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CD36 promotes de novo lipogenesis in
hepatocytes through INSIG2-dependent SREBP1
processing
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ABSTRACT

Objective: Enhanced de novo lipogenesis (DNL) in hepatocytes is @ major contributor to nonalcoholic fatty liver disease (NAFLD). Fatty acid
translocase (FAT/CD36) is involved in the pathogenesis of NAFLD through facilitating free fatty acids uptake. Here, we explored the effects of CD36
on DNL and elucidated the underlying mechanisms.

Methods: We generated hepatocyte-specific CD36 knockout (CD36LK0) mice to study in vivo effects of CD36 on DNL under high-fat diet (HFD).
Lipid deposition and DNL were analyzed in primary hepatocytes isolated from CD36LKO mice or HepG2 cells with CD36 overexpression. RNA
sequence, co-immunoprecipitation, and proximity ligation assay were carried out to determine its role in regulating DNL.

Results: Hepatic CD36 expression was upregulated in NAFLD mice and patients, and CD36LKO mice exhibited attenuated HFD-induced hepatic
steatosis and insulin resistance. We identified hepatocyte CD36 as a key regulator for DNL in the liver. Sterol regulatory element-binding protein 1
(SREBP1) and its downstream lipogenic enzymes such as FASN, ACCa., and ACLY were significantly downregulated in the liver of HFD-fed
CD36LKO mice, whereas overexpression CD36 stimulated insulin-mediated DNL and lipid droplet formation in vitro. Mechanistically, CD36
was activated by insulin and formed a complex with insulin-induced gene-2 (INSIG2) that disrupts the interaction between SREBP cleavage-
activating protein (SCAP) and INSIG2, thereby leading to the translocation of SREBP1 from ER to Golgi for processing. Furthermore, treatment
with 25-hydroxycholesterol or betulin molecules shown to enhance SCAP—INSIG interaction, reversed the effects of CD36 on SREBP1 cleavage.
Conclusions: Our findings identify a previously unsuspected role of CD36 in the regulation of hepatic lipogenic program through mediating
SREBP1 processing by INSIG2, providing additional evidence for targeting CD36 in NAFLD.

Crown Copyright © 2021 Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION patients [8,9]. However, the mechanisms responsible for the regulation

of hepatic DNL are not fully understood.

Nonalcoholic fatty liver disease (NAFLD) has become the leading
chronic liver disease worldwide without an effective treatment strategy
[1,2]. The hallmark feature of NAFLD is the excessive accumulation of
triglycerides (TG) in hepatocytes [3]. These accumulated lipids may
arise via increased de novo lipogenesis (DNL), esterification of plasma
free fatty acids (FFA), or dietary fatty acids intake [4]. Increasing evi-
dence suggests that enhanced hepatic DNL is an important contributor
to the development of NAFLD [4—7]. Human isotope-labeling studies
demonstrated a threefold increase of DNL contributed to hepatic TG
accumulation in patients with NAFLD than those without [5]. Moreover,
the expression of DNL enzymes, such as acetyl-CoA carboxylase o
(ACCa) and fatty acid synthase (FASN), were upregulated in NAFLD

Fatty acid translocase (FAT/CD36) is widely expressed in multiple cell
types and identified as a FFA transport protein [10]. CD36 is closely
associated with the development of NAFLD, which increased
concomitantly with hepatic TG content [11,12]. Increased hepatic
CD36 expression is significantly related to insulin resistance, hyper-
insulinemia, and increased steatosis in patients with non-alcoholic
steatohepatitis (NASH) [13]. In addition, soluble CD36 was emerging
as a new potential biomarker for NAFLD [14]; therefore, CD36 deletion
ought to prevent or reverse hepatic lipid deposition theoretically. Un-
expectedly, work from our laboratory and others have found that the
deletion of CD36 resulted in exacerbated hepatic steatosis in mice
[15—17]. In humans, CD36 deficiency, which is relatively common
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Abbreviations

25-HC 25-hydroxycholesterol
ACCo acetyl-CoA carboxylase .
ALT alanine aminotransferase

AST aspartate aminotransferase
AUC area under the curve

DEGs differentially expressed genes
DNL de novo lipogenesis

ER endoplasmic reticulum
eWAT epididymal adipose tissue
FASN fatty acid synthase

FAT /CD36 fatty acid translocase
FFA free fatty acids

GTTs Glucose tolerance tests

H&E hematoxylin & eosin

HFD high-fat diet

INSIG insulin-induced gene

ITTs insulin tolerance tests

NAFLD nonalcoholic fatty liver disease

NASH non-alcoholic steatohepatitis

NCD normal chow diet

PCK1 phosphoenolpyruvate carboxykinase 1

PLA proximity ligation assay

Q-PCR real-time quantitative PCR

SCAP SREBP cleavage-activating protein
SREBPs sterol regulatory element-binding proteins
TC total cholesterol

TG triglycerides

(2—7%) in person of Asian and African descent, has been reported to
exhibit insulin resistance, hyperlipidemia, and a propensity to develop
NAFLD [18—21]. These conflicting findings limit the application of
targeting CD36 as a therapeutic approach for NAFLD. Our previous
study found that CD36 deficiency promoted NASH by inducing
macrophage infiltration [16], suggesting CD36-mediated cell—cell
interaction may involve in the pathogenesis of NAFLD. In addition, it
has been recently reported that the deletion of CD36 in endothelial cell
unexpectedly increased liver TG content [22]. These findings indicated
that the role of CD36 in NAFLD may be cell type dependent. Impor-
tantly, Wilson et al. found that hepatocyte-specific CD36 deletion was
protected against HFD-induced hepatic steatosis [23]. Thus, the
hepatocyte-specific intervention of CD36 may be more attractive for its
further application, although the exact mechanism has not yet been
elucidated. Growing evidence indicated that the role played by CD36
extends far beyond the transport of FFA, including FFA oxidation, VLDL
secretion, and autophagy [17,24,25]. Given that hepatocyte DNL
shows an important function on hepatic steatosis [23,26], it is
necessary to clarify the regulatory mechanisms of hepatocyte-specific
CD36 involved in DNL.

