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Abstract

As an emerging digital asset, Bitcoin has been traded for more than a decade, reaching an

impressively high market capitalization and continuing to expand its volume of trading at a

rapid pace. Many countries have legalized or are considering legalizing a trading platform

for this asset, and a set of companies worldwide accept it as a medium of exchange. As a

result of this expansion, many studies in finance literature have focused on studying the effi-

ciency of this cryptocurrency. In line with this literature, this paper investigates, using the

abnormal returns and abnormal trading volumes methodologies, the dynamics of investors’

reaction to the arrival of unexpected favorable and unfavorable information regarding the

Bitcoin market in the context of the three famous hypotheses: the overreaction, the uncer-

tain information, and the efficient market hypotheses. Overall, we find evidence confirming

that the Bitcoin market tends to mature over time. More precisely, over the entire analyzed

period, investors behave in accordance with the predictions of the uncertain information

hypothesis when positive and negative events occur. However, splitting the timespan into

sub-periods provides interesting insights. Remarkably in this respect is the fact that starting

with the second sub-period, the response of investors in the Bitcoin market supports, in a

moderate manner, the postulate of the efficient market hypothesis when favorable events

are addressed. Moreover, our findings reveal that during the pandemic period, the efficiency

of Bitcoin has increased, thus turning this stressful period into an advantage for this crypto-

currency. This improved market efficiency is also supported by the abnormal trading volume

analysis.

Introduction

The striking development and uniqueness of cryptocurrencies have attracted the attention of

market participants in every corner over the last decade. Overall, the galloping development of

the market for cryptocurrencies led to a market capitalization of US$2140 billion as of August

2021 [1], thus drawing the attention of policymakers, investors and researchers; and, of course,
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from this vast list of novel forms of electronic money, Bitcoin is being perceived as having a

privileged status. Mostly, the flourishing interest of academia in this relatively new asset class

was driven by its unique nature (see [2, 3] for a comprehensive review). To all appearances,

among the empirically documented inherent features of these synthetic currencies, it seems that

so far several are indisputable, to wit, high volatility [4–6], clustering and long memory of vola-

tility [7–10], the presence of jumps [11–13], high correlation within the crypto market [14–16]

but relative isolation from other asset classes in normal times [17–19] and increased contagion

in severe turbulent times [20–22], etc. The most disputable characteristics of this atypical asset

refer to the investment or currency potential and its ability to act or not as a safe haven. In this

regard, [23, 24] argue that it is unlikely to consider the most popular digital currency as a safe

haven investment or a medium of exchange, especially in the short-term [25] and especially

during the coronavirus pandemic [26, 27]. These findings are at odds with those of [28], which

suggests that Bitcoin can be considered akin to ‘virtual gold’ in periods where stock markets

have high volatility and especially in the short-term and during the Covid period [29]. More-

over, this cryptocurrency can be regarded as a currency, one that is placed between gold and the

dollar [30]. Along these lines, a more balanced evidence comes from [31], who states that Bit-

coin represents a unique asset that possesses properties of both a standard financial asset and a

speculative one, and from [32], who posit that Bitcoin does not behave like traditional curren-

cies or commodities but should be treated as a technology platform and that this crypto market

is much more mature and much less speculative than has been previously suggested.

Treating Bitcoin as a type of virtual financial asset is at the origin of the vast recent literature

testing the dominant paradigm in financial economics–the Efficient Market Hypothesis

(EMH) of [33]–on Bitcoin prices. Firstly, the semi-strong efficiency of Bitcoin was of interest

in [34] who showed, using an event study methodology, that the cryptocurrency has become

more efficient over time concerning its events, but it is undoubtedly inefficient in conjunction

with the monetary policy events. Contrary to these results, [35] found that the cryptocurrency

market is further maturing through interactions with macroeconomic factors.

Secondly, this lack of consensus is also to be found within the results related to the weak-

form efficiency of Bitcoin. As a parenthesis, we might mention that there are findings that con-

tradict the (in)efficiency of the crypto market since its long memory feature evolves with time,

thus validating the adaptive market hypothesis [36, 37]. On the one hand, the first and widely

known study on this subject is done by [38], who concluded that the Bitcoin market was gener-

ally inefficient in the period 2010–2016 but maybe in the process of moving towards an effi-

cient market. In contrast, [39] validated the weak efficient hypothesis within the same

timespan as the latter study, reasoning that everything is not so negative about Bitcoin (see

also [40]). Additional evidence for the trend towards informational efficiency of this digital

currency in recent times comes from [7, 41–43]. In this same context, [44] highlighted several

periods with significant anti-persistent memory in the BTC-USD series.

On the other hand, compelling evidence against the EMH–especially in recent times–was

provided by [45–47]. In other words, the authors pointed out that Bitcoin does not become

more efficient over time, but on the contrary, it becomes more inefficient. This unveils that the

long memory found in returns can help investors capture speculative profits. Therefore, the

analysis of the so-called market anomalies where certain patterns in price behavior makes

prices predictable in the short run is quested. More precisely and strongly related to our sub-

ject, it seems that the overreaction and the asymmetric behavior of investors have gained spe-

cial attention in recent literature. In this respect, [48] detected overreactions in the

cryptocurrency market for the period 2013–2017. Furthermore, the authors concluded that

this price behavior does not give rise to exploitable profit opportunities due to transaction

costs; therefore, it cannot be seen as evidence against the EMH. In the same vein, [49] found
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similar overreaction patterns for twelve cryptocurrencies but concluded that they are suitable

for trading price reversals. Besides, the authors argue that hourly returns during the day of pos-

itive abnormal returns are significantly higher than those during the average positive day and

vice-versa. This result was similar to the findings involving the overreaction behavior of the

Bitcoin market of [50]. In addition, the authors found that investors overreacted during days

of sharp declines in the Bitcoin price and weeks of market rallies. Also, the same asymmetrical

overreaction of the investor on this crypto market was found by [51–53]. Briefly, the authors

emphasized that the market reaction to negative events is stronger than to positive events; that

is to say, the cryptocurrency market is inefficient.

