tin. Clone 1E cells were labeled with 1251 and ex- 
tracts were prepared as described in Materials and 
Methods. One milliliter of extract was incubated 
with one milliliter of 120-kD fibronectin cell- 
binding fragment-Sepharose for 1 h at 4°C. After 
washing, the column was sequentially eluted using 
GRGE_SP and GRGD_SP as indicated at the top of 
A and B. 0.5-ml fractions were collected, and 100- 
#1 aliquots were immunoprecipitated with 363 an- 
tiserum (A) or 366 (B) antiserum as described in 
Materials and Methods. Both the endogenous 
mouse and the chicken-mouse hybrid integrin 
complexes bind to fragments of fibronectin and are 
specifically eluted using the ceil-binding site pep- 
tide GRGDSP. 
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Figure 4. Localization of avian /3t subunit in transfected 3T3 cells by immunofluorescence. Transfected and control 3"1"3 cells were 
processed for indirect immunofluorescence as described in Materials and Methods. An avian-specific polycional antibody, Chickie II, was 
used to localize the avian ~ subunit. A and C, two independent clones of 3T3 cells transfected with pCINT/~I. B, 3T3 ceils transfected 
with pSV2neo only. Regions of intense fluorescence result from the presence of the avian/31 subunit (arrowheads). Concentrated fluores- 
cence is obvious in focal contactlike structures as well as in the cytoplasmic membranes surrounding the nucleus. Magnification of 1,600. 

fashion as endogenous integrins (Chen et al., 1985; Damsky 
et al., 1985; Singer et al,, 1988; Dejanna et al., 1988; Mar- 
cantonio and Hynes, 1988). To examine the distribution of 
the receptor, cells were grown on coverslips and stained for 
immunofluorescence using a polyclonal antibody that will 
react with avian integrin, but not with integrins normally 
found in 3T3 cells. The results are shown in Fig. 4. Control 
3T3 cells, as well as pSV2neo-transfected 3T3 cells not ex- 
pressing the avian/3 subunit, show only background fluores- 
cence; no typical focal contactlike structures are evident 
(Fig. 4 B). In contrast, two independent clones, 1D and 1E, 
expressing the avian subunit exhibit strong immunofluores- 
cence in brushstrokelike patterns on the ventral surface of 
cells (Fig. 4, A and C). This staining pattern is characteristic 
of focal contacts and closely resembles that seen in chick- 
en cells stained with this same antibody or with monoclonal 
antibodies specific for the avian /3 subunit (Damsky et 
al., 1985; Chen et al., 1985). Similar results are obtained 
if the cells are stained with the CSAT monoclonal antibody 
(Solowska, J., unpublished observations). Double immuno- 
fluorescence experiments, in which clone 1E cells are ex- 
posed to rhodamine-labeled phalloidin (to mark microfila- 
ment bundles) and the avian integrin-specific antibody, show 
that the actin-containing microfilaments terminate in the 
structures stained by the antiintegrin antibody (Fig. 5), 
confirming the identity of these structures as focal contacts. 

Deletion of the Cytoplasmic Domain Produces 
Partially Functional Hybrid Integrins 

To begin the analysis of the function of specific domains of 
the/3 subunit, we deleted a major portion of the cytoplasmic 
domain by in vitro mutagenesis. Fig. 6 shows a comparison 
between the avian integrin/31 subunit and the mutated form. 

The altered sequence contains a termination codon close to 
the beginning of the COOH terminal cytoplasmic domain. 
Plasmid pCINT/3~A761-803, which encodes mutagenized 
avian /3, was transfected into 3T3 cells together with 
pSV2neo. G418-resistant clones were isolated as described 
above and a stably expressing subclone A7E was further 
analyzed. 

