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Abstract: The impact of the composition of natural deep eutectic solvents (NADES) and extraction
conditions on the simultaneous extraction of hydrophilic ascorbic acid (AA), phlorotannins (TPhC),
and lipophilic fucoxanthin (FX) from Fucus vesiculosus was investigated for the first time. In biological
tests, the NADES extracts showed the promising ability to scavenge DPPH radicals. A positive
correlation was observed between DPPH scavenging activity and AA, TPhC, and FX contents. We
calculate the synergistic effect of antioxidants extracted by NADES from F. vesiculosus based on the
mixture effect (ME). The addition of 30% water to the NADES and the prolongation of sonication
time from 20 min up to 60 min were favorable for the ME. The ME for extracts with the NADES was
increased by two folds (ME > 2). In contrast, conventional extraction by maceration with steering at
60 ◦C does not lead to the synergistic effect (ME = 1). It is notable that the NADES provides high
stability and preserves the antioxidant activity of the extracts from F. vesiculosus during storage.

Keywords: ascorbic acid; fucoxanthin; phlorotannins; antioxidant; brown seaweeds; synergy; stor-
age stability

1. Introduction

The development of the environmentally friendly and efficient extraction of biolog-
ically active compounds from phytobiomass is a modern trend in the pharmaceutical,
cosmetical, and food industries. The natural deep eutectic solvents (NADES) are a promis-
ing alternative to conventional organic solvents and gained popularity because they are
green, non-toxic, biodegradable, and recyclable [1,2]. The NADES were proposed by a
group of scientists who discovered a third liquid phase in plants, which has a phenomenal
dissolving power for small molecules and biopolymers with low or non-water solubil-
ity [3]. Such solvents consist of the metabolites of living cells: sugars, organic acids,
ammonium, and phosphonium salts, etc. The solubility of the target compounds in the
NADES significantly increases due to the formation of hydrogen bonds with solutes [4,5].

To be predominantly polar liquids, NADES have been used for the extraction of al-
kaloids [6], anthocyanins [7–9], glycosides of phenyletanes and phenylpropanoids [10],
and polysaccharides [11]. NADES could be customized for the extraction of less polar
aglycones of flavonoids [12], anthraquinones [13], astaxanthin [14], curcumin [15], gly-
cyrrhizic acid [16], iridoids [17], and steroidal saponins [18]. Hydrophobic terpenes and
fatty acid-based NADES allowed for the isolation of carotenoids, free fatty acids, and
pheophytin [19]. Recently, a biphasic system based on deep eutectic solvents was proposed
for the simultaneous extraction of high polarity chlorogenic acid, quercetin, anthocyanidins,
and a low polarity compound artemisinin from Artemisia [20]. Several papers report the
application of NADES for the recovery of bioactive compounds from seaweeds [19,21–24].
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Brown seaweeds, particularly, Fucus vesiculosus, are rich sources of biologically active
metabolites: amino acids [25], fucoxanthin and other carotenoids [26], chlorophylls [27],
fucoidan [28–30], polyunsaturated fatty acids [31,32], and polyphenols [33,34], etc.

Brown seaweeds, compared with other seaweeds, contain higher levels of polyphenols,
which shows potent antioxidant activity. F. vesiculosus polyphenols are represented mainly
by very hydrophilic phlorotannins-polymerized phloroglucinol (1,3,5-trihydroxybenzene)
units [25,35,36]. Another hydrophilic compound of interest in brown seaweeds is ascorbic
acid. It was estimated that the daily consumption of 100 g of seaweed covers 2/3 of
the recommended doses of ascorbic acid for humans [37]. One of the main lipophilic
compounds produced by brown seaweeds is carotenoid fucoxanthin, which is responsible
for algae color [38]. Fucoxanthin is a well-established antioxidant according to in vitro and
in vivo investigations [39,40].