Summing up, the recent empirical evidence does not provide a common picture regarding

the (in)efficiency of the Bitcoin market. Given the discordant, even opposing results related to

price behavior on this market that is not too far away from its infancy phase, our work seeks to

contribute to the fact-finding concerning the time-varying efficiency of cryptocurrencies and

their deviations. Also, given the impressive number of studies in the present day on digital

assets, it seems that the analysis of the dynamics of Bitcoin’s behavior is a state-of-the-art of

the academic perimeter. In addition, given the ever-changing features of this emerging asset,

we believe this market provides a perfect setting to study investor behavior, especially in the

present time when this digital asset is in the spotlight.

In a nutshell, the Overreaction Hypothesis (OH) [54, 55] postulates that investors overreact

to the arrival of unexpected information. That is, they set the prices above their intrinsic value

in reaction to the arrival of unexpected favorable information and below intrinsic value in

reaction to the arrival of unexpected unfavorable information. However, the subsequent price

movements are corrective downward in the case of favorable information and corrective

upward in the case of unfavorable information. The Uncertain Information Hypothesis (UIH)

[56] posits that due to the uncertainty generated by the arrival of unexpected information—no

matter favorable or unfavorable—investors behave rationally and set the prices below their

intrinsic values. However, as the dust of uncertainty settles, the market observes an upward

corrective pattern, and prices increasingly approach their intrinsic values. Hence, the impor-

tance of studying the efficient market assumption and its anomalies within the Bitcoin market

lies in the fact that this novel and emerging asset that, not surprisingly, is defined as excessively

volatile, can contribute to the performance of portfolio diversification and can be profitably

exploited by using an appropriate trading strategy. We note that the OH and the UIH, follow-

ing the arrival of unexpected information, predict a process of corrective price patterns.

The present paper contributes to the current and growing literature on cryptocurrency by

examining the reactions of Bitcoin investors to the arrival of unexpected favorable and unfa-

vorable information, in general, market surprises. More specifically, we study Bitcoin inves-

tors’ reactions in the context of the Overreaction Hypothesis, the Uncertain Information

Hypothesis, and the Efficient Market Hypothesis (EMH) over almost its entire existence. To

achieve our goal, we have considered several objectives. Firstly, to better capture the dynamics

of investors’ behavior on the cryptocurrency market we split our sample into three periods. In

this manner, the division into three different periods–its appearance, development, and

COVID19 period–made it possible to highlight particular degrees of (in)efficiency for each

time segment. Secondly, we employed a simple abnormal return methodology for all periods

to assess whether Bitcoin’s efficiency is evolving over time. Then, we performed an analysis of

the abnormal trading volume because in the financial market literature this is a well-known

practice [57–59]. To date, a very limited number of studies related to cryptocurrencies have

investigated their abnormal volume (see e.g., [60–62]). However, none of these studies ana-

lyzed both the abnormal return and the trading volume to assess the efficiency of Bitcoin in

the light of the three hypotheses mentioned above.
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Overall, our paper contributes to the current rare literature related to both the impact of the

ongoing COVID19 pandemic on the efficiency of the Bitcoin market and the investigation of

the abnormal trading volume of this special asset. Briefly, the results of the analysis of abnor-

mal returns and trading volume suggest that, over time, the Bitcoin market has shown some

signs of maturity and a tendency towards the onset of efficiency. Even though cryptocurrencies

are considered atypical assets, our results are consistent with the notion that financial markets

may be inefficient in the early stages of their existence. Still, they become more efficient as

more investors participate in such markets and they grow.

The remainder of the paper is presented as follows: the second section explains the data and

the methodology. The empirical results are presented and discussed in the third section, and

the last section concludes.

Data and methodology

To explore the abovementioned (in)efficiency assumptions, we focus our analysis on the larg-

est cryptocurrency by market capitalization, namely, Bitcoin. As Bitcoin markets are highly

integrated and, thus, Bitcoin is a universal asset globally determined [62], we decided to con-

duct our analysis merely based upon the prices and trading volume expressed in USD collected

at a daily frequency from http://data.bitcoinity.org (e.g., [23, 63, 64]). The data covers a period

from January 1, 2011, to August 12, 2021. Several descriptive statistics of the raw data–Bitcoin

prices and volume data–for the analyzed time span is reported in S1 and S2 Appendices.

The methodology adopted in our paper is different from the traditional event study

approach. More specifically, we employed a method proposed by [56] and used by [65] and

[66] to calculate post-surprises cumulative abnormal returns and trading volumes.