Fig. 7 shows immunoprecipitation analysis of surface- 
labeled/X7E cells. As before, antiserum 363 precipitates a 
set of integrins comprising at least two a subunits and a/3t 
subunit (Fig. 7 A). In this case, since the mutated/31 cDNA 
encodes a truncated form of the chicken/31 subunit lacking 
the cytoplasmic domain recognized by this antiserum, 363 
precipitates only the endogenous murine integrins (see also 
below). Immunoprecipitation with antiserum 366 or mono- 
clonal antibody CSAT, both of which are avian-specific, 
selects only those integrins containing the avian/3t subunit. 
The fact that these integrins also contain a subunits is 
confirmed by reprecipitation of CSAT-selected integrins with 
antisera specific for different subunits (Fig. 7 B). As ex- 
pected, antiserum 363 fails to precipitate the avian 131 sub- 
unit confirming the fact that the cytoplasmic domain is miss- 
ing. The truncated/3~ subunit is, however, precipitated by 
the avian-specific antibodies (Fig. 7, A and B). c~ subunits 
from these hybrid integrins are immunoprecipitated by anti- 
bodies specific for or5 (Fig. 7 B) and o~3 (data not shown). 
Thus, the truncated/3~ integrin can form heterodimers with 
endogenous ot subunits and be exported to the cell surface. 
Quantitation shows that the ratio of c~ subunits to mutant/3t 
subunits is lower than that for the wild type avian /3t 
subunit (Fig. 2). It is unclear whether this lower ratio of a 
to/3 subunits reflects a defect in assembly or in stability of 
the complex or the high level of expression of avian/3t inte- 
grin subunit in these cells. Nonetheless, it is clear that the 
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Figure 5. Double label immunofluorescence analysis of transfected 31"3 cells. 3"I"3 cells transfected with pCINTfl~ were stained with a 
polyclonal antibody against avian integrin (Chickie II) to localize the avian fl~ subunit, and subsequently exposed to rhodamine-labeled 
phalloidin to mark actin-containing microfilaments. A, fluorescein-marked avian fl~ subunit distribution; B, same field showing 
rhodamine-marked actin-containing microfilaments. Note the termination of microfilament bundles in the focal contactlike structures 
stained with the antiavian flj (arrowheads). Magnification of 1,600. 

presence of the fl~ cytoplasmic domain is not essential either 
for dimerization or for processing and export to the cell sur- 
face (see Discussion). 

Analysis of the binding to fibronectin affinity columns of 
hybrid receptors is shown in Fig. 8. Extracts of surface- 
labeled A7E ceils were analyzed as described previously. 
Heterodimers containing the truncated avian fl~ subunit 

. . . . . . . . . . . . . . . .  K l L M I I H D R R ................... 

. . . . . . . . . . . .  AAA.CTA.CTG.ATG.~AT.GAC.AGG.AGA . . . . . . . . . . . . . . . .  

C T C . T A G . A G  

..... . . . . . . . . . . .  K L L M I L * 

Figure 6. Deletion of the integrin fl~ cytoplasmic domain. Parts of 
the amino acid and nucleotide sequences of the chicken integrin 
fit cytoplasmic domain are shown. Insertion of the Xbal linker 
(CTCTAGAG) containing the in-frame termination codon results in 
the truncated molecule A761-803 shown below. The mutant protein 
lacks 42 of the 47 residues in the wild type cytoplasmic domain and 
contains an extra leucine at the COOH terminus. 

were identified using antiserum 366 (Fig. 8 B) and elute in 
the same fractions as the endogenous murine heterodimers 
detected by antiserum 363 (Fig. 8 A). It is clear that the 
deleted form of the avian fl, subunit can form functional 
heterodimers with endogenous murine c~ subunits that bind 
to fibronectin in an RGD-sensitive manner. 

However, immunofluorescence analysis of the distribution 
of the mutant avian fl, subunit shows that the truncation 
does produce defects in localization of the integrin. Fig. 9 
shows double label immunofluorescence analysis using an- 
tivinculin to mark focal contacts and antibodies specific for 
the avian/3 subunit to mark the location of hybrid receptors. 
In clone 1E cells expressing the unaltered avian fl subunit, 
hybrid receptor and vinculin colocalize on the ventral cell 
surface (Fig. 9, A and B). In contrast, A7E cells expressing 
the truncated form of the avian fl subunit display little, if any, 
hybrid receptor in the focal contacts marked by the antivin- 
culin antibody (Fig. 9 C and D). Endogenous murine inte- 
grin in these same cells is localized in focal contacts (data 
not shown). Therefore, deletion of the fl~ cytoplasmic do- 
main interferes with localization of the hybrid heterodimers 
into focal contacts. 