Sterol regulatory element-binding proteins (SREBPs) are key tran-
scriptional factors for genes in the DNL pathway and play important
roles in the pathogenesis of NAFLD [27,28]. SREBPs are synthesized as
precursor proteins and retained in inactive forms in the endoplasmic
reticulum (ER), where they are bound to two other proteins, insulin-
induced gene (INSIG) and SREBP cleavage-activating protein (SCAP).
Under the condition of sterol deprivation, SREBP/SCAP are released
from INSIG and transported from ER to the Golgi complex, where
SREBPs undergo a two-step proteolytic process, liberating the N-ter-
minal, transcriptionally active (~ 70Kd) form of SREBPs (N-SREBPS).
The released N-SREBPs translocate to nuclear and stimulate lipogenic
gene expression [29,30]. It has been reported that SREBP1 is primarily
regulated at the transcriptional level by nutritional signals [31,32].
SREBP1 transcription and proteolysis could be induced by insulin and
high glucose and inhibited by unsaturated FFAs, particularly poly-
unsaturated FFAs [31,33,34]. Moreover, it has been demonstrated that
saturated FFAs such as palmitate showed an increase or no effect on
the cleavage of SREBP1 [35,36], suggesting a potential but unrevealed
role of lipid signals in the proteolysis of SREBP1.

In this study, by generating the hepatocyte-specific CD36 knockout
(CD36LKO) mice, we elucidated the molecular mechanism of how
CD36 regulates hepatic DNL. Hepatocyte CD36 deficiency ameliorated
obesity, hepatic steatosis, and insulin resistance in mice were fed with
an HFD. Beyond facilitating fatty acid uptake as known, CD36 played

an important regulatory role in the proteolysis of SREBP1. We found
that CD36 directly interacted with INSIG2 to relieve its inhibitory effect
on SREBP1 processing. Our findings identify DNL as a previously un-
suspected mechanism by which the fatty acid receptor CD36 regulates
hepatic steatosis and suggest the lipogenic role of CD36 in hepatocyte
may provide an intervention strategy for the hepatic steatosis.

2. MATERIALS AND METHODS

2.1. Animal model and diets

Hepatocyte-specific CD36 gene knockout (CD36LKO) mice were
generated using the Cre-Loxp system. The CD36™™/M°* (fi/fl) mice were
generated by using a plasmid with Loxp sites flanking CD36 exons 5.
After electroporation, selection, and screening, properly targeted em-
bryonic stem cell clones were injected into blastocyst for the gener-
ation of chimeric mice. Then, fl/fl mice were crossed with Albumin-cre
transgenic mice (Shanghai Model Organisms Center, China) to
generate CD36LKO mice. All mouse lines were backcrossed with
C57BL/6. Mice were maintained under a constant 12-light/dark cycle
with unrestricted access to diet and water. All experimental procedures
were approved by the animal care and use committee of Chongging
Medical University.

For induction of NAFLD, male 6- to 8-week-old mice received either a
normal chow diet (NCD, D12450B, Research Diets, USA) containing
10 kcal% fat or an HFD (D12492, Research Diets, USA) containing
60 kcal% fat for 16 weeks (n = 12). For fasted (non-fed), fed, and
refed experiments, the fed group was placed on an NCD, while the
fasted group was fasted for 24 h and the refed group was fasted for
24 h and then refed for 12 h. The liver and epididymal adipose tissue
(eWAT) were collected for further analyses.

2.2. Glucose tolerance tests (GTTs) and insulin tolerance tests
(ITTs)

GTTs were performed in 12-h-fasted fl/fl and CD36LKO mice following
an intraperitoneal injection of glucose (1 g/kg body weight), and ITTs
were performed in 4-h-fasted fl/fl and CD36LKO mice following an
intraperitoneal injection of insulin (0.7 units/kg body weight). Blood
glucose levels from tail vein blood were measured at 0, 15, 30, 60, and
120 min with an ACCU-CHEK Advantage glucometer (Roche Di-
agnostics, USA).

2.3. Histological analysis
Liver and eWAT were fixed in 4% paraformaldehyde in PBS. Histo-
logical changes were examined by hematoxylin & eosin (H&E) stain.
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Fibrosis changes were examined by Sirius red stain. Lipid accumu-
lation in the liver was analyzed by Qil red O staining on the frozen liver
tissues. Micrographs were captured using an automated whole-slide
scanning device (3DHISTECH, China). The quantitative analysis of Qil
red O staining was performed using ImageJ.

2.4. Measurement of TG and total cholesterol (TC)
Liver tissues were homogenized and extracted in isopropanol for 48 h
and then centrifuged at 3000 rpm for 10 min at 4 °C. TG and TC levels
were measured by TG kit and TC kit (Biosino, China). Measurements of
liver lipids were normalized to those of liver weight.

2.5. Serum biochemistry analysis

Serum TG, serum TC, serum glucose, serum FFA, serum aspartate
aminotransferase (AST), and alanine aminotransferase (ALT) were
determined by an automatic biochemistry analyzer as previously
described [15].

