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Abstract

A user ready, portable, documented software package, NFTsim, is presented to facilitate

numerical simulations of a wide range of brain systems using continuum neural field model-

ing. NFTsim enables users to simulate key aspects of brain activity at multiple scales. At the

microscopic scale, it incorporates characteristics of local interactions between cells, neuro-

transmitter effects, synaptodendritic delays and feedbacks. At the mesoscopic scale, it

incorporates information about medium to large scale axonal ranges of fibers, which are

essential to model dissipative wave transmission and to produce synchronous oscillations

and associated cross-correlation patterns as observed in local field potential recordings of

active tissue. At the scale of the whole brain, NFTsim allows for the inclusion of long range

pathways, such as thalamocortical projections, when generating macroscopic activity fields.

The multiscale nature of the neural activity produced by NFTsim has the potential to enable

the modeling of resulting quantities measurable via various neuroimaging techniques. In

this work, we give a comprehensive description of the design and implementation of the soft-

ware. Due to its modularity and flexibility, NFTsim enables the systematic study of an unlim-

ited number of neural systems with multiple neural populations under a unified framework

and allows for direct comparison with analytic and experimental predictions. The code is

written in C++ and bundled with Matlab routines for a rapid quantitative analysis and visuali-

zation of the outputs. The output of NFTsim is stored in plain text file enabling users to select

from a broad range of tools for offline analysis. This software enables a wide and convenient

use of powerful physiologically-based neural field approaches to brain modeling. NFTsim is

distributed under the Apache 2.0 license.

This is a PLoS Computational Biology Software paper.
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Introduction

The brain is a multiscale physical system, with structures ranging from the size of ion chan-

nels to the whole brain, and timescales running from sub-millisecond to multi-year dura-

tions. When modeling brain structure and dynamics, it is thus necessary to choose models

that are appropriate to the scales of the phenomena involved. These range from microscale

models of individual neurons and their substructures, through network-level models of dis-

crete neurons, to population-level mesoscale and macroscale neural mass and neural field

models that average over microstructure and apply from local brain areas up to the whole

brain. Many useful results can be obtained analytically from models at various scales, either

generally or when applied to specific brain systems and phenomena. However, in order to

minimize approximations and make realistic predictions in complex situations, numerical

simulations are usually necessary. The purpose of this paper is to present a neural field soft-

ware package, NFTsim, that can simulate scales from a few tenths of a millimeter and a few

milliseconds upward, thereby making contact with experiments [1–6] and other classes of

simulations over this range [7, 8].

No one type of brain model is optimal at all scales. For example, single neuron models

abound in neuroscience, and can include a large number of biophysical effects with relatively

few approximations. Many such models have also been used to study networks of interconnec-

ted neurons with varying degrees of idealization, thereby revealing a huge number of insights

[9–11]. However, several key problems arise as network size grows: (i) the computational

resources required become prohibitive, meaning that simulations can often only be carried out

in physiologically unrealistic scenarios, typically with idealized neurons, which may be quanti-

tatively and/or qualitatively inappropriate for the real brain; (ii) it is increasingly difficult to

measure and assign biophysical parameters to the individual neurons—e.g., individual connec-

tivities, synaptic strengths, or morphological features, so large groups of neurons are typically

assigned identical parameters, thereby partly removing the specificity of such simulations; (iii)

analysis and interpretation of results, such as large collections of timeseries of individual soma

voltages, becomes increasingly difficult and demanding on storage and postprocessing; (iv)

emergence of collective network-level phenomena can be difficult to recognize; (v) the scales

of these simulations are well suited to relate to single-neuron measurements, and microscopic

pieces of brain tissue, but are distant from those of noninvasive imaging modalities such as

functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and magneto-

encephalography (MEG) [12–14], which detect signals that result from the aggregate activity

of large numbers of neurons; and (vi), inputs from other parts of the brain are neglected,

meaning that such models tend to represent isolated pieces of neural tissue.

At the level of neurons and neuronal networks [15, 16], software is abundant, including

BRIAN, NEURON, GENESIS, and NeoCortical Simulator [17–22]. A detailed review of tools

and implementation strategies for spiking neural network simulations can be found in [9].

At the largest scales, neural mass models average the properties of huge numbers of neurons

into those of a single population, without taking account of its spatial aspects. This enables the

temporal dynamics of whole neural populations to be approximated, but information on indi-

vidual neurons and spatial dynamics and patterns is not tracked. This scale can be used to

study whole-brain phenomena such as generalized seizures, if time delays within each mass

can be neglected. This approach has been used to treat relatively coarse-grained networks of

interacting cortical brain regions, each modeled as a neural mass. However, it is rare to see

careful attention paid to the need for these representations to approach the continuum limit,

in which the cortex is treated as a continuous sheet of neural tissue, as the size of the regions

decreases [10, 23–25], thereby throwing some such discretizations into question. Of course,
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neural structure is not truly continuous, but its granularity is at a far finer scale than that of the

discretizations just mentioned.

Above the single-neuron scale and extending to encompass the neural-mass limit as a spe-

cial case, neural field approaches retain spatial information in a continuum limit in which

properties such as firing rate and soma voltage are viewed as local averages over many neurons,

and can vary from point to point, and as functions of time; when correctly discretized, neural

mass models are a limiting case of the more general neural fields and should not be viewed

as a separate category. Neural fields approximate rate-based models of single neurons from

the small scale, while retaining relative timings between neural inputs and outputs. Simulta-

neously, they self-consistently add spatial structure that is neglected in neural mass models.

Hybrid models with features of both neural fields and spiking neurons have also been devel-

oped and used to clarify the relationship between these approaches [3], or to enable single-neu-

ron dynamics to be influenced by average neural fields [26], but we do not discuss these classes

of models further here.

The issues discussed in the preceding paragraphs are closely analogous to ones that arise in

other branches of physics. Specifically, no single model can cover all scales at once. Rather, a

hierarchy of models is needed, from the microscale to the macroscale, each relating predictions

to measurements at its operational scale. This yields tractable models that can be interpreted in

terms of concepts and measurements that apply at the appropriate scales for a given phenome-

non. Importantly, each model needs to be related to the ones at nearby scales, especially by

making complementary predictions at overlapping scales of common applicability. By analogy,

molecular dynamics approaches and statistical mechanics (akin to single neuron approaches)

are widely used to track molecules at the microscopic scale, but large-scale theories like ther-

modynamics and fluid mechanics (akin to neural mass and neural field methods) are more

useful and tractable for macroscopic phenomena, and their predictions can be more easily

interpreted. At intermediate scales, nonequilibrium thermodynamics and fluctuation theory

meet with statistical mechanics and molecular approaches to make complementary predictions

of the same phenomena; so that consistency of the various approaches in their common

domain can be established. Although molecular-level and spiking-neuron approaches are

more fundamental, they are not practical at large scales, and yield results that have to be rein-

terpreted in terms of larger-scale observables in any case. Conversely, thermodynamic and

neural-field approaches fail at spatial and temporal scales that are too short to justify the rele-

vant averaging over a system’s microscopic constituents.

Neural field theory (NFT) incorporates multiple scales such as neurotransmitter effects,

synaptodendritic dynamics at the microscale; an average of medium to long-range corticocor-

tical axonal ranges which are essential to model dissipative wave transmission and to produce

synchronous oscillations at the mesoscopic scale; and, long-range time delays at the macro-

scopic scale of the whole brain. Thus, NFT both provides useful macroscopic predictions and

can reach down to mesoscopic scales that now overlap with those that can be simulated with

neuron-level methods. This provides a range of common applicability on scales of around 1

mm, or slightly less, where complementary predictions can be made and tested—an overlap

that will increase as microscopic simulations increase in scale. Equally significantly, quantita-

tive neural field predictions can readily be made of quantities observable by EEG, MEG, fMRI,

electrocorticography (ECoG), and other imaging technologies, by adding the biophysics of

these signals, measurement procedures, and postprocessing [27–30]. This enables predictions

of a single brain model to be tested against multiple phenomena in order to better determine

the relevant physiological parameters.

As an illustration of the versatility of NFT approaches, we note that the particular NFT on

which the present NFTsim software is based has been extensively applied and quantitatively
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tested against experiments, including EEG, evoked response potentials (ERPs), ECoG, age-

related changes to the physiology of the brain, sleep and arousal dynamics, seizures, Parkin-

son’s disease, and other disorders, transcranial magnetic stimulation (TMS), synaptic plasticity

phenomena [1, 6, 27–39]. Indeed, one of the major strengths of this NFT is its versatility:

within the same framework we can express different models to study purely cortical phenom-

ena, the corticothalamic system, basal ganglia, sleep dynamics, or the visual cortex, among

an essentially unlimited number of other applications [1, 27–29, 31, 33, 35–38, 40–43]. This

NFT has also been clearly linked to hybrid spiking-field approaches [3, 26], and to network

and connection-matrix representations of spatial structure in the brain [44], usually obtained

via fMRI.

We stress that the NFT embodied in NFTsim is not the only possibility. Other NFTs have

been developed and applied by numerous authors [45–53], each of which has been applied to

one or more physical situations in these and subsequent publications. This list is not exhaus-

tive, since the present work is not intended as a review, but more examples can be found in

[10, 25], and [54]. Notably, most of these NFTs can be expressed in the notation of the present

paper, and can thus be simulated with the NFTsim software described below. Some of these

previous neural field models leave out physical effects that are included in NFTsim, while oth-

ers include additional features that remain to be incorporated in a future version of the code.