To start, we computed daily returns as the first natural logarithmic difference of the closing

value of Bitcoin price. To test for the stationarity of the returns series, we conducted the ADF,

KPSS, and Phillips-Perron tests, and the results of these tests indicated that the returns are sta-

tionary and integrated of order zero. In line with the literature on trading volume [57, 60] but

also considering the fact that the raw trading volume data is highly non-normal and, at least in

the first period, there are several days where no trading place appear in the database, we per-

formed the event study using the transformation natural logarithm of (trading volume + 1).

We chose to form four samples, i.e., an interval that covers the entire timespan, from Janu-

ary 1, 2011, to August 12, 2021 (henceforth the whole period), an interval that ranges from the

beginning of the period to December 2013 (henceforward first period), an interval that ranges

between January 1, 2014 and March 10, 2020 (henceforth second period), and one from

March 11, 2020 –the announcement date of the outbreak of COVID19 global pandemic by the

WHO–until the end of the sample (henceforth COVID19 period). The reason for splitting the

data into three periods is twofold. Firstly, the graph of the return maps a break in the data

series in December 2013, and the Quandt-Andrews Breakpoint and the Multiple Breakpoint

tests indicate a break within that month. In addition, the empirical evidence suggests that the

crashes that occurred after 2014 have been smaller in magnitude and less susceptible. It seems

that only starting with 2014 have the market liquidity and efficiency improved, being, thus,

perceived as a sign of a maturing market [7, 34]. Nonetheless, this alleged maturity is still not

set in stone [47]. Therefore, by dividing the sample, we aimed to emphasize the dynamics of

Bitcoin efficiency and, hence, to find out whether, indeed, this popular cryptocurrency is on its

way towards maturing. Secondly, the last analyzed period that encompasses the ongoing

COVID19 pandemic was chosen to examine the behavior of Bitcoin during an unexpected

global catastrophic event. However, the last year and a half comprise not only the pandemic

period, but also some important announcements of a growing number of large corporations
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such as Tesla, PayPal Holdings Inc, French insurer AXA, Bank of NY Mellon Corp, etc. related

to Bitcoin acceptance as a form of payment. These (un)foreseen events have raised the trading

activity of Bitcoin, which has led to its impressive development.

Table 1 displays the summary statistics of daily returns and log trading volume for Bitcoin

during the four periods under study. As can be easily seen and as expected, the highest mean

return and market volatility, measured by standard deviation, are exhibited during the first

period of analysis. Likewise, and as expected, the deviation from normality is pronounced in

all return series of the analyzed samples, having negative asymmetric and leptokurtic distribu-

tions, as the values recorded are quite far from those corresponding to a Gaussian distribution.

In terms of trading volume, the highest value of the mean is recorded in the last period, while

the highest volatility is registered in the entire and first analyzed interval. Also, it is noteworthy

the fact that the skewness approaches the zero value over the studied periods, whereas the kur-

tosis is decreasing, indicating that extreme outliers are less than those of the normal

distribution.

To examine the reactions of investors to the arrival of unexpected information in the Bit-

coin market, we first identified the date of the arrival of unexpected information. Contrary to

previous studies [37, 53], we did not use economic and political news as surprises; rather, we

employed a strictly quantitative approach to identify the market surprises. Specifically, follow-

ing [67], we identified the market events by estimating GARCH(1,1) model for the data and

defined thresholds for standardized residuals as 2.5 quantiles (as in [56]) of unexpected unfa-

vorable information and, respectively, unexpected favorable information. Given the increasing

number of studies employing a GARCH framework to measure normal returns within an

event study (e.g. [68, 69]), we decided to use this model without predictors to obtain the stan-

dardized residuals. These are estimates of innovations normalized by their time-varying square

root of the conditional variance and are more suitable in capturing outliers than the ordinary

residuals. Thus, the resulting thresholds for the four periods under study obtained from the 2.5

quantiles of the standardized residuals for the unfavorable and favorable news are as follows:

-2.198 and 2.015 (whole period), -2.017 and 2.108 (first period), -2.262 and 1.995 (second

period), and -1.943 and 1.848 (COVID period). Then, by using these thresholds, we formed a

set of 5-day windows where the starting point is the unexpected information day. We did not

reckon with longer post-announcement windows since the cryptocurrency markets are highly

volatile and react to the news very quickly [52]. This approach resulted in 79 windows follow-

ing the arrival of bad news and 80 windows following the arrival of good news (whole period),

22 windows of negative events and 23 windows of positive events (first period), 48 windows

following the arrival of unfavorable surprises and 46 windows following the arrival of favorable

surprises (second period), and 12 window of bad news and 11 windows of good news

(COVID19 period).

To assess whether the arrival of unexpected information increases the return volatility and

risk in the Bitcoin market, we computed the variance of the daily returns of non-event days

and post-event 5-day windows for the four analyzed periods. Afterward, using the F-test, we

Table 1. Summary statistics for Bitcoin daily returns and log trading volume.

Period Log return Log trading volume

Mean Median St.dev. Skewness Kurtosis Mean Median St.dev. Skewness Kurtosis

Whole period (1.01.2011–12.08.2021) 0.307 0.210 4.291 -0.525 20.502 16.892 17.444 3.669 -1.329 4.982

First period (1.01.2011–31.12.2013) 0.714 0.469 6.285 -0.622 14.596 12.356 12.873 3.436 -0.794 3.770

Second period (1.01.2014–10.03.2020) 0.105 0.071 3.097 -0.192 7.571 18.269 18.094 1.536 0.242 1.923

COVID19 period (11.03.2020–12.08.2021) 0.332 0.323 3.448 -0.885 9.158 20.457 20.459 0.975 0.005 2.083

https://doi.org/10.1371/journal.pone.0264522.t001
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assayed whether the variance of returns over non-event days is higher compared to the vari-

ance of post-information windows. Concretely, if the arrival of unexpected information

increases market volatility and risk, we would expect the variance of returns during post-infor-

mation windows to be statistically significantly higher than the variance of returns for non-

event days. The rejection of the null hypothesis provides evidence that the arrival of unex-

pected information causes a surge in Bitcoin market uncertainty at first, but the prices then fol-

low a corrective upward trend.