The antioxidant effects of seaweed extracts have been confirmed both in vitro and
in vivo [36,41–43]. Epidemiological observations provide evidence that dietary supple-
mentation with seaweeds reduces the risk of numerous diseases associated with oxidative
stress [44–46]. Therefore, we consider using the antioxidant test as an indicator for the bio-
logical activity of novel extracts from F. vesiculosus obtained by the application of NADES.
Due to peculiar characteristics, including chemical complexity, susceptibility to oxidation,
and specific polarity, the simultaneous extraction of hydrophilic and lipophilic compounds
is a challenging process.

In this study, NADES were tuned to simultaneously extract hydrophilic and lipophilic
bioactive compounds from F. vesiculosus. The efficacy of extraction was evaluated by the
analysis of the content of ascorbic acid, fucoxanthin, and phlorotannins. The biological
activity of the extracts was monitored using an antioxidant activity test. Additionally,
the impact of some compounds on antioxidant activity and the ability of NADES for the
stabilization of extracts was studied.

2. Results and Discussion
2.1. NADES Tuning

The widespread use of toxic solvents in chemical, pharmaceutical, and other industries
places a heavy burden on the environment. The green extraction of biologically active
compounds from phytobiomass with NADES is essential for rational environmental man-
agement [47,48]. NADES, mainly synthesized from polar components, are well studied for
the recovery of hydrophilic compounds. In this study, we aimed to extract both hydrophilic
and lipophilic compounds from F. vesiculosus. Based on literature data and the results of
our preliminary experiments we have prepared the two most promising NADES (Table 1).

Table 1. Natural deep eutectic solvents (NADES) used for extraction.

NADES Code Components Molar Rate Appearance

NADES1 Lactic acid:Choline
chloride 3:1 Viscous transparent

colorless liquid
NADES2 Lactic acid:Glucose:H2O 5:1:3 Transparent liquid

Although advanced extraction techniques, such as pressurized liquid extraction [49],
supercritical fluid extraction [50], and microwave-assisted extraction [51] have been imple-
mented, ultrasound-assisted extraction (UAE) is the most commonly employed method
for the recovery of biologically active compounds from brown seaweeds [23,43]. Whereas
percolation (PE) is recognized as an exhaustive extraction method [52]. Ethanol has been
recommended as a suitable solvent for extraction of ascorbic acid [53], phlorotannins [42,51],
and fucoxanthin [54,55]. The structures of the analyzed compounds and components of
NADES are presented in Figure 1. Typical chromatograms of reference compounds and
NADES extracts are available in Supplementary materials (Figures S1–S7).
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Figure 1. The structures of ascorbic acid, phloroglucinol, fucoxanthin, choline chloride, lactic acid, and glucose.

The efficacy of the extraction of hydrophilic and lipophilic compounds from F. vesicu-
losus with NADES using UAE was compared with that of ethanol using PE (Table 2).

Table 2. The content of hydrophilic-ascorbic acid (AA), total phlorotannins (TPhC), and lipophilic-
fucoxanthin (FX) compounds from Fucus vesiculosus after UAE and PE (mean ± standard deviation).

Solvent
AA,

mg/g DW Seaweed
TPhC,

mg/g DW Seaweed
FX,

mg/g DW Seaweed

UAE, NADES1 0.058 ± 0.010 17.2 ± 3.7 0.24 ± 0.03
UAE, NADES2 0.093 ± 0.010 9.3 ± 0.9 0.17 ± 0.02

PE, EtOH 0.80 ± 0.01 71.7 ± 0.4 1.10 ± 0.02
UAE (ultrasound-assisted extraction) at a 1:10 (w/v) seaweed to solvent ratio, 25 ◦C, 20 min; PE—maceration
with EtOH for 24 h, and percolation at a 1:10 (w/v) seaweed to solvent ratio, 25 ◦C.

PE provided the maximal recovery of all hydrophilic and lipophilic compounds from
seaweeds (Table 1). NADES1 has more potential for recovery of TPhC and FX when
compared with NADES2. While NADES2 was more suitable for the extraction of AA
(Table 2). The addition of water to NADES led to a decrease in the viscosity and in the
surface tension of the solvents, which had a positive impact on the mass transfer from the
seaweed cells into the extract [4]. The water (10–40%, w/w) was added to both NADES to
facilitate the efficacy of extraction (Figure 2).