Because the truncated form of the avian fit subunit ap- 
peared to be somewhat deficient in its ability to form stable 
hybrid heterodimers, we quantitated the level of functional 
heterodimers in A7E cells. The integrins eluted from 
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Figure 7. Immunoprecipitation of integrins from clone A7E cells. 
A, Extracts of t25I-snrface-labeled clone A7E cells were incubated 
with anti-#, cytoplasmic domain serum (363), monoclonal 
anti-chicken BrSepharose (CSAT) or polyclonal anti-chicken #, 
serum (366). Immunoprecipitates were recovered either directly 
(CSAT) or indirectly using protein A-Sepharose (363, 366) and ana- 
lyzed by SDS-PAGE under nonreducing conditions. B, a nondena- 
tured extract of '25I-surface-labeled clone A7E cells was immuno- 
precipitated using monoclonal anti-chicken BrSepharose (CSAT). 
The recovered complexes were either analyzed directly (lane 1) or 
were denatured in SDS. After addition of Triton X-100, the extracts 
were then incubated with anti-#t cytoplasmic domain serum 
(363), anti-chicken/3, serum (366) or anti-c~5 peptide serum (c~5), 
followed by immunoprecipitation using protein A-Sepharose and 
analysis by SDS-PAGE under nonreduced conditions. The trun- 
cated chicken #~ subunit is expressed on the surface and forms 
heterodimers with the endogenous mouse c~ subunits. 

fibronectin affinity columns (Fig. 8) are, by definition, both 
surface located and functional in ligand binding. Quantita- 
tion showed that 25.4% of the/3, integrin subunits eluted 
from the FN columns are avian and 74.6 % are murine. This 
should be compared with a proportion of 40-60% avian/3,- 
containing integrins in 1E cells expressing the intact avian 
~ subunit. Comparison of the pattern of avian integrins in 
1E cells (Fig. 9 A) with that in A7E cells (Fig. 9 C) shows 
clearly that the hybrid heterodimers in A7E cells do not 
localize in focal contacts in anywhere near the proportions 
detected by binding to FN columns. We cannot rule out a 
small fraction localizing in focal contacts, but it is clear that 
the truncated avian/3~ subunit, while largely competent to 
form hybrid heterodimers that are exported to the surface and 
will bind ligand, is severely compromised in its ability to as- 
semble into focal contacts. 

Discussion 

The experiments reported here show that an exogenous avian 
integrin/3, subunit can be functionally expressed in mouse 
3T3 cells. We have also observed successful expression in 
rat, hamster, and monkey cells (Guan and Marcantonio, un- 
published data). When expressed in heterologous cells, the 
exogenous/~, subunit forms heterodimers with endogenous 
oL subunits. These hybrid integrins can bind directly to 
fibronectin, are exported efficiently to the cell surface and 
are correctly localized in focal contacts. These data suggest 
that the heterologous subunit participates in the formation of 
fully functional integrins capable of interaction with mole- 
cules of both the extracellular matrix and the cytoskeleton. 
Thus, the high degree of sequence conservation between 

avian and mammalian ~/ subunits (DeSimone and Hynes, 
1988) is reflected in conservation of function. 

This conclusion focuses attention on segments of the/~, 
sequence that are most highly conserved. One of these is the 
cytoplasmic domain that is virtually identical in avian, hu- 
man, frog (DeSimone and Hynes, 1988), and also murine 
integrins (DeSimone, D., V. Patel, H. E Lodish, and R. O. 
Hynes, unpublished data). The cytoplasmic domain is thought 
to interact with elements of the cytoskeleton. Avian integrin 
has been shown to bind to the cytoskeletal protein, talin, in 
equilibrium gel filtration experiments (Horwitz et al., 1986). 
This binding is competed by synthetic peptides containing the 
consensus tyrosine kinase phosphorylation site of the avian 
/3j cytoplasmic domain (Tapley et al., 1989). These results 
implicate the/~, cytoplasmic domain in interactions with the 
cytoskeleton. 