A few software packages are available to model neural masses and neural fields: [7] devel-

oped a neuroinformatics platform for large-scale brain modeling in terms of a network of

linked neural masses with anatomically specified cortical geometry [54], long-range connectiv-

ity, and local short-range connectivity that approximates the continuum limit when it is

Gaussian and homogeneous [24]. While the mathematical framework described in [54] allows

for neural field models to be treated using realistic geometry on nonregular grids, a user-ready

implementation is not currently available. Similarly, the Brain Dynamics Toolbox [55] pro-

vides tools for network-based and continuum models of brain dynamics. The most recent

simulation tool for spatiotemporal neural dynamics is the Neural Field Simulator [8], which

allows for study of a range of 2D neural field models on a square grid. However, this software

does not allow for either the simulation of neural field models with heterogeneous parameters

or with multiple populations.

To address the need for research-ready NFT simulation tools with direct application to

the study of large-scale brain phenomena, this paper introduces and describes NFTsim, a soft-

ware package that solves neural field equations expressed in differential form for simulating

spatially extended systems containing arbitrary numbers of neural populations. The examples

of dynamics provided in this work represent perturbations around a fixed point to follow what

has been done in previous analytic work. However, NFTsim is not limited to the simulation

of such dynamics and can produce a range of oscillatory [6, 56], chaotic [57] and bursting

dynamics [58].

Neural field theory

Neural field theory (NFT) treats multiscale brain activity by averaging neural quantities such

as firing rate, soma voltage, and incoming and outgoing activity over multiple neurons. The

scales over which neural field models average must be sufficient to represent large numbers of

neurons and spikes, but can still be small enough to resolve quite fine structure in the brain

and its activity. NFTsim allows an arbitrary number p of spatially extended populations of neu-

rons to be simulated. Each of these can be distinguished by its location (e.g., belonging to the

cortex or a particular nucleus) and its neural type (e.g., pyramidal excitatory, interneuron).

To model a particular system, we must specify the neural populations and the connections
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between them, including self-connections within a population. If we introduce position and

time coordinates r and t, the main macroscopic variables that describe the activity of neural

populations a and their interaction with other populations b are: the incoming, axonal spike-

rate fields ϕab(r, t) arriving at population a at (r, t) from population b, the dendritic potentials

Vab(r, t), the mean soma potential Va(r, t), the mean firing rate Qa(r, t), and the axonal fields

ϕca(r, t) propagating to other populations c from population a. Fig 1 illustrates the interactions

of these quantities: (i) synaptodendritic dynamics involving the incoming axonal fields

ϕab(r, t) to yield the potentials Vab(r, t); (ii) dendritic summation and soma charging processes

to yield the soma potential Va(r, t); (iii) generation of pulses Qa(r, t) at the axonal hillock, and

(iv) axonal propagation of pulses ϕca(r, t) within and between neural populations [1]. The fol-

lowing subsections present a review of the equations describing these physiological processes,

while Table 1 summarizes the quantities and symbols used in NFT and their SI units. Note

that neural field models can be expressed in integrodifferential form [53]. However, in that

form, there is always a convolution that is either difficult to handle analytically or numerically

[8, 59]. For that reason, all the equations in this NFT [2] and NFTsim are expressed and imple-

mented in differential form, respectively.

Fig 1. Schematic of the dynamical processes that occur within and between neural populations. Gray circles are

quantities associated with interactions between populations (i.e., a and b), while white circles are quantities associated

with a population (i.e., a or b). Spike-rate fields ϕab arriving at neurons of type a from ones of type b are modulated by

the synaptic dynamics, and undergo dendritic dynamics to produce postsynaptic subpotentials Vab. These

contributions are linearly summed in the dendritic tree, eventually resulting in charging currents at the soma that give

rise to the soma potential Va, after allowing for capacitive effects and leakage. Action potentials generated at the axonal

hillock are averaged over a population of neurons. Then, when the mean soma voltage exceeds a threshold, the mean

firing rate Qa of the population is obtained via a nonlinear response function. Finally, the pulses propagate away across

the axonal tree and the dendrites of the receiving population c as the set of average spike-rate fields ϕca. Note that self-

connections with b = a or c = a are included.

https://doi.org/10.1371/journal.pcbi.1006387.g001

Table 1. NFT quantities and associated SI units.

Symbol Description Units

Qmax
a Maximum firing rate s−1

γab Damping rate s−1

vab Wave velocity m s−1

rab Mean axonal range m

θa Mean neural firing threshold V

s0a Standard deviation of the firing threshold V

αab Mean dendritic response decay rate s−1

βab Mean dendritic response rise rate s−1

νab Synaptic coupling strength V s

τab Long range time delay s

ϕab Axonal field s−1

Qa Mean firing rate s−1

Vab Subpotential V

Va Mean soma potential V

Symbols used in NFT, associated physical quantities and their SI units. Double subscripts ab mean that the target

population is a and the source population is b.

https://doi.org/10.1371/journal.pcbi.1006387.t001
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Synaptodendritic dynamics and the soma potential

When spikes arrive at synapses on neurons of population a from a neural population b, they

initiate neurotransmitter release and consequent synaptic dynamics, like transmembrane

potential changes, followed by dendritic propagation of currents that result in soma charging

and consequent modifications of the soma potential. Each of these processes involves its own

dynamics and time delays and results in low pass filtering and temporal smoothing of the

original spike until the soma response is spread over a time interval that is typically tens of ms,

exhibiting a fast rise and an approximately exponential decay [3, 60].

If the overall synaptodendritic and soma responses are linear, which is the most common

approximation in the literature [2, 31, 61], the total soma potential Va is the sum of subpoten-

tial contributions Vab, which are components of perturbation to the dendritic transmembrane

potential, arriving at each type of dendritic synapse ab. The subscript a denotes the receiving

population and b denotes the neural population from which the incoming spikes originate, dis-

tinguished by its source and the neurotransmitter type. The subpotentials Vab at a particular

location comprise contributions from both the wave fields ϕab from other internal populations

b and inputs ϕax from external populations x [62]; the external inputs are often split into a uni-

form mean nonspecific excitation and a specific excitation due to structured stimuli. Thus we

write the total mean cell body potential as the sum of postsynaptic subpotentials

Vaðr; tÞ ¼
X

b

Vabðr; tÞ; ð1Þ

where the subscript b distinguishes the different combinations of afferent neural type and syn-

aptic receptor and all the potentials are measured relative to resting [2].

The overall effect of synaptodendritic dynamics and soma charging in response to an

incoming weighted pulse-rate field ϕab are well described by an impulse response kernel

Lab(t − t0)

Vabðr; tÞ ¼
Zt

� 1

Labðr; t � t0Þnabðr; tÞ�abðr; t
0 � tabÞdt

0; ð2Þ

nabðr; tÞ ¼ Nabðr; tÞsabðr; tÞ; ð3Þ

where ϕab is the average rate of spikes arriving at a from population b; the time delay τab is

nonzero when a and b are in anatomical structures that are separated by a nonzero distance

[2]. In Eq (3), Nab is the mean number of connections of mean time-integrated synaptic

strength sab to a cell of type a from cells of type b. In [2], Lab is a nonnegative response kernel

with

Z 1

� 1

Labðr; uÞdu ¼ 1; ð4Þ

and Lab(r, u) = 0 for u< 0 to express causality. Note that τab are not the only time delays in

the system. Propagation delays within a single structure, such as the cortex, are handled by

accounting for axonal propagation, as described in section Propagation of axonal pulse-rate
fields. In NFTsim Lab(r, t) is defined as

Labðr; tÞ ¼

aabbab

bab � aab
f exp ½� aabt� � exp ½� babt�g; a 6¼ b;

a2
abt exp ½� aabt�; a ¼ b;

8
><

>:
ð5Þ
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for t� 0, with Lab(r, t) = 0 for t< 0 and the r-dependence of the positive constants α and β
has been omitted for compactness. These quantities parametrize the decay rate and rise

rate of the soma response, respectively, and β� α is assumed without loss of generality. The

temporal profile of the dendritic response function is illustrated in Fig 2. This function peaks

at t = ln(β/α)/(β − α) for α 6¼ β; if α = β, the peak is at t = 1/α. In addition, there are two special

cases of Eq (5): (i) if either α!1 or β!1, then Lab becomes a single exponential function

in which only one of the characteristic timescales dominates; and, (ii) if α = β =1, then the

kernel reduces to the impulse Lab(r, t) = δ(r, t).
The convolution in Eq (2) can be re-expressed as

DabVabðr; tÞ ¼ nab�abðr; t � tabÞ; ð6Þ

where the differential operator Dab is given by

Dabðr; tÞ ¼
1

aabbab

d2

dt2
þ

1

aab
þ

1

bab

� �
d
dt
þ 1: ð7Þ

In some previous work [60] a special approximation has been used where αab and βab are inde-

pendent of b and are thus treated as effective values, representing an average over different

receptor time constants. Under this approximation Eq (6) becomes

DaVaðr; tÞ ¼
X

b

nab�abðr; t � tabÞ ð8Þ

Fig 2. Dendritic response function. The response to a delta-function input, via Lab as defined in Eq (5), for decay rate

parameter αab = 45 s−1 and rise rate parameter βab = 185 s−1. This function peaks at t = ln(β/α)/(β − α) for α 6¼ β.

https://doi.org/10.1371/journal.pcbi.1006387.g002
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All the aforementioned cases and forms of the operators (differential and integral) are imple-

mented in NFTsim.