To analyze investors’ reactions to the arrival of unexpected surprises in the Bitcoin market,

we proceeded with the following steps of the well-known event study methodology, which is

the main means of demonstrating how a market reacts to a signal. We believe that this

approach is suitable for our research given its already proven statistical power, broad applica-

bility in finance, and its continuous growing use [34, 70, 71]. However, we are aware of the

limitations related to the methodology of an event study, and especially to one that does not

deal with news announcements (e.g. [72, 73]), which is why we used two statistical tests for the

significance of abnormal returns and changed the event window to strengthen the robustness.

First, we built a set of daily abnormal returns (ARt) of each day included in the 5-day post-

information window. Following [53] and because the applicability of asset pricing models for

cryptocurrency is still puzzling [60], we calculated the AR in a simple manner, as the difference

between actual daily return and the expected return of each period–computed as the mean of

non-event days. More specifically:

ARt ¼ Rt � Rnon ð1Þ

where ARt is the abnormal return for Bitcoin on day t following the arrival of unexpected

information; t = 1,2,. . ..5; Rt is the return of Bitcoin on day t in the 5-day-window; and Rnon is

the mean return for Bitcoin over the non-event days. This way, we look for a set of post-infor-

mation windows containing daily abnormal returns.

Second, following the formation of abnormal returns windows, we computed the mean of

the abnormal returns across each day t included in the 5-day-post-information windows, as

follows:

mean of AR ¼ 1Mt¼ 1MARt ð2Þ

where t = 1, . . .M, M being the number of post-information windows formed after the arrival

of unexpected events in each analyzed period.

Third, the mean abnormal returns are cumulated over post-information 5-day windows.

Formally, the cumulative mean abnormal returns (CARt) are generated as follows:

CARt ¼ CARðt� 1Þ þ ARt ð3Þ

Concisely, the OH prediction is verified if the CARs illustrate statistically significant down-

ward (upward) trends following the arrival of unexpected favorable (unfavorable) information.

Alternatively, the prediction of UIH is confirmed if the CARs show statistically significant pos-

itive or non-negative patterns during post-event windows.

Finally, because in the empirical literature unusual volume is used to evaluate the weak

form efficiency of the traditional financial markets, we have incorporated in this research the

analysis of the abnormal volume of this novel asset class, Bitcoin, to further improve the

robustness of our results. In this regard, the abnormal trading volume methodology is an

extension of our abnormal return methodology. Briefly, we computed the abnormal volume as

the difference between the Bitcoin trading volume on day t of the event window and the
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average trading volume of Bitcoin over the non-event days. Similar to the return methodology,

we calculated the cumulative abnormal volume (CAV) for the post-event windows.

To obtain robust results, two statistical tests have been applied to assess if the CARs and

CAVs are statistically different from zero. The traditional parametric t-test has been conducted

to test for the significance of CARs and CAVs over the event period. In addition, given the rel-

atively small sample size and the already acknowledged nonnormality of the data, we also com-

puted a nonparametric test statistic. Thus, the Wilcoxon sign rank test has been conducted to

test the median significance of abnormal returns and trading volume.

Results and discussion

Table 2 displays the means of daily returns for non-surprise days, post-arrival of unexpected

information, post-favorable information days, and post-unfavorable information days. Briefly,

as can be seen, the highest mean returns are registered within the first analyzed period. In

addition, the results suggest that the average daily returns during the 5-day windows following

favorable market surprises are greater in absolute terms than the ones registered within the

post-unfavorable market surprises in all the cases.

Table 3 contains the variance of returns for days on which there was no market surprise, all

post-event days, post-favorable event days, and post-unfavorable event days. As can be seen,

during all periods, the Bitcoin market volatility of returns appears to be higher in the post-

event samples as opposed to non-event days, whereas the volatility of returns for the days fol-

lowing an unfavorable event is greater than the one for the days following a favorable event,

except for the whole period under study. In addition, it is easy to remark that most of the F-val-

ues are significant at the 1% level–except for three cases–thus, verifying that the volatility of

the Bitcoin market rises during the post-arrival of unexpected information. These results rep-

resent some insights that question the EMH, since the market uncertainty surges following the

arrival of unexpected news.

Table 4 presents the cumulative abnormal returns for the post-arrival of unexpected favor-

able and unfavorable information for the whole period (1.01.2011–12.08.2021), along with the

t-values and z-values for the statistical significance tests. As the figures in Table 4 indicate, for

all the analyzed event windows, the null hypotheses, i.e., that the mean and, respectively, the

median of CARs are equal to zero, are rejected in the case of both parametric and nonparamet-

ric tests.