The extraction yields of the hydrophilic ascorbic acid and phlorotannins significantly
raised as the water content in the NADES increased. The compounds rich in hydroxyl
groups like AA and TPhC are good hydrogen donors and preferably form bonds with
hydrogen bond acceptors like choline chloride [23,56]. Although recently, AA has been
introduced for the preparation of NADES [56,57], to the best of our knowledge, we report
the extraction of ascorbic acid from seaweeds with NADES for the first time. Carotenoid
FX is practically insoluble in water. Thus, the addition of water to both NADES does
not have a statistically significant effect on the recovery of FX (Figure 2). Organic toxic
solvents are commonly used for FX extraction from seaweeds [58]. Recently, Roy et al.
(2021) reported on the extraction of another carotenoid astaxanthin from a marine species
with NADES [59]. We have not found information about the recovery of FX by NADES in
the available literature. This is the first time NADES are suggested for the extraction of
fucoxanthin from F. vesiculosus.
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Figure 2. The effect of water content in NADES on the extraction efficacy of total phlorotannins (TPhC), fucoxanthin (FX),
and ascorbic acid (AA) from F. vesiculosus. All experiments were performed using UAE at a 1:10 (w/v) seaweed to solvent
ratio at 25 ◦C for 20 min. Water content 0, 10, 20, 30, and 40% (v/v). * The difference is not statistically significant, p > 0.05.

The addition of water to both NADES, up to 30%, significantly improved the extraction
yield of hydrophilic compounds. While an increase of water up to 40% had not resulted in a
statistically significant increase of extracted compounds (Figure 2). This is in line with other
authors who recommend a maximum limit of 30% of water in NADES [60–62]. Therefore,
for subsequent experiments, we consider the addition of 30% water to both NADES.

2.2. Extraction Conditions Tuning

The duration of the extraction significantly affects the performance and selectivity of
the recovery of active principles from seaweeds [62,63]. We observed that the extension
of the extraction time leads to an increase in the yield of tested compounds (Figure 2).
The most promising increase was observed for FX (up to 89.5–91.3%, when compared
to extraction by PE) (Table 1). This is consistent with the literature data that indicates a
positive effect of the extraction time on the yield of FX from seaweeds [54,55]. Notably,
TPhC values after 60 min sonication with both NADES (Figure 2) were equal to the efficacy
of PE (Table 1). This could be explained by the more complete interaction of NADES via nu-
merous hydrogen bonds with the hydroxyl groups of phlorotannins. This promotes better
solubilization of phlorotannins after prolonged sonication [64]. Additionally, polyphenols
interact with NADES to form polymers over the longer extraction period [65].

Prolonged sonication for 60 min resulted in an increase of AA extraction by 55%,
compared with 20 min sonication in the case of NADES1. The sonication for 60 min was not
favorable for AA extraction by NADES2 (Figure 3). Ultrasonic waves generate intensive
cavitation in the extraction medium, resulting in the formation and explosion of cavitation
bubbles [66]. These generate mechanical shear forces which destroyed the seaweed cell,
thereby facilitating the release of active compounds into the solvent phase. Furthermore,
acoustic streaming causes the mixing effect, which enhances the contact between solvents
and active compounds and increases extraction performance [67]. Otherwise, the intensive
mixing and formation of bubbles resulted in saturation of the extraction media with air.
It was shown that the air’s oxygen heavily induced the degradation of AA in juices after
60 min of stirring at 25 ◦C [68]. All wave phenomena during UAE were attenuated in
viscous media. Due to the higher water content, NADES2 has less viscosity when compared
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to NADES1. The lower AA content in NADES2 could be associated with its degradation
during the 60 min of sonication in our experiment.
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Figure 3. The effect of extraction time on the recovery of ascorbic acid (AA), total phlorotannins
(TPhC), and fucoxanthin (FX) from F. vesiculosus by UAE at a 1:10 (w/v) seaweed to solvent ratio at
25 ◦C.