2.6. Cell lines and cell treatment

Human HepG2 cell were maintained in a complete medium containing
high-glucose DMEM, 10% fetal bovine serum, and 1% penicillin-
streptomycin. The lentiviral (GV341) particles carrying negative con-
trol (NC) and CD36 cDNA (CD360E) were constructed by Genechem
(China). The lentiviral human full-length SREBP1 (FL-SREBP1)
expression vector with an N-terminal HA tag was purchased from
GeneCopoeia (China) and then packaged into lentiviral particles by Obio
technology (China). The transfected cells stably expressing CD36 and/
or SREBP1 were cultured for further assays.

For insulin-induced lipogenesis, cells were cultured in serum-free
medium overnight before being treated without or with 100 nM in-
sulin for 0.5, 1, 3, 6, 12, or 24 h. For inhibition of SREBP1 trans-
location, cells were cultured in serum-free medium overnight before
being treated with DMSO, 15 uM betulin (HY-NO083, MCE, USA), or
5 uM 25-hydroxycholesterol (25-HC, HY-113134, USA) plus 100 nM
insulin for 24 h. For small interfering RNA (siRNA) knockdown, HepG2
cells were transfected with siCD36 (GGCUGUGUUUGGAGGUAUUCUTT)
and/or silNSIG2 (CUCACACUGGCUGCACUAUTT) using Lipofectamine
RNAIMAX (13778030, Life Technologies, USA). The transfected cells
were cultured in serum-free medium for 12 h and then treated with
100 nM insulin for 12 h.

2.7. Primary hepatocytes culture

Primary hepatocytes were isolated from the livers of 8- to 10-week-old
fl/fl and CD36LKO mice by a modification of the two-step collagenase
perfusion method, as previously described [15]. Briefly, perfusion
through the hepatic portal vein commenced successively with buffer A
(2.5 mM EGTA, 0.1% glucose, and 2% penicillin/streptomycin) and
buffer B (5 mM CaCl, and 0.5 mg/ml IV collagenase). The isolated
mouse hepatocytes were then plated in collagen I-coated 6-well
plates. For insulin treatment, hepatocytes were maintained in
serum-free medium overnight and then treated with 100 nM insulin for
12 h.

2.8. BODIPY*93/50% staining

HepG2 or primary hepatocytes were washed twice with PBS and
fixed with 4% paraformaldehyde. BODIPY*®¥5%3 (D3922, Invitrogen,
USA) was used to stain intracellular lipid droplets. DAPI was used to
stain nuclei. Images were obtained using a Leica confocal micro-
scope (Nikon, Japan). Fluorescent intensity was analyzed using
ImageJ.
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2.9. Co-immunoprecipitation and immunoblotting

Tissue or cell lysates were prepared with RIPA buffer. Immunopre-
cipitation and/or immunoblotting were performed as described previ-
ously [15]. Antibody information is listed as follows: rabbit anti-CD36
(NB400-144), mouse anti-CD36 (NB600-1423), and mouse anti-
SREBP1 (NB600-582) were purchased from Novus Biological (USA);
rabbit anti-SREBP1 (14088-1-AP), rabbit anti-SREBP2 (28212-1-AP),
rabbit anti-Golgin97 (12640-1-AP), mouse anti-GM130 (66662-1-Ig),
rabbit anti-INSIG2 (24766-1-AP), rabbit anti-lamin b1 (12987-1-AP),
and mouse anti- GAPDH (60004-1-lg) were purchased from Pro-
teintech Group (USA); rabbit anti-ACLY (4332), rabbit anti-HA-tag
(3724), rabbit anti-FLAG-tag (14793), mouse anti-FLAG-tag (8146),
and rabbit anti-Calnexin (2433) were purchased from Cell Signaling
Technology (USA); rabbit anti-ACCa. (sc-30212), mouse anti-FASN (sc-
48357), mouse anti-SCAP (sc-13553), and rabbit anti-INSIG1 (sc-
25124-R) were purchased from Santa Cruz Biotechnology (USA); rabbit
anti-SCD1 (E-AB-66816) was purchased from Elabscience Biotech-
nology (China); rabbit anti-HMGCR (bsm-52822R) and rabbit anti-[3-
ACTIN (bs-0061R) were purchased from Bioss Biotechnology (China).

2.10. Nuclear and cytoplasmic extraction

Nuclear and cytoplasmic extraction were prepared from HepG2 cells
according to the manufacturer’s instructions of NE-PER nuclear and
cytoplasmic extraction kit (78833, Thermo Fisher Scientific, USA).
Subsequently, proteins were used for immunoblots.

2.11. Isolation of ER and Golgi

ER and Golgi fractions were performed according to a previous report
[37]. The distribution patterns of the subcellular compartment markers
were determined by immunoblots (ER marker: Calnexin; Golgi appa-
ratus marker: GM130) and pooled together as ER and Golgi fractions.

2.12. Immunofluorescence and proximity ligation assay (PLA)
HepG2 cell or primary hepatocytes were washed with PBS, fixed with
4% paraformaldehyde, permeabilized with 0.3% Triton X-100, and
then blocked with 3% BSA. Cells were incubated overnight at 4 °C with
primary antibodies and incubated with fluorescently labeled secondary
antibodies. PLA analysis was performed according to the manufac-
turer’s instructions of Duolink® PLA kit (Sigma, USA). Briefly,
paraformaldehyde-fixed cells were permeabilized with 0.3% Triton X-
100 and blocked with blocking solution. The primary rabbit and mouse
antibodies were applied, and the cells were incubated with PLA
probes, anti-rabbit PLUS, and anti-mouse MINUS. The incubation was
followed by hybridization and ligation, and amplification was per-
formed. Fluorescence images were obtained using a Leica confocal
microscope (Nikon, Japan).