Generation of pulses

Pulses (i.e., spikes or action potentials) are produced at the axonal hillock when the soma

potential exceeds a threshold potential θa(r, t). When we consider the mean response of a

population of neurons to a mean soma potential we must bear in mind that each neuron has

slightly different morphology and environment. Hence, they respond slightly differently in the

same mean environment. This has the effect of blurring the firing threshold and the resulting

overall population response function is widely approximated by the nonlinear form [48]

Qaðr; tÞ ¼ S½Vaðr; tÞ � yaðr; tÞ�; ð9Þ

where θa is the mean threshold potential of population a and Sa is a function that increases

monotonically from zero at large negative Va to a maximum firing rate Qmax
a at large positive

Va, with the steepest increase concentrated around the mean threshold θa. NFTsim employs by

default the nonlinear sigmoid response function

Sa½Vaðr; tÞ � yaðr; tÞ� ¼
Qmax

a

1þ exp ½� fVaðr; tÞ � yaðr; tÞg=s0aðr; tÞ�
; ð10Þ

where sa ¼ s0ap=
ffiffiffi
3
p

is the population standard deviation of the soma voltage relative to the

threshold. If the function in Eq (10) is linearized to consider small perturbations around a

steady state of the system [2, 32], one finds the linear response function

Qa ¼ Qð0Þa þ ra½Va � V ð0Þa � ð11Þ

where Qð0Þa and V ð0Þa are the relevant steady-state values and ρa = dQa/dVa, is the slope of the sig-

moid function, evaluated at V ð0Þa [2]. This linear population response function is also imple-

mented in NFTsim and other functional forms can be defined as well.

Propagation of axonal pulse-rate fields

The propagation of the pulses Qb(r, t) in each population b generates an outgoing mean field

ϕab that propagates via axons to the population a at other locations. In general, this propaga-

tion can depend on both the initial and final populations, and can incorporate arbitrary non-

uniformities and a range of propagation velocities via propagator methods, for example [59,

63]. However, considerable theoretical and experimental work has shown that, to a good

approximation, the mean field of axonal signals in a smoothly structured neural population

propagates approximately as if governed by an isotropic damped wave equation [2, 47, 49, 52,

53, 64–69]. In NFTsim we implement the widely used equation

Dab�abðr; tÞ ¼ Qbðr; tÞ; ð12Þ

with

Dab ¼
1

g2
ab

@
2

@t2
þ

2

gab

@

@t
þ 1 � r2

abr
2

� �

; ð13Þ

where γab = vab/rab is a temporal damping coefficient, rab is the spatial effective axonal range,

vab is the axonal velocity [2, 53, 65–69], andr2 is the Laplacian operator. Eqs (12) and (13)

constitute the two-dimensional generalization of the telegrapher’s equation [2, 53, 70]. More

generally, γab, rab, and vab can be functions of position. If the special case of spatially uniform
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activity is considered, the Laplacian operator has no effect and can be omitted from (13). This

special case results in the harmonic operator

Dab ¼
1

g2
ab

@
2

@t2
þ

2

gab

@

@t
þ 1

� �

: ð14Þ

We stress that this is not the same as using a local neural mass model because the damping

parameter γab depends on spatial propagation. To obtain the neural mass limit, one also needs

to set the spatial ranges rab = 0 so γab becomes infinite and

Dabðr; tÞ ¼ 1: ð15Þ

This yields

�abðr; tÞ ¼ Qbðr; tÞ; ð16Þ

which is termed the local interaction approximation [2, 50].

The parameter rab in the propagators in Eqs (13) and (14) encompasses divergence of axons

traveling to the target population a from the source population b and the extent of dendritic

arborization of the target population a, and thus rab 6¼ rba in general [71].

Design and implementation of NFTsim

This section presents a comprehensive description of NFTsim. The subsection General work-
flow gives an overview of the typical usage workflow of NFTsim. The subsection Classes and
their interactions describes the main NFTsim classes, which represent the biophysical processes

and quantities introduced in Neural field theory. Next, subsection Input-output illustrates with

examples how to specify a model in the input configuration file to NFTsim and how to inter-

pret the output file. In addition, subsection Numerical methods, considerations, and constraints
elaborates on the numerical approaches and constraints used to correctly solve the equations

of neural field models while attaining numerical accuracy and stability. Table 2 summarizes

the configuration parameters relevant to these methods. Lastly, subsection Analysis and visual-
ization presents a simple example of how to run a simulation, and analyze and visualize the

results using the auxiliary Matlab module +nf. A list of the available functions in this module

is presented in Table 3.

Table 2. Symbols, configuration parameters and units.

Symbol Parameter name

in configuration file

Units Parameter exposure

N Nodes - required

Nx Longside nodes - optional (
ffiffi
ð

p
NÞ)

Lx Length m required

Δx - m none (Lx/Nx)

Δy - m none (Δx)

Ny - - none (N/Nx)

Ly - m none (NyΔy)

First column: symbols used in this work to identify the parameters specified in a configuration file. Second column: parameter names used in configuration files to

determine the physical size and spatial resolution of the 2D sheets for each population. The symbol - means the parameter is not specified directly in a configuration file.

Third column: SI units of each parameter. Here, the symbol - means the parameter is dimensionless. Fourth column: shows whether the exposure [79] of each parameter

in the configuration file is (i) required, (ii) optional (with its default value); or, (iii) not required (none). In the latter case, the parameter is derived internally in the code

and we provide the equation used to calculate its value).

https://doi.org/10.1371/journal.pcbi.1006387.t002
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The typographic conventions used in the remainder of this text are that: (i) all computer

code is typeset in a typewriter font; and (ii) code snippets are framed by horizontal lines with

line numbers on the left.

General workflow

A typical NFTsim workflow consists of three broad phases: configuration; simulation; and post-

processing. The first phase involves writing a configuration file that specifies the neural field

model as well as other parameters required to run a simulation. This file is a human readable

plain text file with the extension .conf. Once a configuration is specified the simulation can

be launched by invoking the nftsim executable, either directly via a shell (bash) terminal
1 user@host$ nftsim -i <my-model.conf> -o <my-model.output>

or indirectly via the nf.runMatlab function. In the simulation phase, NFTsim reads the

configuration file, specified after the flag -i, builds the objects of the specified model, runs the

simulation and writes the output file, which contains the timeseries of the neural quantities

requested in the configuration file. The name of the output file can be specified using the

flag -o and must have the extension .output. In the absence of an output file name,

NFTsim uses the input file name with the extension .output. For autogenerated output

file names, the flag -t can be used to append a string to the output file name of the form

_YYYY-MM-DDTHHMMSS,which follows the standard ISO 8601 [72] to represent date and

time. In the postprocessing phase, the simulation results can be analyzed offline and visualized

with the functions provided in the Matlab module +nf.

Code architecture

Neural field models can be decomposed into a small number of objects, that represent their

various parts. Each object has intrinsic properties that, in turn, can be well represented as clas-

ses, each of which is a set of elements having common attributes different from other sets,

using object oriented programming. NFTsim classes have been implemented in C++ (C++11

standard) [73, 74].

The most prominent components of neural field models are populations, synaptic connec-

tions, and propagators. Each of these components (or objects) is described by a main base class

with properties specific to a group of objects. Derived classes are defined via the mechanism of

Table 3. Auxiliary functions available in the module +nf.

Function Description

extract extracts time-series from an output structure

get_frequencies returns the spatial frequencies

grid reshapes output into a 3D array of shape (Lout, Nx, Ny)

movie generates a movie from a 3D array produced by nf.grid

plot_timeseries plots vertically spaced timeseries of specific traces and nodes

read reads an output file and returns a structure

report prints information about a structure

run runs a simulation from a configuration file

spatial_spectrum computes spatiotemporal spectrum

spectrum computes temporal spectrum

wavelet_spectrogram computes wavelet spectrogram using a Morlet wavelet

First column: names of the available Matlab functions. Second column: brief descriptions of what each function does.

The variable Lout is the number of time points in the output file.

https://doi.org/10.1371/journal.pcbi.1006387.t003
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class inheritance which allows for: (i) the definition of class in terms of another class; (ii) the

customization of different parts of the system being modeled; and (iii) the extension of the

functionalities of the library. For instance, a base class describing propagators has properties

such as axonal range and axonal velocity. These properties are common to different propaga-

tors (derived classes) such as the wave propagator in Eq (13) or the harmonic propagator in

Eq (14), and are inherited from the base class. However, the optimal method to solve each

form of propagation may vary and thus each propagator-derived class can have its own solver.

Furthermore, there are auxiliary base classes that define additional properties of the main clas-

ses described above. These auxiliary classes embody processes like dendritic dynamics, soma

charging, firing response, external stimuli, and anatomical time delays.

Thanks to this modular architecture, NFTsim allows for the specification of models with (i)

an arbitrary number of neural populations, of different types and with different parameter sets;

(ii) different types of connections between pairs of populations; and (iii) different types of activity

propagation, with or without propagation time delays between and within neural populations.

Classes and their interactions

An overview of NFTsim’s calling interactions between classes, is illustrated in Fig 3. In this dia-

gram main and auxiliary base classes are positioned so that, in a simulation, their position cor-

responds to being initialized and stepped forward in time from top to bottom and from left to

right within each row. In the first row, we see the high-level class Solverwhich coordinates

how the other classes interact during a simulation. In the second row, the main base class

Propagator computes each of the axonal pulse-rate fields ϕab generated by the firing rate

Qb. In any given neural field model there are as many Propagator objects as there are con-

nections. These can be any of three derived Propagator classes (Wave, Harmonic,Map)

implemented to accommodate the operators defined in Eqs (13), (14) or (15), respectively. The

Wave class uses an explicit time stepping method based on second order central difference

schemes in space and time (see Explicit difference method and boundary conditions for the 2D
wave equation). The Harmonic class implements Eq (14), where for spatially homogeneous

models the Laplacian term is zero and one finds a damped oscillator response. This class uses a

Fig 3. Simplified diagram of NFTsim’s call graph. The execution of a simulation is controlled by the class Solver.