It is believed that UAE with NADES as extraction solvents, due to their high viscosity,
is less efficient than the conventional method of extraction (CE) [69]. Maceration via stirring
is CE for the recovery of biologically active compounds from brown seaweeds [33,70].
NADES are viscous substances. Heating decreases viscosity [4] and boosts the convection
and mass transfer from the seaweed matrix [71]. Further, we compared the compounds’
yields extracted with ethanol (using PE at 25 ◦C), NADES (UAE-60 min, 25 ◦C), and NADES
(CE at 60 ◦C) from the F. vesiculosus material. The heating and dilution of NADES with
30% of water (w/w) promotes a significant increase in the recovery of all compounds by
NADES (Figure 4). The most promising results were obtained for NADES2. The yield of
AA, TPhC, and FX was increased by 3.2, 6.5, and 5.9 folds, respectively, when compared to
UAE extraction at 25 ◦C for 20 min (Table 2). Whereas the yields of TPhC and FX extracted
with NADES (CE, at 60 ◦C; Figure 4) was equal to those of with NADES (UAE-60 min, at
25 ◦C; Figure 3). However, the recovery of AA in NADES using CE (at 60 ◦C) was lower
than that of UAE-60 min (at 25 ◦C). This could be due to the possible degradation of AA at
intensive stirring and heating. We consider that the UAE for 60 min at 25 ◦C is preferable
for greater recovery of all lipophilic and hydrophilic compounds from F. vesiculosus.

2.3. Antioxidant Activity

DPPH assay is a well-accepted method for the analysis of the antioxidant activity of
seaweed extracts [36,39,42,43]. The DPPH assay results are demonstrated in Figure 5. The
data indicate that the method and conditions of extraction play a key role in the antioxidant
activity of extracts. The lowest activity was observed for extracts received by the CE
method. DPPH scavenging activity of extracts obtained by the UAE significantly rises
with the extraction time. The extension of the extraction time, up to 60 min, resulted in
the increase of activity by 2.4 folds for the NADES1 extract and 2.2 folds for the NADES2
extract when compared to 20 min UAE. The NADES1 extract, prepared by UAE for 60 min,
showed 78.5 ± 1.4% DPPH scavenging (Figure 5). This activity was significantly higher
than the activity of the PE extract. The experimental data evidenced that NADES with
30 wt% water shows excellent ability for the extraction of compounds from seaweeds with
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potent antioxidant activity. This corroborates with Ummat et al. (2020), who reported that,
compared with CE, ultrasound facilitated the release of polyphenols from the seaweed,
which leads to increased DPPH scavenging activity of UAE extracts [43].

Molecules 2021, 26, x FOR PEER REVIEW 6 of 15 
 

 

respectively, when compared to UAE extraction at 25 °C for 20 min (Table 2). Whereas the 
yields of TPhC and FX extracted with NADES (CE, at 60 °C; Figure 4) was equal to those 
of with NADES (UAE-60 min, at 25 °C; Figure 3). However, the recovery of AA in NADES 
using CE (at 60 °C) was lower than that of UAE-60 min (at 25 °C). This could be due to the 
possible degradation of AA at intensive stirring and heating. We consider that the UAE 
for 60 min at 25 °C is preferable for greater recovery of all lipophilic and hydrophilic 
compounds from F. vesiculosus. 

 
Figure 4. Comparison of extraction efficacy of ascorbic acid (AA), total phlorotannins (TPhC), and fucoxanthin (FX) from 
F. vesiculosus with NADES (CE at 60 °C) and with EtOH by exhaustive extraction (PE, 25 °C). 

2.3. Antioxidant Activity 
DPPH assay is a well-accepted method for the analysis of the antioxidant activity of 

seaweed extracts [36,39,42,43]. The DPPH assay results are demonstrated in Figure 5. The 
data indicate that the method and conditions of extraction play a key role in the 
antioxidant activity of extracts. The lowest activity was observed for extracts received by 
the CE method. DPPH scavenging activity of extracts obtained by the UAE significantly 
rises with the extraction time. The extension of the extraction time, up to 60 min, resulted 
in the increase of activity by 2.4 folds for the NADES1 extract and 2.2 folds for the NADES2 
extract when compared to 20 min UAE. The NADES1 extract, prepared by UAE for 60 
min, showed 78.5 ± 1.4% DPPH scavenging (Figure 5). This activity was significantly 
higher than the activity of the PE extract. The experimental data evidenced that NADES 
with 30 wt% water shows excellent ability for the extraction of compounds from seaweeds 
with potent antioxidant activity. This corroborates with Ummat et al. (2020), who reported 
that, compared with CE, ultrasound facilitated the release of polyphenols from the 
seaweed, which leads to increased DPPH scavenging activity of UAE extracts [43]. 