The behavior of the mutant form of avian/3, subunit that 
we have expressed is consistent with this supposition. The 
truncated form lacking a/3, cytoplasmic domain is efficiently 
expressed and exported to the cell surface. It is found in het- 
erodimers with endogenous c~ subunits that arc still competent 
to bind fibronectin. These results suggest that the/3, cyto- 
plasmic domain plays only a minor role, if any, in dimeriza- 
tion, processing or binding to the extracellular matrix, al- 
though we do not rule out subtle effects on affinity. In contrast, 
the mutant heterodimer fails to localize normally in focal 
contacts where the cytoskeleton is associated with the ventral 
membrane of cells (Fig. 9). Therefore, it appears that the/3, 
cytoplasmic domain is indeed involved in interaction with the 
cytoskeleton. Furthermore, it appears that interaction with 
the extracellular matrix may not be sufficient to maintain 
integrins in focal contacts. Several recent papers have shown 
that the nature of the external ligand plays a key role in or- 

Figure 8. Binding of mutant integrin to fibronectin. Clone A7E cells 
were labeled with t25I and extracts were prepared as described in 
Materials and Methods. 1 ml of extract was incubated with 1 ml 
of 120-kD fibronectin cell-binding fragment Sepharose for 1 h at 
4°C. After washing, the column was sequentially eluted using 
GRG_ESP and GRG_DSP as indicated at the top of A and B. 0.5-ml 
fractions were collected and 100-/tl aliquots were immunoprecipi- 
tated with 363 antiserum (A) or 366 antiserum (B) as described in 
Materials and Methods. Both the endogenous mouse (A) and trun- 
cated chicken /~t-mouse hybrid (B) integrin complexes bind to 
fragments of fibronectin and are specifically eluted with GRGDSP. 
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Figure 9. Double label immunofluorescence of clone IE expressing full length avian integrin flj subunit (A and B) and clone A7E cells 
expressing truncated avian fit subunit (B and C). Cells were stained with mixtures of mouse antivinculin antibody (B and D) and rabbit 
anti-chicken fla serum (A and C) followed by visualization using rhodamine-conjugated goat anti-rabbit IgG and fluorescein-conjugated 
goat anti-mouse IgG. The vinculin stain marks the focal contacts some of which are indicated by arrowheads. The intact avian integrin 
colocalizes with vinculin (A and B) while the truncated avian integrin does not (Cand D). In both cell types, murine integrins do colocalize 
with the vinculin (data not shown). 

ganizing specific integrins into these structures (Singer et 
al., 1988; Dejanna et al., 1988; Albelda et al., 1989). Our 
data suggest that, in addition, interaction of the cytoplasmic 
domain with the cytoskeleton or some other cytoplasmic com- 
ponent is necessary for correct localization and/or mainte- 
nance of the integrins in focal contacts. 

Photobleaching and recovery experiments (Duband et al., 
1988) have demonstrated that integrins within focal contacts 
are extremely stable and replaced slowly. In contrast, those 
found outside the focal contact appear more mobile within 
the cell membrane. The data suggest a simple model in 
which the integrins exist within the plasma membrane as free 
heterodimers that undergo a conformational change upon oc- 
cupancy by an extracellular ligand. This change favors the in- 
teraction of the receptor with the cytoskeleton. Once adhe- 
sion has been initiated, this interaction can lead to the 
stabilization of integrins within the focal contact or to the 
recruitment of more receptors into the region of the extracel- 
lular matrix. Presumably the deletion we have studied inter- 
feres with some step in this pathway, be it propagation of a 
signal, a conformationai change or interaction with the 
cytoskeletal complex. More subtle alterations in the cyto- 
plasmic domain (and elsewhere) of both a and fl subunits 
will be necessary to elucidate these details. Such experi- 
ments are now in progress. 
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