The analysis of the whole period, which overlaps almost totally with the entire existence of

Bitcoin, shows that the CARs exhibit a relatively upward trend at the arrival of unexpected

favorable news. This suggests that the investors in the Bitcoin market, due to the uncertainly

generated by the arrival of unexpected information, set the prices below their intrinsic value at

first. However, as the certainty gradually settles, the Bitcoin prices track a corrective upward

trend to some extent, approaching their intrinsic value, as postulated by the UIH. In the same

vein, in the case of unfavorable news, the CARs exhibit a relatively non-negative trend, the fact

Table 2. Mean Bitcoin daily returns for non-event and post-event days.

Period Non-event days All post-event days Post-favorable event days Post-unfavorable event days

Whole period (1.01.2011–12.08.2021) 0.2903 0.3751 2.9068 -2.1886

First period (1.01.2011–31.12.2013) 0.7582 0.5228 4.4376 -3.5343

Second period (1.01.2014–10.03.2020) 0.1209 0.0459 1.9628 -1.7911

COVID19 period (11.03.2020–12.08.2021) 0.2958 0.4591 2.4552 -1.3707

Post-event periods contain the days after both favorable and unfavorable events.

https://doi.org/10.1371/journal.pone.0264522.t002

PLOS ONE An analysis of investors’ behavior in Bitcoin market

PLOS ONE | https://doi.org/10.1371/journal.pone.0264522 March 10, 2022 7 / 18

https://doi.org/10.1371/journal.pone.0264522.t002
https://doi.org/10.1371/journal.pone.0264522


that is in accordance with the UIH predictions. In other words, these findings reveal that the

analysis conducted over the entire period shows evident signs of inefficiency within the Bitcoin

market. These results are similar to those of [42], who found that historical cryptocurrencies

are inefficient but register periods of efficiency. Therefore, the analysis of Bitcoin returns on

smaller subsamples is essential.

Table 5 shows the cumulative abnormal returns following the arrival of unexpected favor-

able and unfavorable information and the t-values and z-values for the statistical significance

Table 3. Variance of returns and F-test for Bitcoin.

Period Sample Variance F-Value

Whole period (1.01.2011–12.08.2021) Non-event days 9.3739 (a) 5.7056���

All post-event days 53.4851 (b) 6.1546���

Favorable 57.6935 (c) 3.8683���

Unfavorable 36.2618 (d) 1.5910���

First period (1.01.2011–31.12.2013) Non-event days 20.8851 (a) 5.3566���

All post-event days 111.8734 (b) 4.5359���

Favorable 94.7330 (c) 4.6915���

Unfavorable 97.9847 (d) 1.0343

Second period (1.01.2014–10.03.2020) Non-event days 5.4632 (a) 4.6440���

All post-event days 25.3714 (b) 3.2807���

Favorable 17.9231 (c) 4.7022���

Unfavorable 25.6893 (d) 1.4333��

COVID19 period (11.03.2020–12.08.2021) Non-event days 7.6720 (a) 3.5105���

All post-event days 26.9330 (b) 2.3931���

Favorable 18.3607 (c) 3.6647���

Unfavorable 28.1161 (d) 1.5313�

(a) The F-statistic—marked a—tests the null hypothesis that the variance of returns for non-event days is equal to the variance of returns for all post-event days; (b) The

F-statistic—marked b—tests the null hypothesis that the variance of returns after unexpected favorable events is equal to the variance of non-event returns; (c) The F-

statistic—marked c—tests the null hypothesis that the variance of returns after unexpected unfavorable events is equal to the variance of non-event returns; (d) The F-

statistic—marked d—tests the null hypothesis that the variance of returns after unexpected favorable events is equal to the variance of returns after unexpected

unfavorable events.

���, ��, � indicates statistical significance at the 1%, 5% and, respectively, 10% levels.

https://doi.org/10.1371/journal.pone.0264522.t003

Table 4. Post-event CARs for the whole period (1.01.2011–12.08.2021)–favorable and unfavorable events.

Favorable news Unfavorable news

Days CARs t-test z-test CARs t-test z-test

1 8.559 4.8787� 7.7700� -8.692 -5.1886� -7.7216�

2 12.015 6.8486� 7.7700� -12.608 -7.5262� -7.7216�

3 11.857 6.7586� 7.4918� -12.302 -7.3435� -7.6847�

4 12.392 7.0640� 7.0457� -12.414 -7.4103� -7.4626�

5 13.082 7.4572� 6.6620� -12.395 -7.3989� -7.2475�

Various event windows

(0,2) 10.899 6.1371� 8.0501� -12.406 -4.8604� -7.9135�

(0,6) 12.557 4.3337� 7.2977� -12.484 -7.7993� -7.4245�

CARs, cumulative abnormal return.

For the T-test and the Wilcoxon sign rank test, the t-values and, respectively, z-values are provided.

� denotes statistical significance at the 10% level or higher.

https://doi.org/10.1371/journal.pone.0264522.t004
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tests for the first sub-period under investigation that corresponds to the emergence of Bitcoin.

Just like in the above studied period, the results of the parametric and nonparametric tests are

consistent for all the analyzed windows.

In the first analyzed subsample, the behavior of Bitcoin prices seems to exhibit a relative

increase in responses to the arrival of unexpected favorable information, an assumption which

is consistent with the UIH predictions. However, in the case of unfavorable events, the fluctuant

corrective pattern tends to show the presence of an overreacting behavior. We might mention

here that there is a slight difference between these two hypotheses: while the OH provides evi-

dence of investors irrationality due to bad news, the UIH assumes that investors respond ratio-

nal to an increased volatility due to the arrival of good news. Therefore, as expected, within the

early stages of Bitcoin, this market behaves in an inefficient manner. In this regard, a number of

studies (e.g., [38, 41]) suggested the same lack of efficiency of Bitcoin during this interval.