Figure 4. Comparison of extraction efficacy of ascorbic acid (AA), total phlorotannins (TPhC), and
fucoxanthin (FX) from F. vesiculosus with NADES (CE at 60 ◦C) and with EtOH by exhaustive
extraction (PE, 25 ◦C).

Molecules 2021, 26, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 5. The effect of the extraction method (CE (60 °C), UAE-20 min (25 °C), UAE-60 min (25 °C), and PE (25 °C)) on the 
antiradical activity of the NADES extracts from F. vesiculosus. 

Pearson’s correlation analysis evidenced that all hydrophilic and lipophilic 
compounds observed in this study handle the antioxidant activity. A positive correlation 
was observed between DPPH scavenging activity and AA (0.76, p < 0.0000), as well as 
TPhC (0.46, p < 0.02) and FX contents (0.55, p < 0.006). The correlation was also found 
between AA and TPhC (0.87, p < 0.0000), while there was no significant correlation with 
TPhC and FX, indicating that some individual compounds or fractions could contribute 
more than others to the antioxidant properties of the F. vesiculosus extracts. A similar 
positive correlation between antioxidant activity and FX and TPhC from seaweeds was 
observed by other authors [41]. The hydroxyl group in AA and TPhC are responsible for 
the potent antioxidant activities [43,53]. While the activity of FX is associated with 
conjugated double bonds and the presence of the peroxide group and allenic bond in the 
terminal rings of FX [39]. 

2.4. Determination of the Mixture Effect 
The natural crude extracts represent a mixture of different compounds. The 

discovery of the impact of individual compounds/fractions on the antioxidant activities of 
natural extracts is challenging [36,72]. The mixture effect (ME) is one of the common 
approaches for expressing the synergistic or antagonistic effects occurring between pairs 
of antioxidants in a mixture [72,73]. To investigate ME, solutions of AA and 
phloroglucinol and their mixture were prepared and their ability to scavenge DPPH 
radicals was studied. Based on the data obtained for the individual solutions and extracts 
(NADES1, NADES2, and EtOH), the DPPH scavenging activity was calculated after 30 
min. Mathematically, ME > 1 evidence regards the synergistic effect between antioxidants, 
whereas ME < 1 indicates antagonism. In the case of ME = 1, neither a synergistic nor an 
antagonistic effect exists. 

The antioxidant activity for a model mixture of AA and phloroglucinol showed that 
they have a strong synergistic effect on the reaction with the DPPH radical (ME = 2.99). 
The PE extract had a pronounced synergistic effect (ME 2.03). In the experiments with 
UAE, the extension of the sonication time from 20 min up to 60 min was favorable for ME. 
The ME for the extracts with NADES1 and NADES 2 increased from 0.99 to 1.96 and from 

Figure 5. The effect of the extraction method (CE (60 ◦C), UAE-20 min (25 ◦C), UAE-60 min (25 ◦C),
and PE (25 ◦C)) on the antiradical activity of the NADES extracts from F. vesiculosus.

Pearson’s correlation analysis evidenced that all hydrophilic and lipophilic com-
pounds observed in this study handle the antioxidant activity. A positive correlation was
observed between DPPH scavenging activity and AA (0.76, p < 0.0000), as well as TPhC
(0.46, p < 0.02) and FX contents (0.55, p < 0.006). The correlation was also found between
AA and TPhC (0.87, p < 0.0000), while there was no significant correlation with TPhC
and FX, indicating that some individual compounds or fractions could contribute more
than others to the antioxidant properties of the F. vesiculosus extracts. A similar positive
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correlation between antioxidant activity and FX and TPhC from seaweeds was observed
by other authors [41]. The hydroxyl group in AA and TPhC are responsible for the potent
antioxidant activities [43,53]. While the activity of FX is associated with conjugated double
bonds and the presence of the peroxide group and allenic bond in the terminal rings
of FX [39].