2.13. RNA isolation, real-time quantitative PCR (Q-PCR) analysis,
and RNA sequence

Liver tissues or cells were lysed in RNAiso Plus (9108, TaKaRa, Japan)
to extract total RNA according to the manufacturer’s protocols. cDNA
was synthesized by a PrimeScript® RT reagent kit (DRR037A, TaKaRa,
Japan). Q-PCR was performed using the SYBR Green PCR Mix kit
(TaKaRa, Japan) and the CFX connect real-time system (Bio-Rad, USA).
Gene expression levels were normalized to -actin, and relative levels
were compared to control samples using the 2-AACt method.

For RNA sequence analysis, fl/fl and CD36LKO mice were fed with HFD
for 16 weeks, and the liver mRNA sequence analysis was performed by
the lllumina Hiseq2000 platform of Majorbio Biotech (China). The data
were analyzed on the free online Majorbio I-Sanger Cloud Platform
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Figure 1: Hepatic CD36 is regulated by nutritional signals. A—B: C57BL/6J male mice were fed with either the normal chow diet (NCD) or high-fat diet (HFD) for 16 weeks. The
hepatic expression of CD36 was analyzed by immunoblotting (A) or real-time quantitative PCR (Q-PCR) (B). n = 3, *P < 0.05 vs. NCD group. C: The hepatic CD36 mRNA levels in
the nonalcoholic fatty liver disease group (NAFLD, n = 40) and normal control group (control, n = 21) from the GEO database (GSE151158). *P < 0.05 vs. control group. D—E:
C57BL/6J male mice were overnight-fasted and then fed again 12 h. Livers were collected and the protein level of CD36 (D) and SREBP1 signaling (E) were analyzed by
immunoblotting. n = 3, *P < 0.05 vs. fasted group. F: C57BL/6J male mice were fasted overnight and injected with PBS or insulin (1U/kg body weight) for 4 h. Livers were
collected and the protein level of CD36 was analyzed by immunoblotting. n = 3, *P < 0.05 vs. PBS group. G: HepG2 cells were treated with insulin (100 nM) for indicated time
points. The protein levels of CD36 were analyzed immunoblotting. n = 3.
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(www.i-sanger.com). RNA sequencing data were submitted to the GEO
database at NCBI (GSE191059).

2.14. mRNA expression profiling from public data

Hepatic CD36 gene expression analysis was performed using the
publicly available NCBI GEO dataset (www.ncbi.nim.nih.gov/geo,
GSE151158). Within the dataset, a normal control group (control,
n = 21) and a group of patients diagnosed with NAFLD (NAFLD,
n = 40) were selected, and CD36 mRNA expression levels were
evaluated between the groups.

2.15. Quantification and statistical analysis

Differences between 2 groups were analyzed by 2-tailed Student’s t-
test. Comparisons among more than 3 groups were analyzed by 1-way
ANOVA (GraphPad Prism 8). Statistical differences were considered
significant at P-value < 0.05. Data are reported as mean + SEM.

3. RESULTS

3.1. The expression of CD36 in liver is correlated with feeding and
insulin level

To evaluate the potential role of CD36 in NAFLD pathogenesis, we
firstly analyzed hepatic CD36 levels in mice and humans with NAFLD.
Liver protein and mRNA levels of CD36 were increased by more than
twofold in mice that were fed with HFD for 16 weeks, which displayed
simple steatosis, obesity, and insulin resistance (Figure 1A,B, Figure
S1). In publicly available human liver datasets, the gene expression
of CD36 is upregulated in subjects with early, non-fibrotic NAFLD
(Figure 1C). These findings were consistent with our previous study
showing higher CD36 expression in NASH patients [13], but indicated a
role of CD36 in the early stages of NAFLD.

To investigate whether CD36 is a nutritional sensor, we measured the
expression of CD36 in response to fasting and feeding. Hepatic CD36
expression was reduced in overnight-fasted state but was increased by
feeding signals (Figure 1D). Feeding simultaneously activated hepatic
SREBP1-related lipogenesis, as reported in previous studies [32],
indicating a potential link between CD36 and lipogenesis (Figure 1E).
Given that NAFLD nutritional status and lipogenesis are all strongly
associated with insulin levels, we examined the effect of insulin on
CD36 expression. In fasted mice, hepatic CD36 expression was
increased by insulin injection intraperitoneally (Figure 1F). Consistent
with in vivo results, the expression of CD36 was increased by insulin in
a time-dependent manner in liver cells (Figure 1G). Together, these
results suggest that CD36 can be stimulated by insulin and may play a
role in the regulation of lipogenesis.

3.2. CD36 depletion of hepatocyte improves HFD-induced hepatic
steatosis

To investigate the hepatocyte-specific role of CD36 in hepatic stea-
tosis, we generated CD36LKO mice using the Cre/Loxp system. The fl/
fl mice were crossed with Albumin-cre mice to generate CD36LKO
mice (Figure S2A). The knockout efficiency was verified by immunoblot
and Q-PCR (Figure 2B,C, E). We confirmed that CD36 was deleted
effectively in the liver but not in other tissues (Figure S2D and E). No
obvious difference in body weight, food intake, and liver weight was
observed between fl/fl and CD36LKO mice that were fed with NCD
(Figure S2F-H), as well as serum levels of glucose, TG, TC, ALT, and
AST (Figure S2I-M). Consistently, liver histology revealed no obvious
morphological changes in NCD-fed CD36LKO mice compared with fl/fl
mice (Figure S2N). GTTs and ITTs also displayed no significant dif-
ference between the two genotypes (Figure S20 and P). These data
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demonstrate comparable metabolic phenotype in CD36LKO mice and
fl/fl mice under NCD condition.