Table 6 displays the cumulative abnormal returns following the arrival of unexpected favor-

able and unfavorable information and the corresponding t-values and z-values for the statisti-

cal significance tests for the second sub-period under study. The results of the tests are

consistent for all the studied event windows, except for the last two days of the 5-day window.

Table 5. Post-event CARs for the first sub-period (1.01.2011–31.12.2013)–favorable and unfavorable events.

Favorable news Unfavorable news

Days CARs t-test z-test CARs t-test z-test

1 11.803 4.7437� 4.1973� -12.473 -3.4377� -4.1069�

2 16.201 6.5112� 4.1973� -20.694 -5.7035� -4.1069�

3 14.815 5.9541� 4.1668� -19.074 -5.2569� -4.0917�

4 16.757 6.7346� 4.1973� -20.173 -5.5598� -4.0744�

5 18.434 7.4087� 3.7410� -21.462 -5.9152� -4.0095�

Various event windows

(0,2) 13.616 6.6216� 4.4573� -18.247 -4.2230� -4.2857�

(0,6) 18.376 3.5381� 4.0145� -19.622 -5.6766� -4.0145�

CARs, cumulative abnormal return.

For the T-test and the Wilcoxon sign rank test, the t-values and, respectively, z-values are provided.

� denotes statistical significance at the 10% level or higher.

https://doi.org/10.1371/journal.pone.0264522.t005

Table 6. Post-event CARs for the second sub-period (1.01.2014–10.03.2020)–favorable and unfavorable events.

Favorable news Unfavorable news

Days CARs t-test z-test CARs t-test z-test

1 5.977 4.4425� 5.9052� -7.439 -5.1198� -6.0308�

2 8.609 6.3988� 5.9052� -10.921 -7.5162� -6.0308�

3 8.721 6.4815� 3.3268� -10.837 -7.4579� -6.0152�

4 9.168 6.8141� 1.1199 -10.504 -7.2290� -5.7129�

5 9.209 6.8446� 0.3441 -9.559 -6.5789� -5.6308�

Various event windows

(0,2) 7.962 6.0828� 5.7346� -9.820 -4.7490� -6.0927�

(0,6) 8.769 6.8251� 5.4617� -9.581 -7.1451� -4.9110�

CARs, cumulative abnormal return.

For the T-test and the Wilcoxon sign rank test, the t-values and, respectively, z-values are provided.

� denotes statistical significance at the 10% level or higher

https://doi.org/10.1371/journal.pone.0264522.t006
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However, it became known that when parametric and nonparametric tests are applied, they

frequently lead to different inferences [74].

From this point, the situation is starting to behave a bit differently if we look at the results

of the second sub-period as compared to the previously analyzed data sets. Seemingly, the rela-

tive smooth trend along the last four days after the arrival of a positive surprise is cogent,

which might imply that, within this interval, the result tends to sketch a moderate consistency

with the prediction of the EMH. Regarding the negative surprises, it seems that the slight

upward price reversal and adjustment in the last three days is consistent with the prediction of

the overreaction hypothesis. In other words, it seems that the findings within the second

period tend to emphasize a modest trend towards the efficiency of the Bitcoin market in the

case of favorable news. Surprisingly, in the case of unfavorable news arrival, the graph indicates

a persistent overreaction pattern of investors, yet featured by a more tranquil trend than in the

previously studied periods. In line with [38, 43], our study holds that there are signs of

enhanced efficiency of Bitcoin over time.

The cumulative abnormal returns following the arrival of unexpected favorable and unfa-

vorable information and the t-values and z-values for the statistical significance tests for the

COVID19 sub-period are shown in Table 7.

As can be seen, the results exhibit a relatively stable pattern in Bitcoin returns starting with

the day after the event, which implies the fact that investors’ behavior is consistent with the

efficient market hypothesis, irrespective of the sign of the event. Therefore, in keeping with

[74–77], we posit that during the pandemic, the Bitcoin market became more efficient. In

addition, the abovementioned authors revealed that Bitcoin has similar efficiency with spot

gold and is more efficient than S&P 500, MSCI World Index, and US Dollar Index during the

pandemic, highlighting that this cryptocurrency is more resilient during an extreme event.

The graphical representations of the CARs regarding the reactions of Bitcoin investors to

the arrival of unexpected information are provided in Figs 1–4. The graphs visually verify the

above discussion; more especially, within the four periods that we considered, high abnormal

returns are noticed on the event day, suggesting that there exists a market reaction to

surprises.

Comparing the magnitudes of CARs for negative and positive events, we can state that the

market reacts stronger to negative surprises than to positive ones, especially within the first

and the second sub-periods. The asymmetric behavior of this emerging asset is in line with the

Table 7. Post-event CARs for the COVID19 sub-period (11.03.2020–12.08.2021)–favorable and unfavorable events.