2.4. Determination of the Mixture Effect

The natural crude extracts represent a mixture of different compounds. The discovery
of the impact of individual compounds/fractions on the antioxidant activities of natural
extracts is challenging [36,72]. The mixture effect (ME) is one of the common approaches for
expressing the synergistic or antagonistic effects occurring between pairs of antioxidants in
a mixture [72,73]. To investigate ME, solutions of AA and phloroglucinol and their mixture
were prepared and their ability to scavenge DPPH radicals was studied. Based on the data
obtained for the individual solutions and extracts (NADES1, NADES2, and EtOH), the
DPPH scavenging activity was calculated after 30 min. Mathematically, ME > 1 evidence
regards the synergistic effect between antioxidants, whereas ME < 1 indicates antagonism.
In the case of ME = 1, neither a synergistic nor an antagonistic effect exists.

The antioxidant activity for a model mixture of AA and phloroglucinol showed that
they have a strong synergistic effect on the reaction with the DPPH radical (ME = 2.99).
The PE extract had a pronounced synergistic effect (ME 2.03). In the experiments with
UAE, the extension of the sonication time from 20 min up to 60 min was favorable for ME.
The ME for the extracts with NADES1 and NADES 2 increased from 0.99 to 1.96 and from
1.00 to 2.27, respectively. In contrast, CE at 60 ◦C does not lead to the synergistic effect
(ME 0.94 and 1.04 for NADES1 and NADES2, respectively). The increased AA and FX
content in the NADES2 extract compared to the NADES1 extract (Figure 4) can explain the
slightly higher ME for NADES2. The UAE extracts were more beneficial due to the higher
concentration of AA and FX in these extracts (Figure 3) compared to CE (Figure 4) and
potent antioxidant activities (Figure 5). Although the content of FX in seaweed extracts is
lower than the content of TPhC, FX contributes to the antioxidant activity as well [74]. The
synergy of antioxidants from seaweeds has been claimed in several papers [36,74,75]. To
the best of our knowledge, the synergistic effect for antioxidants extracted by NADES from
seaweeds is calculated in this article for the first time.

2.5. Storage Stability

NADES are not only green solvents for natural compounds, but also enhance their
stability [62,69]. Phlorotannins were the most abundant metabolite in the studied extracts
of F. vesiculosus. Therefore, we have monitored the effects of solvents and storage time on
the stability of phlorotannins in NADES and EtOH extracts. Both the content of TPhC in
the extracts and the appropriate antiradical activity were determined during storage at
25 ◦C in a dark place for 360 days. The results showed that after 30 days of storage the
content of TPhC in EtOH began to decline considerably faster compared with the TPhC in
both NADES (Figure 6a). NADES1 enables greater stability of the phlorotannins, while
about 70% of the phlorotannins degraded in EtOH after 360 days of the experiment. The
stability of TPhC in the extracts (Figure 6a) was correlated with the antioxidant activity
(Figure 6b).
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Our results are in agreement with literature data in which NADES provides better
stability for carthamin [76], anthocyanins [69], and curcumin [15]. The stabilization ability
of NADES may have a direct relationship to their viscosity [76]. The total water content
in NADES1 is less than in NADES2. The water content in NADES1 is 30% (w/w), while
NADES2 contained three moles of water after preparation (Table 1) and 30% water (w/w)
was added after tuning of solvents (Section 2.1). The dilution with water decreases the
viscosity of NADES2 compared to NADES1. The higher viscosity of NADES negatively
affects the movement of molecules, allowing a stable interaction between the molecules
of the NADES components and the solutes. This leads to a reduction in the contact time
for metabolites on the NADES surface with air and consequently resulted in less oxidative
degradation [69]. Additionally, oxygen has a lower solubility in NADES than in ethanol
or water. The solubility and physical stability of some pharmaceuticals in NADES have
also been reported recently [77]. Results of our experiments suggest that NADES enable
not only the better stability of active metabolites from F. vesiculosus, but also preserve the
antioxidant activity of extracts.