Initial conditions are given in terms of firing rates Qb which are then propagated to other populations via

Propagator. Synaptic connections are handled via Coupling. The incoming activity to postsynaptic Population
undergoes dendritic dynamics via Dendrite. The sum of individual contributions Vab and the resulting firing

response are handled by FiringResponse. The class Timeseries is used to represent external inputs Qx from a

stimulus Population. Lastly, the class Outlet stores the variables that are written to the output file.

https://doi.org/10.1371/journal.pcbi.1006387.g003
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standard fourth-order Runge-Kutta (RK4) explicit forward time stepping method with a fixed

time step [75]. Lastly, the Map class, where the propagator is simply a direct mapping as in Eq

(15). Below Propagator, there is the auxiliary class Tau, which handles the activity history

and retrieves the appropriate delayed activity when the discrete time delay τab is nonzero. This

class actually stores time delayed activity between every pair of populations, for every spatial

location, and makes it available to the numerical solvers. Then, to the right of Propagator,

the Coupling class handles synaptic connections and their dynamics. The base Coupling
class assumes that the synaptic strengths are constant over space and time. Thus, the output

signal is a product of incoming activity and synaptic weights. Other derived Coupling clas-

ses implement temporally varying synaptic strengths as in [36], or modulation by pre- or post-

synaptic activity, as in [40]. To the right of Coupling, the Population class describes

neural population activity and its parameters define the type.

In the third and fourth rows, below Population, we see that each Population uses

two subsidiary classes: an array of Dendrite objects (one for every population connected via a

Coupling); and, a FiringResponse. The signal from a Coupling object is passed to a

corresponding Dendrite object which implements the synaptodendritic effects defined in Eq

(6). The contributions Vab are then summed to yield the soma potential Va of the population.

Then, the population’s FiringResponseobject implements Eq (9) to calculate the resulting

population firing rate Qa. Different forms of the activation function are specified within the

base FiringResponse class. Other types of activation function that involve modulation of

parameters due to presynaptic or postsynaptic activity are implemented in classes derived from

the FiringResponse class. Such is the case of BurstingResponse that implements

modulation of firing threshold θa [58]. External or stimulus populations are also objects of the

Population class. However, their activity is a predefined spatiotemporal profile of firing rate

Qx, that represents a chosen input and is contained in an object of the class Timeseries. In

NFTsim the external inputs may include noisy and/or coherent components which may or may

not be spatially localized (e.g., afferent to the visual thalamus in response to a visual stimulus).

Currently, NFTsim supports a number of different external driving signals (ϕax) to stimulate any

population a of a system. These signals include: a constant value equivalent to applying DC volt-

age; sine waves; square pulse trains; and, Gaussian white noise to simulate random perturbations.

These basic functions can be combined additively to generate more complex stimulation signals.

Lastly, to the right of Population, the class Outlet, stores the variables that are written

to the output file.

In summary, a compact representation of the neural field equations with the label of the

associated NFTsim classes is

Dab�ab ¼ Qb; Propagator ð17Þ

Pab ¼ nab�ab; Coupling ð18Þ

DabVab ¼ nab�ab; Dendrite ð19Þ

Qa ¼ Sa
X

b

Vab

" #

; FiringResponse: ð20Þ

where the auxiliary variable Pab in Eq (18) is only defined inside the Coupling class and

assigned the presynaptic inputs weighted by the local synaptic coupling strength. Fig 4, which

is analogous to the diagram presented in Fig 1, illustrates the input and output variables of

each class and the direction in which they flow within a simulation.
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Input-output

The main routine of NFTsim takes a plain text configuration file as input, where all the model

description and simulation parameters are specified, and writes the simulation result to an out-

put file. Both the configuration file and output file are plain text files, so launching simulations

and reading the results with other programming languages is also possible. Note that all the

parameters in the configuration and output files are specified directly in SI units without pre-

fixes (e.g., s, s−1, V); e.g., a value of 1 mV is written as 1e-3 (where V is implicit).

Configuration and output files. The following listing shows an exemplar configuration

file, named e-erps.conf, which is included with other examples in the configs/ direc-

tory of NFTsim. This file specifies a neural field model with a single cortical excitatory popula-

tion that receives inputs from an external population which is the source of a stimulus to the

cortex. In this example, parameters were taken from [33], with the exception of the axonal

propagation parameters, which are tuned to emphasize wave propagation properties (i.e., by

decreasing the damping rate γab). We emphasize that this an illustrative example, and that

while it emulates the scenario of evoked responses due to a stimulus (e.g. a flash of light) it

does not represent any specific experiment.

The cortical population is initially in a steady state of low firing rate around 10 s−1 and is

driven by two pulses applied toward the center of the grid. The first pulse occurs at t� 32 ms

and has a positive amplitude of �ex1
¼ 2 s−1. The onset of the second pulse is t� 60 ms and

has a negative amplitude of �ex2
¼ 2 s−1.
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The above file starts with a brief description of the model to be simulated. This comment

is optional and can span multiple lines. In lines 4-5, global parameters for the simulation are

defined: simulation duration (Time), time step size (Deltat), and the total number of nodes

in the two dimensional grid (Nodes).

The aforementioned parameters are followed by the specification of a square connection

matrix in lines 7-10, where the rows are the target populations and columns indicate the source

populations. In this matrix, a positive integer indicates there is a connection between two pop-

ulations and it also serves as an identifier of that connection. In the case presented above, there

are only two nonzero connections, connection 1 to Population 1 from itself and connec-

tion 2 to Population 1 from Population 2. The couplings, dendrites and propagators

are labeled by these consecutive positive integers. The two populations of this example are

defined in lines 12-25. Each population in the model is specified separately, indicating its type

(e.g., excitatory, inhibitory, or external), the physical size of its longest side (Length), its ini-

tial condition in terms of firing rate Q, and its type of dendritic and firing responses. The next

step, in lines 27-28, is to define the type of propagation and coupling between each pair of con-

nected populations. In line 27, the axonal propagation of the excitatory-excitatory connection

follows a damped wave equation, with zero long-range time delay (Tau), characteristic spatial

range of 0.2 m (Range) and a damping coefficient of 30 s-1 (gamma). Finally, at the end of the

configuration file, from line 33 onwards in this example, we specify which timeseries are writ-

ten to the output file.

There are three global output parameters: Nodewhich specifies the labels of the grid nodes

whose activity will be written to the output file; Start, sets the time (in seconds) from which

the output timeseries will be written, and cannot be larger than the total simulation duration

Time; and, Interval is the sampling interval between points in the output timeseries. The

Interval should be chosen as an integer multiple of Deltat, that is, the ratio Interval/

Deltat should be an integer number K, because NFTsim does not perform interpolation or

averaging when users request downsampled output. The timeseries written to disk is simply a

subsampled version of the original, where only every K-th sample is kept. In lines 34 and 36 we

see that NFTsim has to write the firing rate (Q) of Population 2, and the axonal field phi
of Propagator 1, respectively. NFTsim first writes the configuration file at the top of the

output file to ensure full reproducibility of the results, then it writes a line filled with the sym-

bol =, and finally, it writes the requested timeseries. Below we show an excerpt of the output

file e-erps.output.

Fig 4. NFTsim classes associated with biophysical processes. This diagram illustrates the relationship of the classes in

the library and the biophysical transformations they represent. Input variables are on the left, while output variables

are on the right. Gray boxes are classes associated with interactions between populations, while white boxes are classes

associated with internal mechanisms of a population.

https://doi.org/10.1371/journal.pcbi.1006387.g004
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Here, the first column is the time vector. The values are expressed in seconds. The second col-

umn is the firing rate Q of the second population at node 2000. The third column is the excit-

atory field of Propagator 1 from Population 1 to itself at node 2000. Line 3 provides

the label of each timeseries, while line 4 shows the node index.

Numerical methods, considerations, and constraints

This section focuses on considerations and constraints regarding the numerical methods

implemented in NFTsim. In Initial conditions. we give a general overview and strategies to

set initial conditions for neural field simulations. Furthermore, Discretization of the spatial
domain. and Courant condition. describe the way space is discretized in NFTsim and the maxi-

mum grid ratio for correctly solving the 2D damped wave equation, respectively. In Explicit
difference method and boundary conditions for the 2D wave equation we explain the stepping

method used to solve the wave equation on a finite grid. Lastly, in Time delays, we briefly

explain how time delays are handled in NFTsim.

Initial conditions. Neural field equations are partial delay differential equations

(PDDEs), thus at the start of a simulation activity from previous times is required for ini-

tialization. NFTsim assumes the system is initialized at a stable fixed point and then fills a

history array, which stores the past activity of the system, with the values of firing rate at

equilibrium. A more detailed explanation on how time delays are handled is given in a sub-

sequent section.

In a steady state all the temporal derivatives can be set to zero. Furthermore, NFTsim cur-

rently also assumes that the initial activity is uniform spatially, so the spatial derivatives are

also set to zero. Under these assumptions, if the initial conditions are not exaclty a stable state

of the system, one can expect to see transient activity until the system settles into the closest

stable attractor (either a fixed point or another manifold).

In NFT, the number of stable steady-state equilibria strongly depends on the number of

populations and connections between them [76], thus providing a general method to find the

steady-state solutions is beyond the scope of NFTsim’s functionality.

Nevertheless, there are four main strategies that users may adopt to set initial conditions:

(i). Finding the steady-state solutions analytically. This method is successful for simple neu-

ral field models with a couple to a few populations such as a purely cortical model [32],

and that do not include a nonlinearity in their firing response.

(ii). Finding steady-state solutions numerically. If one uses the NFT equations which

include a nonlinear firing response, then the steady-state equation is a transcendental

function of either firing rate or voltage, and its roots cannot be calculated analytically.

Fixed points can be identified by evaluating the steady state equation of the system

between consecutive test values of one of the fields or voltages (e.g., V ð0Þa or �
0Þ

aaÞ, and

detecting the zero crossings. This is the method that has been used extensively to find

the roots of the corticothalamic model for different parameter ranges [6, 29, 30, 39,

76]. A standard root finding algorithm (e.g., Newton-Raphson) can then be used to

refine the roots. If the steady-state equation of the neural field model depends on

more than one variable [56] then a root finding algorithm like Broyden’s method is

required. Note that the strategy described here does not identify the stability of the

fixed points.