Favorable news Unfavorable news

Days CARs t-test z-test CARs t-test z-test

1 8.199 7.9154� 2.8306� -9.490 -16.0627 -3.0159�

2 8.877 8.5703� 2.8306� -8.777 -14.8558 -3.0159�

3 8.992 8.6804� 2.6219� -8.600 -14.5567 -2.7957�

4 10.078 9.7294� 2.5638� -7.891 -13.3563 -2.9512�

5 10.797 10.4230� 2.1017� -8.332 -14.1027 -2.4216�

Various event windows

(0,2) 8.587 22.5023� 3.4590� -9.058 -21.4109� -2.9580�

(0,6) 10.950 4.3035� 3.0127� -7.972 -10.4482� -2.5612�

CARs, cumulative abnormal return.

For the T-test and the Wilcoxon sign rank test, the t-values and, respectively, z-values are provided.

� denotes statistical significance at the 10% level or higher

https://doi.org/10.1371/journal.pone.0264522.t007
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findings of [49, 51, 53]. However, the empirical evidence presented within Tables 4–7 suggests

that the fluctuation of returns registered after the arrival of an unexpected event shows a

decrease in magnitude over time.

The rationale of this improving efficiency and, respectively, lower volatility observed in the

second subsample could be the increasing familiarity of investors with this particular market.

Likewise, the variation in the efficiency of the market for Bitcoin dependent on the type of

event was of interest in [37] who suggested that positive news appeared to increase the effi-

ciency whilst negative news reduced the efficiency.

In addition, as can be seen in Tables 4–7, the average cumulative abnormal returns over

two different lengths of windows were employed to strengthen the robustness of our results.

The results across alternative event windows support our findings and, moreover, all reach sta-

tistical significance. The results indicate that if investors keep this particular asset after the

occurrence of a favorable event, one can gain a substantial CAR and vice-versa for the unfavor-

able events. Thus, it seems that the short-term impacts of unexpected positive and negative

news are noteworthy for the investors in the Bitcoin market. However, even though the results

seem to be quite robust, the abnormal returns methodology merely reflects the beliefs of

Fig 1. Graphs of daily CARs during a 5-day window following arrival of unexpected event (whole period– 1.01.2011 to 12.08.2021).

https://doi.org/10.1371/journal.pone.0264522.g001

Fig 2. Graphs of daily CARs during a 5-day window following arrival of unexpected event (first period– 1.01.2011 to 31.12.2013).

https://doi.org/10.1371/journal.pone.0264522.g002
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investors in a consensus price, thus, further empirical examination that incorporates volume

trading is needed to better understand the reaction of investors to surprises.

Table 8 presents the cumulative abnormal trading volume following the arrival of unex-

pected favorable and unfavorable information and the t-values and z-values for the statistical

significance tests for all the analyzed periods and event windows. Here, the results of the

parametric and nonparametric tests are equivocal and more puzzling than in the abnormal

return analysis.

Briefly, the figures in Table 8 verifies the hypothesis that a surprise, whether negative or

positive, is followed by an increase in trading activity, except for the first studied period in

which the volume decreases in response to unfavorable news. Abnormal trading volume

increases sharply on the day of the event, but afterwards it declines. There are only two excep-

tions to this pattern. On one hand, in the COVID19 period, after a slight drop in transaction

volume, from day 4 this decrease is reverted and remains persistent even after 7 days. This

implies that within this period, an unexpected positive or negative news has a lasting impact

on Bitcoin trading activity. Also, as expected, during this last investigated period, the initial

effect on trading volume is the largest of all analyzed periods. This could suggest that the price

changes reflect more quickly the existing information to market participants, thus,

Fig 4. Graphs of daily CARs during a 5-day window following arrival of unexpected event (COVID19 period– 11.03.2020 to 12.08.2021).

https://doi.org/10.1371/journal.pone.0264522.g004

Fig 3. Graphs of daily CARs during a 5-day window following arrival of unexpected event (second period– 1.01.2014 to 10.03.2020).

https://doi.org/10.1371/journal.pone.0264522.g003
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emphasizing an improvement in the weak form efficiency of Bitcoin. On the other hand, the

other exception was found in the first period. Here, in reaction to a favorable surprise, the

Table 8. Post-event CAVs after unexpected favorable and unfavorable events, for the four analyzed periods.

Favorable news Unfavorable news

Whole period (1.01.2011–12.08.2021)

Days CAVs t-test z-test CAVs t-test z-test

1 0.451 8.8286� 1.6307� 0.867 1.5221 3.1326�

2 0.552 10.7995� 1.2518 1.412 2.4785� 2.9567�

3 0.541 10.5851� 0.7866 1.794 3.1492� 2.8345�

4 0.567 11.0993� 0.6619 2.062 3.6207� 2.6341�

5 0.581 11.3700� 0.6475 2.317 4.0684� 2.5022�

Various Event Windows

(0,2) 0.250 2.3262� 0.7428 0.797 4.1816� 2.5107�

(0,6) 1.242 2.7440� 1.3307 1.279 3.9958� 2.2284�

First sub-period (1.01.2011–31.12.2013)

Days CAVs t-test z-test CAVs t-test z-test

1 1.113 1.0245 2.0986� -0.670 -0.4553 -0.6980

2 1.779 1.6382� 1.9161� -1.425 -0.9687 -0.7305

3 2.300 2.1179� 1.8249� -2.378 -1.6170� -0.8279

4 3.019 2.7800� 1.7945� -3.361 -2.2858� -0.9577

5 3.912 3.6017� 1.7641� -4.346 -2.9551� -1.0227

Various Event Windows

(0,2) 1.664 3.0195� 2.1715� -2.271 -1.8069� -1.2857

(0,6) 3.900 1.8435� 2.2419� -4.399 -1.6315� -1.1296

Second sub-period (1.01.2014–10.03.2020)