3. Materials and Methods
3.1. Materials and Reagents

Fresh brown seaweeds Fucus vesiculosus L. were collected from the coastal region
of Zavalishin Bay of the Barents Sea (Russia), 69◦11.38′ N, 35◦14.78′ E in August 2018.
The seaweeds were washed twice in filtered seawater and cleaned from epiphytes by
carefully rubbing its surface. The samples were frozen and stored at −25 ◦C for later
extraction. The dry weight was determined from 3 × 5 g of fresh seaweed material,
which was dried at 40 ◦C in the drying oven (UM 200, Memmert GmbH + Co. KG, Ger-
many). The seaweeds were identified by Dr. E. Obluchinskaya and the voucher specimens
(No. 8.2018, V.D.Z.) were deposited in the Collection of the Zoobentos Laboratory, Mur-
mansk Marine Biology Institute. L-Lactic acid and D(+)-glucose were from Panreac Química
SLU (Barcelona, Spain). The Folin-Ciocalteu reagent, ascorbic acid, phloroglucinol, and
2,2-diphenyl-1-picrylhydrazyl (DPPH) were from Sigma-Aldrich (St. Louis, MO, USA)
and the fucoxanthin was from Supelco (Bellefonte, PA, USA). Choline chloride was pur-
chased from Acros Organics (Fair Lawn, NJ, USA). The water was purified via a Milli-Q
system (Millipore, Bedford, MA, USA). Other analytical grade chemicals and solvents for
extraction and assay were purchased from local chemical suppliers.

3.2. NADES Preparation

A heating method [4] was used for the preparation of the NADES. Lactic acid and
hydrogen bond donors glucose or choline chloride, at the respective molar ratio, were
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used [23]. The pre-weighed components (Table 1) were placed in a bottle and heated in a
water bath at 50 ◦C for 60 min with agitation at 700 rpm until a clear liquid was formed.
The water-containing NADES were obtained by a dilution of NADES with water based on
% weight.

3.3. Extraction Conditions

Frozen samples of F. vesiculosus were cut into small pieces of about 1−3 mm2, thawed
for 2 h at room temperature, and then mixed at a ratio of 1:10 (w/v) with one of the
solvent. The ultrasound-assisted extraction (UAE) was performed using a Branson MT-
3510 ultrasonic bath (Branson Ultrasonics Corporation, Danbury, CT, USA) at 42 kHz,
130 W for 20 and 60 min. After the sonication, the samples were centrifuged at 3000× g for
15 min at 20 ◦C and a liquid layer was used for future analysis. Conventional extraction
(CE) was performed by maceration with magnetic stirring (1 h, 700 rpm) and heating at
60 ◦C. For percolation extraction (PE), the sample of F. vesiculosus was wetted with 96%
EtOH for 24 h and then percolated [52] with the same solvent at a ratio of 1:10 at 25 ◦C. All
the extraction procedures were performed in triplicate.

3.4. Analysis of Hydrophilic and Lipophilic Compounds

The amount of total phlorotannins content (TPhC) in the extracts was determined
according to [78]. Briefly, 100 µL of sample or phloroglucinol was mixed with 2 mL of 2%
Na2CO3 and after 2 min was added 100 µL of Folin-Ciocalteau reagent. The solutions were
mixed and incubated for 30 min at room temperature in dark conditions. The absorbance
of the reaction was measured at 720 nm using a spectrophotometer Shimadzu UV 1800
(Shimadzu, Kyoto, Japan). The TPhC was expressed as mg phloroglucinol equivalents per
gram (mg PGE/g) DW of seaweed.