(iii). Running auxiliary simulations. This approach is best suited for scenarios in which one

already has an initial estimate of the initial stable state of the system; and for nonuniform
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situations [77, 78], in which case the auxiliary simulations are run for the uniform case

and the nonuniformities in the parameters are introduced in the main simulations. Aux-

iliary simulations should be long enough to give the system enough time to reach a stable

state. The end state of this auxiliary simulation can then be used to provide the initial

conditions for other simulations.

(iv). Using Monte Carlo methods to run numerous simulations in NFTsim with randomly

sampled initial conditions in order to find the stable states. This approach is more gen-

eral than the previous one and does not require any a priori knowledge of the initial con-

ditions. This approach is best suited for neural field models with several populations and

for which finding the steady states of the system following (i) or (ii) is not possible or is

too cumbersome. If multiple stable steady states are found [47, 76], users must decide

which one is to be used for the main simulations. In NFT, the linearly stable fixed point

that represents the lowest firing rates is usually selected as the initial condition on the

basis that represents a normal brain state [2, 29].

Discretization of the spatial domain. Each population is modeled as a 2D rectangular

sheet. In NFTsim, the physical spatial domain of each population, whatever its extent, is

divided into a finite number N of uniform grid cells (or nodes), which remain invariant

throughout the simulations for all times. Note that in this work grid cells refer to smallest sur-

face area units used to discretize a continuous and spatially extended domain such as the cor-

tex, and not to the homonymous biological cells in the enthorinal cortex.

In a configuration file, the parameter Length corresponds to the physical length of the x-

axis. By default, the domains are assumed to be square with Lx = Ly. In this case, the value of

the parameter Nodesmust be a perfect square so that the spatial resolutions

Dx ¼
Lxffiffiffiffi
N
p ; ð21Þ

and

Dy ¼
Ly
ffiffiffiffi
N
p ð22Þ

are the same.

To define a rectangular domain, in addition to the parameter Nodes (N), in the configura-

tion file one can specify the number of nodes along the x-axis via the parameter Longside
nodes (Nx). In this case, the number of nodes along the x and y axes are different, but the

spacing remains the same for both axes (i.e., Δx = Δy)

Dx ¼
Lx

Nx
: ð23Þ

The number of nodes and physical length of the y-axis can be obtained as Ny = N/Nx and

Ly = NyΔy, respectively. Table 2 summarizes the symbols and configuration length and size

parameters used in this section and in the remainder of the text.

As an example, we show part of a configuration file for a neural field model with two

populations. The physical length of the first population L1
x is larger than the length of second
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population L2
x.

In the above file the two internal populations are modeled as rectangular grids with a total of 12

nodes or grid cells, and with the number of nodes of the longest side specified by Longside
nodes. The resulting 2D grid has a size of 4× 3 nodes as shown in the schematic of Fig 5. For

illustrative purposes, the parameter values used in this configuration file have been exaggerated

so the link between the input parameters and the discretization of the space shown in the sche-

matic is clear. However, this configuration file will not produce accurate results because the

spatial resolution is too coarse.

Fig 5 illustrates that NFTsim populations are linked via a primary topographic one-to-one

map, which implies that all the populations must have the same number of grid points N, even

if they have different physical spatial dimensions. We assign the same map coordinate rn to

homologous grid cells in different populations. In this example, r1 is assumed to be the actual

physical position in Population 1, but in Population 2, r1 denotes a rescaled physical

dimension. Also, any physical position rn, for n = 1, . . ., N is assumed to be at the center of a

grid cell, which is also labeled with integers n = 1, . . ., N. For instance, in Population 1, r1

corresponds to position (Δx1/2, Δy1/2) = (0.1, 0.1) m; and, in Population 2, r1 corresponds

to position (Δx2/2, Δy2/2) = (0.01, 0.01) m.

Courant condition. The interval Δx is used to evaluate whether the current parameters

satisfy the Courant condition, a necessary condition for obtaining stable solutions when solv-

ing hyperbolic partial differential equations on a regular discrete grid. For the wave equation

in 1D the dimensionless number

pab ¼
vabDt
Dx

� 1; ð24Þ

is called the Courant number [80]; Δt is the integration time step size and vab = γab rab is

the magnitude of the wave velocity. In the continuum wave equation, activity propagates at

maximum speed vab and the method is stable when Δx/Δt� vab. Unstable schemes arise when

Δx/Δt< vab because waves propagate more than one grid spacing in a period Δt. However, for

Simulation of Multiscale Neural Field Dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006387 August 22, 2018 17 / 37

https://doi.org/10.1371/journal.pcbi.1006387


the 2D case one finds the stability criterion to be [75]

Dt �
1

vab

1

Dx2
þ

1

Dy2

� �� 1
2

; ð25Þ

so, because Δx = Δy

Dt �
1

vab

2

ðDxÞ2

" #� 1
2

; ð26Þ

�
Dx
vab

1
ffiffiffi
2
p : ð27Þ

Hence, considering all wave-type propagators, the maximum value of the Courant number

Fig 5. Schematic of the discretized spatial domain. The model has two populations: Population 1 and Population 2. Geometrically, each population is

represented by a grid of 12 nodes, which are labeled with integers. The grid is rectangular with dimensions 4 × 3 nodes. The number of nodes of the longest side is

specified by Longside nodes. The physical size, Lx, of each population is different. Thus, each node in Population 1 has a linear size of Δx1, and of Δx2 in

Population 2. Each spatial point (e.g., r1, r9, r11) is at the center of a grid cell. The subscript denotes the node index on this grid. Also, rn denotes the actual

position in the largest population; in the smallest population rn denotes a rescaled physical dimension. Lastly, the borders of the grid are depicted with dashed lines

to denote periodic boundary conditions (PBCs), which represent structures with planar geometry and toroidal topology.

https://doi.org/10.1371/journal.pcbi.1006387.g005
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pmax must satisfy

pmax ¼ maxðvabÞ
Dt
Dx1

�
1
ffiffiffi
2
p : ð28Þ

This condition is checked internally by NFTsim and if it is not satisfied, an error message is

returned. Note that, in practice, one usually imposes a stricter condition to ensure the system

has a margin of stability; e.g., in [2], the grid ratio was chosen so that pmax = 0.1.

Explicit difference method and boundary conditions for the 2D wave equation.

NFTsim uses an explicit central difference method [81] to solve Eq (13), which represents

axonal propagation of activity through the cortex or other structures with a significant spatial

extent. Here, we present the explicit time stepping formula currently implemented to compute

the next value of ϕab from past values of ϕab and Qb. The full derivation is in the Supporting
Information.

Eq (13) is the inhomogeneous damped wave equation, which can be simplified by making

the substitutions

u ¼ �abegabt; ð29Þ

w ¼ Qbegabt: ð30Þ

We then obtain the undamped wave equation

1

g2
ab

@
2

@t2
� r2

abr
2

� �

uðr; tÞ ¼ wðr; tÞ: ð31Þ

Note that this simplification only works for small values of Δt because the exponential factors

introduced in Eqs (29) and (30) diverge as Δt!1.

Then, the final time-stepping formula using an explicit central difference method for the

2D wave equation is

�
nþ1

m;l ¼ e� gabDt

�

ð2 � 4p2Þ�
n
m;l þ p2ð�

n
m;lþ1
þ �

n
m;l� 1
þ �

n
mþ1;l þ �

n
m� 1;lÞ � �

n� 1

m;l e
� gabDt

þ
Dt2g2

ab

12

�

ð10 � 4p2ÞQn
m;l þ ðQ

nþ1

m;l e
gabDt þ Qn� 1

m;l e
� gabDtÞ

þp2ðQn
m;lþ1
þ Qn

m;l� 1
þ Qn

mþ1;l þ Qn
m� 1;lÞ

��

ð32Þ

where the superscript n indexes time step; the first and second subscripts index space along the

orthogonal x and y directions, respectively, except for the subscripts on γab; and p is the Cou-

rant number. In the Eq (32), the positive exponential factors introduced in Eqs (29) and (30)

are cancelled out and the algorithm actually evaluates negative exponential factors e−γabΔt and

e−2γabΔt.

Note that in Eq (32), only five spatial points are required: the central point m, l; its horizon-

tal neighbors m + 1, l and m − 1, l; and, its vertical neighbors m, l + 1 and m, l − 1. This pattern

is often referred to as a five-point stencil. There are alternative finite difference methods that

use higher-order terms to approximate the derivatives and would require larger stencils (e.g.,

more neighboring points) [82]. It is usually better to increase the spatial resolution rather than

the stencil complexity to obtain higher accuracy.

The finite difference scheme presented above is second-order accurate in space and time.

This means that the rate at which the error between the discretized approximation and the
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exact continuum solution decreases to zero is OðDx2Þ þOðDy2Þ þOðDt2Þ. For instance, halv-

ing Δx, Δy, or Δt, subject to Eq (28) leads to a decrease of the error by a factor of four.

When solving partial differential equations on a finite spatial domain, one must specify

boundary conditions for the simulations. NFTsim uses periodic boundary conditions (PBCs).

This type of condition avoids boundary effects stemming from the finite size of a grid and

avoids the perturbing influence of an artificial boundary like a reflective wall. In PBCs, oppo-

site boundaries are treated as if they were physically connected, that is, the top of the grid is

wrapped on to the bottom and the left of the grid on to the right.

The class Stencil has two main functions: (i) retrieving the five-point stencil pattern for

every node in the grid; and, (ii) correctly copying the activity close to the boundaries of the

domain at every time step to implement periodicity. To achieve this, Stencil operates on a

grid of size (Nx + 2) × (Ny + 2). The additional ghost cells are used to store copies of the top

and bottom rows and left and right columns of the grid.