We then placed CD36LKO mice and their littermates on HFD for 16
weeks (Figure 2A). Hepatocyte CD36 deficiency attenuated HFD-
induced body weight gain, without affecting liver weight and food
intake (Figure 2B—D). The fasting serum TG levels in CD36LKO mice
exposed to HFD were significantly lowered than those in fl/fl mice,
although serum glucose and TC levels were similar (Figure 2E—G).
Serum activities of ALT and AST, reflecting liver function, tend to be
decreased in the HFD-fed CD36LKO mice (Figure 2H,l). Despite the
GTTs being similar between genotypes, the ITTs were improved in the
HFD-fed CD36LKO mice (Figure 2J,K). Histological examination of the
livers from the HFD-fed CD36LKO mice showed reduced lipid depo-
sition and no detectable hepatic fibrosis (Figure 2L,M). H&E-stained
sections of eWAT from CD36LKO mice displayed decreased adipocyte
size, in accordance with less body weight gain (Figure 2N). Further-
more, Oil red O staining and TG/TC quantitation revealed less lipid
accumulation in the livers of CD36LKO mice than those of fl/fl mice
(Figure 20—Q). These data suggest that hepatocyte-specific knockout
of CD36 prevents HFD-induced obesity, hepatic steatosis, and insulin
resistance.

3.3. CD36 deficiency of hepatocyte attenuates the hepatic
lipogenic program

To further explore the potential mechanisms for reduced lipid accu-
mulation in CD36LKO mice, we performed RNA sequence analysis of
the livers from HFD-fed fl/fl and CD36LKO mice. We identified 222
upregulated genes and 222 downregulated genes (>1 fold change and
adjusted P-value<0.05). Through GO analysis, we found these
differentially expressed genes (DEGs) are enriched in lipid metabolic
pathways (Figure 3A). We mapped the DEGs from the top 20 enriched
GO terms to the STRING database and found that the hub genes were
involved in fatty acid metabolism (Srebp1, Fasn, Acly, Ppara, Pparg)
and cholesterol metabolism (LdIr, VidIr, Apoal, Apoad) (Figure 3B).
Volcano plot analysis showed that CD36LKO mice exhibited different
gene expression patterns versus fl/fl mice with the downregulation of
genes involved in fatty acid metabolism (Figure 3C). Furthermore,
heatmap analysis of fatty acid metabolism-related genes showed that
the expression of lipogenic genes was markedly suppressed in the
CD36LKO0 mice (Figure 3D).

As shown in Figure 3E—G, the Q-PCR results agreed with those of RNA
sequence analysis. The mRNA levels of lipogenic genes, including
Srebpic, Accwa, Fasn, Scdi, Acly, and Pparg, were lower in the
CD36LKO0 mice (Figure 3E). In contrast, the expression of genes that
regulate fatty acid {3 oxidation (Cpt7 and Acox7) or inflammation (Mcp-
1, Tnf-a, and /l-6) were comparable between fl/fl and CD36LKO mice
(Figure 3F,G). We further confirmed these results in the livers by
immunoblot analysis. Hepatic protein levels of SREBP1, ACCa, FASN,
SCD1, and ACLY were all markedly decreased in the CD36LKO mice
compared with fl/fl mice (Figure 3H). Besides, we found that the mRNA
and protein expression of SREBP2 and its target gene HMGCR were
also decreased in the CD36LKO mice (Figure S3A and B). Thus, he-
patocyte CD36 deficiency presumably attenuates hepatic lipid depo-
sition through the inhibition of lipogenesis.