Days CAVs t-test z-test CAVs t-test z-test

1 0.922 1.0053 3.6873� 1.209 1.1671 4.2565�

2 1.589 1.7319� 3.2394� 2.032 1.9616� 4.0308�

3 2.166 2.3615� 2.7477� 2.749 2.6532� 3.8257�

4 2.768 3.0181� 2.5729� 3.322 3.2062� 3.6103�

5 3.228 3.5188� 2.2561� 3.824 3.6907� 3.4975�

Various Event Windows

(0,2) 1.594 2.5519� 3.3771� 1.950 2.5990� 4.0436�

(0,6) 2.852 2.2630� 3.0343� 3.142 2.4482� 3.4251�

COVID19 sub-period (11.03.2020–12.08.2021)

Days CAVs t-test z-test CAVs t-test z-test

1 1.238 1.4450 1.9254� 1.618 1.2128 2.0309�

2 2.010 2.3452� 1.9017� 2.685 2.0130� 2.0185�

3 2.578 3.0089� 1.7519� 3.493 2.6182� 1.9867�

4 2.910 3.3958� 1.7361� 4.156 3.1151� 1.9760�

5 3.473 4.0533� 1.6845� 5.089 3.8148� 1.7645�

Various Event Windows

(0,2) 1.813 2.9797� 1.9577� 2.470 2.8188� 2.1580�

(0,6) 2.790 2.6179� 1.7127� 3.857 2.3391� 1.6612�

CAVs, cumulative abnormal log trading volume.

For the T-test and the Wilcoxon sign rank test, the t-values and, respectively, z-values are provided.

� denotes statistical significance at the 10% level or higher

https://doi.org/10.1371/journal.pone.0264522.t008
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volume reverts after a sharp decline and begins to increase from day 3. However, in this case

that encompass the early stages of Bitcoin, we cannot speak about enhanced efficiency. A pos-

sible explanation could be related to the wide presence of uninformed investors in this newly

emerging market. Furthermore, when we compare the magnitude of abnormal trading vol-

ume, it seems that investors react more strongly to negative surprises than to positive ones.

Our results are in line with those of [61] who found significant abnormal volume on the cryp-

tocurrency market. However, contrary to these results, we found larger reactions to the bad

news than to the positive ones.

Concluding remarks

Cryptocurrencies have become a buzzword on a global scale and are presently a fashionable

topic in empirical financial research. In this regard, the study of cryptocurrency price behavior

is of current relevance since the empirical evidence shows us that Bitcoin is becoming a far-

reaching and increasingly worthy of consideration method of payment all around the world,

and not just in anyway. Only in the last year, this crypto mania was embraced by giant compa-

nies such as Tesla, PayPal, AXA, and Bank of New York Mellon, and it seems that this fairy

tale is to be continued.

Therefore, in this paper, we examined investors’ reactions to unexpected information with

respect to the most popular cryptocurrency, Bitcoin, in an event study framework. The analysis

of the entire interval suggests that investors’ reaction to favorable and unfavorable events is in

line with the UIH. The results of the first sub-period, which encompasses the early stages of

Bitcoin development, appear to be consistent with the UIH regarding the arrival of positive

news and the OH regarding the arrival of negative news. The results of the second analyzed

subsample show, with a slight vigor, some signs of improved efficiency in the case of positive

events and a persistent overreaction of investors in the case of negative events. In other words,

within these three abovementioned periods, significant price reversals exist in response to the

arrival of unexpected events. Finally, the analysis of the pandemic period reveals an improved

efficiency of the Bitcoin market. In accordance with these demonstrated behavioral hypothe-

ses, our findings suggest that in the case of positive events, investors seem to act more ratio-

nally, while in the case of negative events, investors tend to behave a bit more irrational. Even

more, the analysis reveals an asymmetric behavior of Bitcoin prices. The improved market effi-

ciency, along with the asymmetric behavior of this cryptocurrency, is also supported by the

abnormal trading volume analysis.

In summary, in line with the existing literature, our results generally suggest that investors’

behavior pictures an enhanced efficiency over time as the Bitcoin market matures and devel-

ops. Moreover, it seems that the pandemic period was favorable for Bitcoin efficiency.

Our findings are relevant for investors, especially for understanding the dynamics of cryp-

tocurrencies over time and making informed investment decisions. Related to recent times, it

seems that the increasing Bitcoin market efficiency proves the fact that this cryptocurrency

cannot be utilized to generate remarkable abnormal returns. Moreover, this propriety acquired

especially during the pandemic suggests that it may serve as a viable option for portfolio diver-

sification and, maybe, as a safe haven. But even though the COVID period was favorable for

the Bitcoin market, this exuberance should be moderated because the additional analysis that

involves longer time periods is necessary.

Our analysis exhibits three main caveats: (1) the event study methodology based on a simple

model to compute the expected return and trading volume; (2) the short event windows

employed–a choice made due to the fact that this global market reacts rapidly to information

and is highly volatile–which allowed us to draw conclusions mainly in the short term; (3) the
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daily frequency of the Bitcoin data used. The results presented in this paper pave the way to

further investigations into the efficiency of cryptocurrency markets; for example, what are the

factors that influence the market (in)efficiency during normal and turbulent times? Does this

in vogue trend of acceptance as a means of payment by big companies improve the efficiency

of this market?
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