Fig 6 illustrates a 4 × 4 grid with the additional ghost cells shaded in light blue and five-point

stencil pattern consisting of a central grid point c and its 4 neighbors labeled as n, s, e, w (i.e.,

north, south, east, west). The number in each grid cell represents its linear index—because

the class Stencil accesses the elements of the two dimensional grid using a single subscript

Fig 6. Schematic of the grid used by the class Stencil. This class retrieves the four nearest neighbors (labeled n, s,

e, w) of a central point c. These five points define the pattern known as a five-point stencil. The cells in light blue are

the ghost cells required to implement periodic boundary conditions. The prime, double-prime and triple prime indices

represent copies of the corresponding indices in the vertical, horizontal and diagonal directions, respectively.

https://doi.org/10.1371/journal.pcbi.1006387.g006
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instead of two. The grid cells with prime, double-prime, and triple-prime indices are copies

of the original cells with the same indices. These copies are used to implement PBCs along the

vertical, horizontal, and diagonal directions, respectively. For instance, the cell 10 is the vertical

copy of cell 1; cell 100 is the horizontal copy, and cell 1000 is the diagonal copy. The diagonal cop-

ies are not used by the 5-point stencil, but would be used by a 9-point stencil [82].

Time delays

For systems with time delays, NFTsim creates one history array of size N × Da per population,

where N is the number of nodes as defined in previous sections. The delay depth Da of a his-

tory array is expressed as a number of integration steps.

To determine the exact value of Da, NFTsim checks every Propagator originating from

a. Thus, the final delay depth for a given population a is

Da ¼ max
b¼1;���;P

tba
Dt

n o
;

where P is the number of populations in the system; and, in the case that the parameter Tau
represents spatially nonuniform time delays, NFTsim first selects the largest time delay over

space

tba ¼ max
i¼1;���;N

ftibag:

This produces history arrays with the minimum necessary delay depth for each population

and thus is memory efficient.

Each Propagator stores an integer array with indices used to access the appropriate past

activity of its origin population.

Analysis and visualization

NFTsim includes a Matlab module which provides ancillary tools to assist with running, ana-

lyzing and visualizing models. This package folder is called +nf. The available functions and a

description of their functionality are summarized in Table 3.

The code snippet below uses some basic nf functions as an example of how users can inter-

act with NFTsim directly from Matlab. The model is the same as the one specified in the con-

figuration file e-erps.conf presented earlier, except that the timeseries of all the nodes in

the grid are written to the output file. The simulation is executed via nf.run(). Once the

output file is available nf.read() loads the simulated data into a Matlab structure.

Spatial patterns of activity and propagation of waves of activity across space can be visual-

ized using the function nf.movie()
1 nf_struct = nf.run('configs/e-erps-all-nodes.conf')
2 nf.movie(nf_struct, 'Propagator.1.phi', 1)

Representative frames from the movie of waves propagating from stimulation sites are

shown in Fig 7(a) to 7(f). In each panel the mean spatial value of ϕee(x, y, t) at time t has been

subtracted, so red and blue reflect positive and negative deviations, respectively, from the

mean. The effects of PBCs can be appreciated from Fig 7(c) onwards. In particular, in Fig 7(c)

the positive wave front propagating towards the left on the inset (x! 0) reappears at the right

(x� Lx). In a similar way, Fig 7(e), shows that the positive wavefront propagating along the y-

axis results in a slight increase of the ϕee close to the boundaries.

The file used in this example is included in NFTsim and is also available in the Supporting
Information.
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Furthermore, extracting and plotting the timeseries of a few nodes enable users to directly

inspect the type of activity (e.g., healthy neural activity, evoked responses, or seizures). In this

example, nf.extract() is used internally by nf.plot_timeseries() to select the

timeseries Propagator.1.phi.
1 these_nodes = {[1992:2008],[2089:2105]};
2 these_traces = {'Propagator.1.phi', 'Propagator.1.phi'};
3 nf.plot_timeseries(nf_struct, these_traces, these_nodes, true)

Fig 8 shows the resulting plots generated with the code shown above. Each set of timeseries

is centered around one of the stimulation sites. In Fig 8(a) the red curve is the axonal field at

Fig 7. Neural activity of the model described in e-erps.conf. The cortical population is driven by two square pulses. The first pulse is positive, while the

second pulse is negative. For illustrative purposes, in each panel the mean spatial value of ϕee(x, y, t) has been subtracted, so the color reflects deviations from the

mean at that specific time. Each panel shows a surface plot of �
0

eeðx; y; zÞ ¼ �eeðx; y; tÞ � h�eeðx; y; tÞi s−1 propagating radially outwards from the stimulation sites,

and an inset with a planar view of the same quantity, at different times: (a) 42 ms; (b) 52 ms; (c) 62 ms; (d) 77 ms; (e) 86 ms; (f) 104 ms.

https://doi.org/10.1371/journal.pcbi.1006387.g007
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the site that received positive stimulation; and, in Fig 8(b), the blue line is the axonal field at

the site that received negative inputs. The timeseries in gray above and below the colored

curves are the axonal fields from neighboring sites along the x-direction. In these plots, the dis-

tance between the stimulation sites and neighboring sites increases vertically from the center

to the top and bottom edges. The vertical dashed lines are not automatically produced by nf.
plot_timseries, but have been added to mark the onset time of the positive (red dashed)

and negative (blue dashed) inputs, respectively.

Fig 8. Timeseries of neural activity of the model described in e-erps.conf. The cortical population is driven by two temporal square pulses applied at the

center of the grid as shown in Fig 7. Here, we illustrate the timeseries of ϕee from a few nodes close to the vicinity of (gray lines) and at the stimulation sites. The

vertical dashed lines mark the onset time of the positive (red dashed) and negative (blue dashed) stimulation inputs, respectively. (a) the axonal field at the site

receiving the positive stimulus is highlighted in red while the time evolution of the same axonal field at neighbouring locations is shown as gray lines. (b) the axonal

field at the site receiving the negative input is highlighted in blue.

https://doi.org/10.1371/journal.pcbi.1006387.g008
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Another important step is the calculation of the temporal power spectrum for a range of fre-

quencies (in Hz), which is often compared to the power spectrum of experimental data. The

power spectrum may also include multiple spatial modes for a range wave numbers (in m−1)

and incorporate volume conduction or hemodynamic effects [83, 84] on measurement. A

comparison between the linear analytic power spectrum and the numerical nonlinear power

spectrum calculated with nf.spatial_spectrum() is given as an example in Standard
tests and reproducibility.

Results and applications

In this section we first present four exemplar systems that can be simulated using NFTsim and

that have been previously studied in detail. Then, section Observables and diagnostics briefly

discusses the main observables that can be currently computed in NFTsim and how these have

been used to predict a range of brain phenomena and compare to experimental results. In sec-

tion Standard tests and reproducibility,, we discuss how NFTsim could be used as a validation

tool for neural field models and neural field simulators. Lastly, section Benchmarks presents

performance metrics and practical information for users regarding average run times, memory

usage, and storage required for typical simulations based on a neural field model of the corti-

cothalamic system [29].

Exemplar systems

The versatility of neural field theory and its concomitant implementation in NFTsim allow for

the investigation of an unlimited variety of specific models and parameter sets. In this section

we present a few illustrative cases, which have been thoroughly described elsewhere, along

with some of their applications [1, 2, 6, 27–31, 33–39, 58]. Their respective configuration files

are included in NFTsim.

The most general corticothalamic model considered here includes populations with long-,

mid-, and short-range connections in the cortex, the specific and reticular nuclei in the thala-

mus, and external inputs. We indicate how components of this model can be successively

deleted to obtain a family of models suited to simpler applications in corticothalamic and cor-

tical systems. In what follows we label specific models according to the internal populations

they include. The first system, called EMIRS, includes five different populations of neurons:

cortical excitatory pyramidal (e), excitatory mid-range (m) and inhibitory (i) populations;

internal thalamic reticular nucleus (r), relay specific nucleus (s), whereas the simplest case is

of a system with a single excitatory population (e). There is also always at least one external

population that provides inputs (often labeled either x or n). NFTsim provides a number of

external input types such as sinusoids (in space and time), pulses, and Gaussian white noise.

For instance, these inputs could be from excitatory neurons of the auditory pathway, which

transmit signals from the cochlea to the thalamus [85]; or, they could be artificial external stim-

ulation like Transcranial Magnetic Stimulation [38].

Fig 9 shows schematics of the illustrative neural field models described here. The EMIRS

corticothalamic model displayed in Fig 9(a) includes three cortical populations (e, m, and i)
and two thalamic populations (r and s), with intracortical, intrathalamic, and corticothalamic

connections.

The EIRS corticothalamic model is obtained by deleting the population m from Fig 9(a)

to obtain Fig 9(b). Physically, this deletion corresponds to describing the effects of the mid-

range population, whose axonal range is of the order of a few millimeters, as part of the short-

range i population [1]. In this case, the excitatory effect partly cancels inhibition to give a

weaker, net effect from this compound population, which includes the effects of both short-

Simulation of Multiscale Neural Field Dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006387 August 22, 2018 24 / 37

https://doi.org/10.1371/journal.pcbi.1006387


Fig 9. Schematic of four representative neural field models. The quantities ϕab are the fields propagating to population a from

population b. Dashed lines represent inhibitory connections. (a) Corticothalamic model including excitatory (e), mid-range (m),

inhibitory (i), reticular (r), specific relay (s) and external non-specific (n) populations. (b) Corticothalamic model including excitatory

(e), inhibitory (i), reticular (r), specific relay (s), and external (n) populations. (c) Cortical model comprising excitatory (e) and

inhibitory (i) cortical populations plus an external input field from a subcortical population (s). (d) Purely excitatory (e) cortical model

with input from a subcortical population (s).

https://doi.org/10.1371/journal.pcbi.1006387.g009
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range excitatory and inhibitory interneurons. This model has been successfully applied to

investigate a wide range of phenomena [31, 43, 86] (see Introduction). The model has five dis-

tinct populations of neurons: four internal and one external.