3.4. CD36 mediates insulin-stimulated DNL in liver cells

The facilitation of FFA uptake by CD36 has been investigated exten-
sively. Under in vivo conditions, it is hard to determine whether the
attenuated liver steatosis in HFD-fed CD36LKO mice is due to reduced
FFA uptake or decreased lipogenesis. To directly verify the contribution
of CD36-mediated lipogenesis to lipid deposition, we used an in vitro
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Figure 3: Decreased hepatic lipogenesis in LKO mice. RNA sequence analysis of the livers from fl/fl and LKO mice under 16-week-HFD (n = 3). A: Top 20 biological process
gene ontology (GO) terms enriched by differentially expressed genes (DEGs) in fl/fl and LKO mice. The DEGs were selected with a criterion at adjusted P-value < 0.05. B: The
protein—protein interactions (PPI) network analysis of genes including in top 20 BP GO terms. The top 15 hub genes were selected and visualized with Cytoscape software. The size
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Figure 4: CD36 is involved in insulin-stimulated DNL in vitro. A: Experimental design for insulin-stimulate DNL in vitro. B: HepG2 cells were treated with insulin (100 nM) for
indicated time points. The protein levels of SREBP1 and downstream lipogenic enzymes were analyzed by immunoblotting. C—D: BODIPY staining for lipid droplets in HepG2 cells
(C) or primary mouse hepatocytes (D) with or without insulin (100 nM) treatment for 12 h. Quantitative of lipid droplets was shown in the right. *P < 0.05 vs. control group. E:
BODIPY staining for lipid droplets in CD36 overexpression (CD360E) or NC cells with insulin (100 nM) treatment for 12 h. Quantitative of lipid droplets was shown in the right.
*P < 0.05 vs. NC or fI/fl group. F: BODIPY staining for lipid droplets in primary hepatocytes isolated from fI/fl or LKO mice with insulin (100 nM) treatment for 12 h. Quantitative of
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Figure 5: CD36 regulates ER-to-Golgi transport of SREBP1. A: The protein level of SREBP1 in Golgi and ER of organelle fractions from fI/fl and LKO mice was analyzed by
immunoblotting. B: Nuclear location of SREBP1 (red-TRITC) was determined by immunofluorescence staining and confocal analysis in primary hepatocytes from fl/fl and LKO mice.
Scale bars, 25 pum. C: Localization of SREBP1 (green-FITC) in the Golgi (red-TRITC) was determined by immunofluorescence staining and confocal analysis in primary hepatocytes
from fI/fl and LKO mice. Scale bars, 25 pum. D: The protein levels of SREBP1 of cytoplasmic and nuclear fractions from NC and CD360E cells were analyzed by immunoblotting. E:
Nuclear location of SREBP1 (red-TRITC) was determined by immunofluorescence staining and confocal analysis in NC and CD360E cells. Scale bars, 25 um. F: The localization of
SREBP1 (green-FITC) in the Golgi (red-TRITC) was determined by immunofluorescence staining and confocal analysis in NC and CD360E cells. Scale bars, 25 um. G—H: HepG2
cells were co-transfected with stably expressing HA-tagged full-length SREBP1 (FL-SREBP1) and FLAG-tagged-CD36. The precursor and active nuclear form of SREBP1 were
visualized using HA antibody (G) and the SREBP1 downstream targets, including ACCo., FASN, SCD1, and ACLY, were analyzed by immunoblotting (H). Quantitation of protein levels
was shown in the bottom. n = 4, *P < 0.05 vs. SREBP10E group without CD360E.
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model to study the effects of CD36 on lipid accumulation without
exogenous FFA involvement. HepG2 cells or primary hepatocytes were
serum deprived and stimulated with insulin to induce DNL (Figure 4A).
As expected, insulin-induced SREBP1 activation and increased ACLY
and ACCo protein levels, the rate-limiting enzymes of lipogenesis

10

(Figure 4B). Consistently, insulin increased lipid droplet formation as
evidenced by staining with neutral lipid dye BODIPY*%¥5%3 in both
HepG2 cells and primary hepatocytes (Figure 4C,D). Overexpressing
CD36 caused increased lipid droplet accumulation in response to in-
sulin, while CD36 deletion prevented the lipogenic effects of insulin
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under serum-free condition (Figure 4E,G). At the molecular level, CD36
overexpression stimulated SREBP1 and its downstream lipogenic en-
zymes, including FASN, ACCa.,, SCD1, and ACLY, while CD36 deletion
showed the opposite effects (Figure 4F,H). Besides, we found that
CD36 deletion also inhibited SREBP2 and its downstream target
HMGCR (Figure S3C). These data suggest that CD36 promotes insulin-
mediated DNL, which contributes to lipid deposition in liver cells.

3.5. CD36 regulates proteolytic processing of SREBP1

SREBP1 activation requires its translocation from ER to the Golgi for
subsequent cleavage and release of the active N-SREBP1 [38]. To gain
further insights into the underlying mechanisms by which CD36 reg-
ulates SREBP1 activation, we accessed the subcellular distribution of
SREBP1 in the liver of fl/fl and CD36LKO mice. In the separated ER
fractions, the protein levels of SREBP1 were similar between fl/fl and
CD36LKO mice, but in the Golgi fractions, there was a decrease of
SREBP1 in CD36LKO mice compared with that in the fl/fl mice
(Figure 5A). Consistent with the reduction of transport-dependent
proteolysis of SREBP1 in the liver of CD36LKO mice, immunofluores-
cence staining observed decreased nuclear and Golgi localization of
SREBP1 in primary hepatocytes from CD36LKO mice (Figure 5B,C).
Conversely, CD36 overexpression increased nuclear and Golgi locali-
zation of SREBP1 (Figure 5D—F). These results clearly show that CD36
is needed for SREBP1 transport to Golgi.

SREBP1 trans-activated its own gene expression, forming a positive
feedback loop [39]. To directly confirm CD36 regulates SREBP1 pro-
cessing, we generated an exogenous HA-tagged FL-SREBP1 expres-
sion system, which is driven by a cytomegalovirus promoter. We
introduced this FL-SREBP1 into NC and CD360E liver cells, respec-
tively. The FL-SREBP1 was similarly overexpressed in NC and CD360E
cells, but the expression of nuclear form of SREBP1 was markedly
increased in CD360E cells (Figure 5G). At the same time, the
expression of SREBP1 downstream targets, including ACCo, FASN,
SCD1, ACLY, were elevated in CD360E cells compared with those in
NC cells (Figure 5H). Together, these data suggest CD36 regulates the
proteolytic processing of SREBP1.