In the purely cortical EI model of Fig 9(c), thalamic dynamics are deleted and ϕes = ϕis is

assumed to replace ϕsn as the external input to an isolated cortex. The basic EI model includes

external inputs to two cortical populations (e and i), and both intracortical and corticocortical

feedback are represented. This model is a starting point for understanding more elaborate neu-

ral fields models of the cortex (e.g., modeling distinct layers within the gray matter [35, 85]).

Delays in the propagation of signals within neurons are due to synaptodendritic, soma, and

axonal dynamics. However, in this model there are no long-range delays like those from the

thalamus to the cortex. An extensive description and analysis of this model are given elsewhere

[2, 32, 87], including emergence of gamma rhythm [86] and integration of cholinergic modu-

lation [88]. Finally, the excitatory-only E model in Fig 9(d) omits cortical inhibitory effects.

This neural field model is the simplest system we consider that can be simulated in NFTsim
and has been used as the central example throughout this work.

Observables and diagnostics

Brain phenomena including the alpha rhythm [31, 34], age-related changes to the physiology

of the brain [27], evoked response potentials [28, 35, 85], and seizure dynamics [1, 5, 36, 58],

can be measured noninvasively via EEG. In these studies, the fields of activity of the excitatory

cortical population ϕee have been used to approximate EEG signals measured from the surface

of the scalp [49, 89] and constitute one of the main biophysical observables comparable to

experimental EEG data.

For the reasons mentioned above, the neural activity produced by NFTsim closely resembles

the electrical activity measured by EEG and ECoG up to a dimensional constant (i.e., translate

units of rate (s−1) into voltages).

Another tool traditionally used to detect various waking and sleep stages [6, 29] is the EEG

power spectrum [49]. In calculating scalp EEG spectra (rather than intracranial ones), one

must consider filtering due to volume conduction by the cerebrospinal fluid, skull, and scalp

[49, 89]. The calculation of the power spectrum including volume conduction filtering is

implemented as a spatial filter in nf.spatial_spectrum. The smoothed EEG timeseries

can be obtained by inverse Fourier transforming the filtered power spectrum. In the case of

ECoG, the spatial filtering due to volume conduction should not be applied.

It is important to notice, though, that the neural activity of different cortical and subcortical

populations can be used to predict other relevant electrical signals such as local field potentials

(LFPs), and stereoencephalography (SEEG); magnetic signals such as MEG; metabolic-related

signals like fMRI [90] or indirect fluorescence signals like those recorded via voltage sensitive

dyes imaging (VSDI) [91]. Note that conversion of NFTsim outputs to the desired neuroimag-

ing modality signals still requires additional modeling steps, including a description of the

causal relationship and physiological couplings between the sources (i.e., the spatiotemporal

fields of neural activity stemming from multiple populations) and the effective biophysical

quantity measured in experiments [83, 84, 92–95].

Standard tests and reproducibility

Standard tests are a set of benchmarks used evaluate and compare disparate numerical imple-

mentations of similar neurobiological models [96]. There are very few such tests in computa-

tional neuroscience [97] and the ones currently available are only for single-cell models. To

the best of the authors’ knowledge, there are no published standard tests for mesoscopic
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models such as neural fields. Thus, there is a huge void regarding quality assessment of scien-

tific software for continuum models of brain dynamics.

NFTsim provides a reference framework for standard tests for implementations of neural

field models because its methods have been verified with analytic results; and, the linear

analytic closed form solutions upon which the code is based have been extensively validated

with experiments, as discussed in the Introduction. For example, in Fig 10 we reproduce the

results presented in Fig. 2 from [6]. This plot shows a comparison between the linear ana-

lytic power spectrum (dashed line) and the spectrum computed from NFTsim simulations.

Both spectra agree within the range of 0.1-45 Hz with a root-mean-square error of approxi-

mately 6 × 10−20. NFTsim’s default eirs-corticothalamic.conf is used with the

parameters from [6], which we do not repeat here because the original configuration files

are also included as part of the library package. The power spectrum is calculated using the

nf.spatial_spectrum() function.

Furthermore, the NFTsim’s methods and implementation have also been directly validated

by experimental data for nonlinear dynamics, notably neural activity corresponding to seizures

[36] and sleep spindles [6].

Benchmarks

NFTsim provides a tool for semi-automated benchmarking. Timing and configuration infor-

mation for simulation runs are stored in a comma-separated value (csv) file that can be pro-

cessed at a later stage.

Invoking the script
1 nf_benchmarks

without any arguments will run all the configuration files in the benchmarks/directory

once. We provide ten default configuration files that run in a total of under 700 s on a desktop

computer. Example results for specific hardware are given below. These files are based on

the corticothalamic model and are representative of typical simulation scenarios. With

nf_benchmarksusers can also:

Fig 10. Comparison of analytic and numeric EEG power spectra in the corticothalamic system. The dynamics of the EIRS model

were simulated using the wake parameters from [6] for their Figure 2. The linear analytic spectrum (black dashed solid) is compared

against the spectra computed from simulations (solid line).

https://doi.org/10.1371/journal.pcbi.1006387.g010
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(i). benchmark a specific configuration file

1 nf_benchmarks <config_filename>

(ii). benchmark a specific configuration file multiple times (e.g., 8 times in this example)

1 nf_benchmarks --num-trials 8 <config_filename>

(iii). benchmark a specific configuration file with output written to memory instead of disk

(this only works under Linux)

1 nf_benchmarks --to-mem <config_filename>

(iv). benchmark a specific configuration file using a non-default compiler

1 nf_benchmarks --clang <config_filename>

In NFTsim propagating fields are followed via partial differential equations, so the main

contributions to the runtime T are (i) the number of grid cells N; (ii) advancing a maximum of

P2 fields, between P populations, on the N cells; (iii) the length of the simulation in integration

steps L = Tsim/Δt; and, (iv) the size of the output O written to file. So,

T / ksimP2NLþ koutO ð33Þ

where the coefficients ksim and kout depend on the hardware architecture. The output size O
depends on the product of the total number of variables (W), the number of grid cells (Nout)

and the total output time points [Lout = (Tsim − Tstart)/Δtout] requested in the configuration file.

For large O, the runtime is dominated by writing operations. This overhead is expected for

two reasons: (i) a simulated data sample is written to disk every Δtout, which takes additional

time; and, (ii) writing the output to a text file requires conversion of numbers to text. Despite

the runtime overhead this last point entails, text files are a convenient format to store the out-

put because they are easier to debug than binary files.

The required memory, M, used by a NFTsim process is dominated by the number of grid

points N and the history arrays of P internal populations with delay depth Da, which is the

number of integration steps for a signal to propagate to the target population from the source

population. So,

M / NPD: ð34Þ

Table 4 summarizes the simulation parameters that determine runtime and memory usage

of a NFTsim process, including those which are not directly specified in a configuration file.

To assess NFTsim’s performance, we select the corticothalamic model presented in earlier

sections, with the parameters taken from previously published work [6] and thus considered a

typical simulation use case.

The simulation length and integration time step are held constant at 16 s and Δt = 2−14 s�

10−4 s, respectively. So, the only varying parameter that affects the runtime and storage is

Nodes (N). The choice of this integration time step size is such that is sufficiently small to

resolve high frequency oscillations and to satisfy the Courant condition for numerical stability

for a range of discretization values between 3 mm < Δx< 50 mm. The Courant number

ranges between 0.014< p< 0.15 for a fixed velocity vab = 10 m s−1.

Two groups of simulations were run. The first group, Gno, runs the simulation and only

writes a copy of the configuration file to the output file. The subscript no means no output.

In this case the runtime represents the effective time spent executing a simulation without the

time overhead due to writing operations. From Eq (33), the group Gno has kout� 0. The second

group of simulations Gwo consists of identical simulations to those of Gno, except that all the

model variables (firing rate, voltages, fields, coupling strengths), for all the nodes, sampled at

512 Hz, are written to a file in the hard disk.
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Approximate runtimes and memory usage are measured using tools available on Linux sys-

tems. The computer used for the benchmarks has Red Hat Enterprise Linux (RHEL) 6.9 as

operating system, GNU Compiler collection (gcc) 4.9.2 as the default compiler, a 3.50 GHz

Intel i5-4690 processor and 8GB of RAM.

Table 5 presents the benchmark results for different grid sizes and shows that the runtimes

scale linearly as a function of the number of nodes with ksim� 0.15 s for the simulation group

Gno and and ksim� kout� 0.15 s for group Gwo. From these results, we conclude that in order

to produce one minute worth of data sampled at a rate typically used in clinical EEG record-

ings, NFTsim takes about four minutes to run the simulation and write the output to disk.

Thus, NFTsim’s simulation length to real-time data length ratio (Tsim/Treal) for EEG-compati-

ble outputs is approximately 4. To reduce this ratio users can decrease the size of the output O,

by writing only a few relevant variables to disk.

While these benchmarks offer a narrow view of NFTsim’s performance, they are a valuable

practical tool for users and provide: (i) estimates of resources required to run simulations; and,

Table 4. NFTsim simulation and output size parameters, and runtime and memory usage symbols.

Symbol Description Parameter in configuration file Units

Tsim Simulation length Time s

Δt Integration time step Deltat s

L Number of time steps - -

P Number of populations - -

D Delay depth - -

O Output size - -

Nout Number of output nodes Node -

Δtout Output sampling period Interval s

Tstart Output start time Start s

W Number of output variables - -

Lout Number of output time points - -

M Memory used - byte

T Runtime - s

First column: symbols used in this work to identify either the parameters specified in a configuration file, or variables associated with runtime and memory usage.

Second column: description of the variable or parameter. Third column: parameter names used in configuration files. The symbol - means the parameter is not specified

directly in a configuration file. Fourth column: SI units. Here, the symbol - means the quantity is dimensionless.

https://doi.org/10.1371/journal.pcbi.1006387.t004

Table 5. Benchmarks for different grid sizes using NFTsim v.0.1.5.

Nodes Storage [GB] Memory [MB] Runtime Gno [s] Runtime Gwo [s]

144 1.1 5 24 44

256 1.9 6 40 79

1024 7.3 16 161 302

4096 29 51 646 1208

16384 116 200 2601 4908

The value of Nodes is reported on the first column. The second column informs the storage size of the output file with all the model variables for each node (firing rate,

voltages, fields, coupling strengths) sampled at 1/Δtout = 512 Hz for the group of simulations Gwo. The third column presents the total memory usage of the process.

Reported runtimes on the fourth column and fifth columns are the time elapsed in seconds. The values on the fourth column correspond to simulations with no output

(no) written to the output file. The fifth column corresponds to the running times of simulations for which all the model variables for every node of the grid are written

to the output file (wo). The same corticothalamic model is used in every simulation with Tsim = 16 s, and Δt = 2−14 s.

https://doi.org/10.1371/journal.pcbi.1006387.t005
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(ii) a guide to make informed decisions between the execution runtimes and accuracy (i.e.,

decreasing the spatial resolution and/or the time step).

Conclusions, availability, and future directions

We have introduced NFTsim, a user-ready, extensible and portable suite for numerical simula-

tions of neural activity based on neural field models expressed in differential form. NFTsim is

based on the well established framework of neural field theory [2] and has been validated with

both analytic solutions and experimental data. Thus, when working with new models and sim-

ulations users can use analytic solutions as a way to validate their results.

Written in C++, NFTsim has been tested on a range of Linux distributions (RHEL 6.9,

RHEL 7.4, OpenSUSE 13.2, OpenSUSE 42.2). Current users have reported compatibility with

OS X 10.11 and mac OS 10.12 in conjunction with the CLANG compiler, provided that the C

++11 standard is supported. NFTsim has not been tested under Microsoft Windows.

The output of NFTsim is written to a plain text file and ancillary modules written in Matlab

contain functions to assist in simulation execution, quick analysis and visualization of the

results. NFTsim thus provides an efficient solution to simulating various continuum spatio-

temporal models including spatially uniform (homogeneous) and nonuniform (inhomoge-

neous) neural field models [77]; systems with heterogeneous time delays between populations

[34]; and, the selected format for data storage is simple enough that enables users to choose

from a broad selection of tools to perform further analysis and visualization. The development

of NFTsim follows essential practices of modern open-source scientific software development

[97] such as:

1. The code is licensed under the Apache 2.0 license.

2. Our code sources are hosted on Github: https://github.com/BrainDynamicsUSYD/nftsim.

3. We use pull requests to review new features and bug fixes.

4. Our users can open issues reporting bugs and/or other problems they encounter.

5. The developer documentation is produced using Doxygen [98].

6. A separate manual is provided for end-users.

7. Releases are tagged, so users can refer to and download continuously improved versions of

the code that are considered stable and tested. For instance, for this paper, we have used

v1.1.0.

Most notably, the activity from neural populations can be used to calculate biophysical sig-

nals such as LFP, ECoG, or EEG signals, the latter being the most commonly found in previous

studies. Other forms of biophysical observables, such as fMRI and VSDI may also be imple-

mented, but require additional modeling work to define how the electrical activity relates to

the corresponding measurements (e.g., oxygen consumption, blood flow changes or fluores-

cence). Further physical effects can be implemented as a part of postprocessing modules like

+nf.

Due to its flexibility and generality, NFTsim allows for a systematic study of both healthy

and unhealthy brain function. For instance, in [6] the authors used simulations of a full non-

linear EIRS model for parameter values representing typical sleep spindle oscillations. They

found that the numerical nonlinear power spectrum had an additional harmonic peak that

was neither present in the linear EIRS model nor it was predicted by the analytic linearized

power spectrum. This study clearly demonstrated that NFTsim’s flexibility allowed for the

investigation of nonlinearities, introducing them one at the time in different neural
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populations. This enabled the authors to determine which anatomical structures and physio-

logical mechanisms were responsible for the dynamics observed in experiments.

Due to its modularity, NFTsim is extensible and can accommodate new features presented

in theoretical work on neural fields. In fact, a tool like NFTsim is essential for the study of non-

linearities and connectivities configurations that do not necessarily follow the random connec-

tivity approximation [2, 50, 99] or are not spatially homogeneous or constant over time. For

instance, [58] explored the mechanisms of seizures by incorporating slow currents modulating

the bursting behavior of the reticular nucleus in the corticothalamic (EIRS) model; while [38]

incorporated a model of synaptic plasticity to the purely excitatory subsystem. These two

mechanisms are already implemented in the current version of NFTsim. However, further

investigation and development work is required before implementing a general mechanism of

parameter modulation, which would allow for the study different types and functional forms

of neural feedbacks [62, 100].

We remind potential users that NFTsim, as any scientific software, should not be used

blindly. As a minimal requirement, users should check that:

(i). The integration time step is small enough to resolve the simulated dynamics correctly,

especially if the system exhibits chaotic and bursting dynamics;

(ii). The parameter Interval, which effectively subsamples the timeseries written to

disk, is an integer multiple of the time step; and, is small enough so as to avoid temporal

aliasing if there are signals with high-frequency content (e.g., the effective sampling fre-

quency of the signal written to disk (1/Interval) is sufficient to respect Nyquist’s

sampling theorem.

(iii). The integration time step is small enough to respect the Courant conditions. If this

condition is not met the code throws an error. A way to select an appropriate value of

Deltatwould by running the simulation with increased or decreased time steps to

check for stability and convergence of the solutions to a limiting case.

(iv). Setting parameters such as Deltat, Interval and Nodes as multiples or submulti-

ples of powers of two (NFTsim’s default values), minimizes numerical errors due to the

inherent limitations of representing floating point numbers on a computer. In addition,

other advantages of using powers of two are (i) achieving optimal performance of FFT

algorithms when applied to the output timeseries (1 second of data will have a power-

of-two number of samples); and, (ii) avoiding zero-padding which is a frequent default

behavior of FFT algorithms. However, users are not obliged to use NFTsim’s default val-

ues. They can select any value and simulations will be executed.

(v). Artifacts of periodicity introduced by PBCs as illustrated in Fig 7 are avoided. This can

be achieved by setting the grid’s area larger than that of the actual physical system under

consideration. In this scenario, waves propagating from the region of interest towards

the right edge of the grid would die off before being reintroduced on the left edge. This

approximation would be close to the solution in the absence of artificial boundaries

in which the region of interest has infinite size; or to absorbing boundary conditions

(ABCs).

Note that PBCs may be preferable over absorbing BCs in scenarios when one is interested

in studying wave-wave interactions. However, in neural field models that approximate a

small patch of cortex such as the primary visual cortex V1, in which waves of activity propa-

gate away from a source point of stimulation [94], then absorbing BCs would likely be more

appropriate.
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In the present work we have concentrated mainly on a high-level description of the software

and presented examples for which model parameters are assumed to be spatially uniform.

NFTsim already accepts spatial variations in many parameters, although more development

work needs to be done to provide general mechanisms of parameter variation.

Note that NFTsim solves differential equations. It does not solve integrodifferential equa-

tions like those of Nichols and Hutt’s Neural Field Simulator [8]. It is important to notice that

not all neural field expressed in integrodifferential form can be expressed in differential form.

On the other hand, neural fields expressed in differential form can be expressed in integrodif-

frential form and can be solved in NFTsim.

As mentioned in Classes and their interactions, NFTsim currently has Gaussian white noise

in its collection of external driving signals because in the literature [1, 2, 4, 8, 28–31, 39, 65,

101–104] neural field models are typically either initialized or driven by a signal with a flat

(white) power spectrum. These inputs correspond to the activity of other brain structures that

are not explicitly modeled in the equations. In the case of the corticothalamic system, these

inputs may represent background activity from the brain stem. In the case of a purely cortical

model, these inputs could represent the combined activity from the thalamus and other struc-

tures. It is important to notice that external inputs with a broad white spectrum enter the NFT

differential equations in exactly the same way as more coherent stimulus such as a sine wave

would, as such, standard numerical methods (RK4) are employed.

However, there are several limitations that make this type of signal a poor choice. The first

limitation is that idealized continuous noise is not physically realistic because it has an infinite

bandwidth and infinite power. The second limitation is that in computer simulations, where

continuous models are inevitably discretized, the bandwidth of a white noise signal depends

on the size of the discretization. This dependence implies that if either the time step or the

spatial step are reduced, the bandwidth increases and as a result a white noise signal has addi-

tional modes (i.e., frequency components). One can use a scaling parameter to adjust the over-

all power of the discretized driving signal [6, 81]. This scaling has no effect on the resulting

spectral shape that is often compared to EEG [6]. For these reasons, it is necessary to incorpo-

rate a new type of stimuli that has a white spectrum but that is differentiable in time and space;

and its spectral profile does not change under changes of the discretization.

Future work will extend NFTsim scientific features by including (i) a new bandlimited noise

generation to render the inputs even more biologically realistic; (ii) generalized mechanisms of

spatiotemporal variations for different model parameters and variables; (iii) generalized mech-

anisms of neuromodulation; (iv) absorbing boundary conditions; and, (v) spherical topology.

In addition, a number of technical enhancements will be made such as (i) implement support

for output binary files; and (ii) extend and automate unit test coverage to ensure that new addi-

tions to the code do not break previous functionality.
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