3.6. CD36 interacts with INSIG2

Given that INSIGs play a negative role in SREBP1 processing [40],
changing the expression of INSIGs may modulate the proteolysis of
SREBP1. Firstly, we examined whether CD36 affects the expression
of INSIGs. The protein levels of INSIG1 and INSIG2 were unchanged
between HFD-fed CD36LKO and fl/fl mice, although these mRNA
levels showed slightly reduced in CD36LKO mice (Figure 6A,B). As
SREBP1 processing was reduced in CD36LKO mice, thus, these re-
sults excluded the potential contribution of altered INSIGs expression
to CD36-mediated SREBP1 activation. Then, since CD36 can be
localized to ER where INSNG is anchored [41], we tested whether
CD36 could bind to INSIGs to change their function. Immunoprecip-
itation assay demonstrated that CD36 interacted with INSIG2
(Figure 6C). Similarly, immunofluorescence showed that CD36 co-
localized with INSIG2 (Figure 6D). PLA results demonstrated close
proximity (<40 nm) between CD36 and INSIG2 but not INSIG1
(Figure 6E). Finally, we investigated whether the CD36—INSIG2
interaction would affect the binding of SCAP to INSIG2. PLA signals
for SCAP—INSIG2 interaction were observed to be reduced in
CD360E cells compared with NC cells, suggesting that CD36
competitively inhibits the combination of SCAP to INSIG2 (Figure 6F).
Consistent with decreased interaction of INSIG2 with SCAP, we
observed increased Golgi-located SCAP in CD360E cells, while CD36
deletion decreased Golgi-located SCAP (Figure 6G,H). Taken
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together, these data indicate that CD36—INSIG2 interaction disrupts
the binding of SCAP to INSIG2.

3.7. CD36 is involved in the regulation of INSIG2 on SREBP1
processing

To confirm the effects of CD36 on SREBP1 processing and lipogenesis
are due to loss function of INSIG2, knockdown of both CD36 and
INSIG2 using small interfering RNA (siCd36 or silnsig2) was performed
in HepG2 cells with insulin treatment. Compared with siCon cells,
knockdown of CD36 inhibited the cleavage of SREBP1 and caused a
reduction of lipogenic gene expression, including SCD1, ACCa., FASN,
and ACLY (Figure 7A—C). Strikingly, the effects of siCd36 on SREBP1
and lipogenesis were restored by the inhibition of INSIG2 (Figure 7A—
C). These data demonstrate that INSIG2 is a key pathway by which
CD36 regulates SREBP1 processing.

As the above data indicated CD36 restricted the binding of SCAP to
INSIG2 (Figure 6F), we speculated CD36-inhibted SCAP—INSIG2
interaction accelerates the proteolytic processing of SREBP1. To vali-
date this hypothesis, we incubated CD36 OE cells with 25-HC and
betulin, two small molecules shown to promote SCAP—INSIGs inter-
action and prevent SCAP-SREBP transportation from ER to Golgi
[42,43]. As expected, treatment with 25-HC or betulin blocked CD36
overexpression-induced SREBP1 cleavage and lipogenic genes
expression (Figure 7D,E). These results suggest that the effects of
CD36 on SREBP1 processing are dependent on the regulation of
INSIG2—SCAP interaction.

4. DISCUSSION

Exploiting the mechanisms leading to the activation of DNL may be
beneficial in finding potential therapeutic strategies for NAFLD. In the
current study, our data showed that hepatic CD36 is upregulated in
mice and humans with early NAFLD. We revealed a stimulatory effect
for hepatocyte-specific CD36 in the development of HFD-induced
NAFLD. More importantly, a novel role of CD36 in regulating the
SREBP1 activation and subsequent DNL in the liver were elucidated.
Our study provides a molecular mechanism of how CD36 regulates
SREBP1 processing via binding with INSIG2, which contributes to
increased DNL in the development of NAFLD.

The significance of CD36 in the pathogenesis of NAFLD has been
indicated, proposing CD36 as a potential target for treating NAFLD.
Upregulated CD36 expression is a general property of steatotic livers
compared with healthy livers [11]. Overexpression of CD36 has been
linked to exacerbated steatosis by mechanisms involving increased
hepatic FFA uptake and TG storage [12]. However, CD36 deficiency
paradoxically promoted the development of NAFLD. In humans, patients
with genetic CD36 deficiency have a propensity to develop fatty liver by
unknown mechanisms [44]. CD36 deletion in ob/ob mice exacerbated
liver steatosis by suppressing hepatic VLDL output [17]. Similarly, our
previous study showed that CD36 knockout mice displayed hepatic
insulin resistance and lipid deposition even fed a low-fat diet [15] and
exhibited aggravated hepatic inflammation, steatosis, and fibrosis when
fed an HFD [16]. The enigmatic discrepancy between CD36 deficiency
protecting from and predisposing to NAFLD may be partially explained
by tissue or cell specificity. Therefore, the cell type-specific intervention
of CD36 may be more attractive for its further application. Our previous
results have shown reduced palmitic acid-induced lipid accumulation
by CD36 knockdown, while increased lipid accumulation by CD36
overexpression in liver cells [25]. Consistent with the in vitro results, in
the present study, we found that hepatocyte-specific CD36 deficiency in
mice markedly attenuated the development of hepatic steatosis. Our
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Figure 7: INSIG2 is a key pathway by which CD36 regulates SREBP1 processing. A—C: After a 24 h period of transfection with siCon, siCd36, and/or silnsig2, HepG2 cells
were cultured in serum-free medium for 12 h and then treated with 100 nM insulin for 12 h. The expression of SREBP1 and downstream targets were analyzed by Q-PCR (A).
n = 4—6. Nuclear localization of SREBP1 was determined by immunofluorescence staining and confocal analysis (B). Scale bars, 25 um. Quantitative of nuclear SREBP1 density
was shown in the right. The expression of SREBP1 and downstream targets were analyzed by immunoblotting (C). Quantification of protein levels was shown in the bottom. n = 3,
*P < 0.05 vs. siCon, *P < 0.05 vs. siCd36. D—E: CD360E or NC cells were cultured in serum-free medium overnight and then treated with DMSO, 25-hydroxycholesterol (25-HC,
5 uM), or betulin (10 pM) in the presence of insulin (100 nM) for 24 h. Nuclear localization of SREBP1 was determined by immunofluorescence staining and confocal analysis (D).
Quantitative of nuclear SREBP1 density was shown in the bottom. Scale bars, 25 pum. The expression of SREBP1 and downstream targets were analyzed by immunoblotting (E).
n = 3. Quantification of protein levels was shown in the right. *P < 0.05 vs. NC, #P < 0.05 vs. NC + DMSO0, TP < 0.05 vs. CD360E + DMSO.
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findings suggested that hepatocyte-specific intervention of CD36 could
be a promising therapeutic strategy to treat NAFLD.

CD36, well known as a FFA transport protein, facilitates FFA uptake in
adipocyte, cardiac, and skeletal muscle cells [45,46]. However, the
contribution of CD36 to liver FFA uptake remains inconclusive.
Hepatocyte-specific CD36 disruption in mice was shown to reduce
hepatic uptake of BODIPY-FL C16 [23]. Compared with fatty acid ana-
logs conjugated to fluorescent, such as BODIPY-FL C16, FFA uptake
assays with radiolabeled FFAs have the additional advantage of faithfully
mimicking the biochemical properties of natural FFAs. An observation in
humans with CD36 deficiency showed impaired [''C] palmitate uptake
by the heart but no restriction in the liver [47]. In the CD36 knockout
mice, the rate of [3H] oleic acid uptake was only reduced in the heart,
skeletal muscle, and adipose tissues, without changes in the liver
[48,49]. These findings suggested that CD36 might not be critically
required for FFA uptake in the liver. There is increasing evidence indi-
cating that CD36 not only acts as a FFA transporter, but also involves in
many other metabolic process. For example, Nassir et al. have found
that CD36 deletion reduced VLDL secretion in genetic-obese mice [17].
Our previous study reported that CD36 played a negative role in regu-
lating autophagic degradation of lipid droplets through an AMPK-
dependent pathway [25]. A significant observation in the present
study is the identification of CD36 as a key regulator for SREBP1-
mediated DNL in the liver. Our findings were consistent with the pre-
vious studies showing decreased expression of lipogenic genes in CD36
deficient mice in response to different environmental stimuli [23,49].
The overexpression of CD36 caused an increased SREBP1 processing
and lipogenesis, while CD36 deficiency resulted in the opposite effects.
Thus, our study extended previous research by elucidating the role of
CD36 in the regulation of SREBP1 processing.

INSIGs are ER anchor proteins and are reported to play negative
feedback roles in the SREBP processing [40]. When SCAP binds to
INSIGs, COPII proteins can no longer bind to SCAP, retain the SCAP/
SREBP complex in the ER, and block the activation of SREBP. However,
limited studies investigated the upstream regulation of INSIGs. AMPK
has been shown to stabilize INSIG protein via association and phos-
phorylation, which results in the ablation of SREBP1 proteolytic pro-
cessing and the attenuation of lipogenesis [50]. Moreover, a recent
study reported that phosphoenolpyruvate carboxykinase 1(PCK1)
bound to INSIGs and mediated phosphorylation of INSIGs, which dis-
rupted the interaction between INSIGs and SCAP, thereby activating
SREBP-dependent lipogenesis [51]. The above studies have shown
that INSIGs could be controlled by post-translational regulation. Here,
we identified a lipid mediator CD36 that is directly bound to INSIG2,
and then the SCAP/SREBP1 complex dissociated from INSIG2 and
transported from ER to Golgi, leading to lipogenesis. In addition, a
reduction of hepatic SREBP2 and hepatic TC content was also found in
the CD36 LKO mice; thus, it is conceivable that CD36 regulates
cholesterol metabolism by INSIG2/SREBP2 pathway. Our findings
suggest that INSIG2 and CD36 interaction regulates SREBP1 pro-
cessing in the liver to maintain lipid homeostasis. Interestingly, no
interaction between CD36 and INSIG1 was found. The precise
mechanism by which CD36 preferentially binds to INSIG2 has not yet
been resolved. INSIG1 and INSIG2 share 59% amino acid sequence
homology with the differences mainly in the hydrophilic NHp- and
COOH-terminal regions and are functionally similar in blocking SREBP
processing. However, functional distinctions may exist between INSIG1
and INSIG2 in that they are differentially regulated by metabolic hor-
mone and metabolites [52,53]. Several studies have found that INSIG2
genetic polymorphisms are associated with the metabolic syndrome
[53—55], while the common variation in INSIG1 is unlikely to have a
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major effect on type 2 diabetes and obesity risk [56]. Further under-
standing of the regulatory and functional differences between INSIG1
and INSIG2 may provide a new way to explain the preferential inter-
action between CD36 and INSIG2.

In conclusion, our findings demonstrate that (1) a novel role of CD36 in
mediating DNL, which is beyond its known function as a transporter for
FFA; (2) CD36 contributes hepatic lipid homeostasis via the regulation
of SREBP1 processing; (3) CD36 couples with INSIG2 to abolish the
interaction between INSIG2 and the SCAP—SREBP complex. Alto-
gether, our study suggests that CD36, by interacting with INSIG2, is
involved in SREBP1 processing and lipogenic program in the liver.
Thus, hepatocyte CD36-mediated DNL is a critical factor in the
development of NAFLD and provides an intervention strategy for the
treatment of hepatic steatosis.
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