Fucoxanthin (FX) was analyzed using a reverse-phase high performed liquid chro-
matography (RP-HPLC) at room temperature [79] with a Shimadzu (Kyoto, Japan) HPLC
system comprising of two LC20AD pumps, a DGU-20 A3 degasser, and a SPD.M20 A
diode-array detector. Separation was achieved on a 4.6 mm i.d. × 250 mm, 5 µm par-
ticle, C18 column (Phenomenex, Torrance, CA, USA) with a SecurityGuard pre-column
(2 mm) containing the same adsorbent (Phenomenex). Isocratic elution was performed
with acetonitrile-methanol 95:5 (v/v) as mobile phase at a flow rate of 1 mL/min. The
sample injection volume was 20 µL. A Shimadzu LC Solution data-analysis system was
used. Chromatograms were registered at 450 nm and the quantification of FX was executed
via the calibration curve, with fucoxanthin as a reference. The content of FX was expressed
as mg of FX/g DW of seaweed.

Ascorbic acid (AA) was determined by HPLC, as described previously [80], in slight
modification. Briefly, 1.0 g of extract was dissolved in 5 mL of water. Isocratic elution was
performed with 0.03% aqueous trifluoroacetic acid-methanol 95:5 (v/v) as mobile phase;
the flow rate was 1.0 mL/min. The detection wavelength was 240 nm. Sample volume
was 20 µL and each sample was analyzed in triplicate. The calibration curve with AA as a
standard was used to calculate the AA in extracts. The content of AA was expressed as mg
of AA/g DW.

3.5. Antioxidant Activity

The DPPH free radical reacts directly with the antioxidants. The DPPH scavenging
activity was analyzed, as previously reported [81]. Briefly, 1 mL of sample or standard
was mixed well with 1.5 mL H2O and 0.5 mL of 100 µM DPPH methanolic solution in
a test tube. AA was used as positive control. The same concentration of methanol and
DPPH was used as the control without AA or extract. The reactive solutions were left in
darkness at room temperature for 30 min. Then, the absorbance at 517 nm was taken using
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a UV-Vis spectrophotometer Shimadzu UV 1800 (Shimadzu, Kyoto, Japan). The percentage
of antioxidant activity in the different samples was calculated as:

DPPH scavenging activity (%) =
Acontrol −Asample

Acontrol
× 100 (1)

where Acontrol is the absorbance of the control and Asample is the absorbance of the sample.

3.6. Determination of Mixture Effect

The mixture effect (ME) of the two antioxidants could be defined as the experimen-
tal value, divided by the calculated value, in which the sum of the effects of the two
antioxidants is obtained individually [72]. The ME, in the case of the DPPH assay [73],
was computed by comparing the experimental DPPH scavenging activity of the extract
(“experimental DPPH scav.act.”) with the expected DPPH scavenging activity, calculated
by the sum of efficiencies of each compound individually (“calculated DPPH scav.act.”)

ME =
experimental DPPH scav.act.

calculated DPPH scav.act.
(2)

3.7. Storage Stability Test

The stability of the NADES1, NADES2, and EtOH extracts was tested. The extracts
were stored at 25 ◦C in the dark and samples of each group were analyzed after 30, 90, 120,
240, and 360 days.

3.8. Statistical Analysis

All statistical analyses were performed using STATGRAPHICS Centurion XV software
(StatPoint Technologies Inc., USA). The data are expressed as mean ± standard deviation
(±SD) and the error bars in the figures indicate the standard deviation. Differences between
the means were analyzed via the ANOVA test, followed by the post-hoc Tukey’s test.
A significant difference was considered at the level of p < 0.05. Pearson’s correlation
coefficients were used to establish the relationship between the content of the representative
compounds and the antioxidant capacity.

4. Conclusions

In this paper, we report for the first time lactic acid: choline chloride and lactic acid:
glucose: water-based NADES are suitable for the simultaneous extraction of hydrophilic
(ascorbic acid and phlorotannins) and lipophilic (fucoxanthin) compounds from F. vesicu-
losus. The efficacy of UAE for 60 min was, for different compounds, 1.1–2.7 folds higher
than the conventional extraction (maceration with stirring at 60 ◦C). In biological tests,
both NADES extracts showed the favorable ability to scavenge DPPH radicals which were
equal to the antioxidant activity of EtOH extract. Ascorbic acid, TPhC, and FX significantly
contributed to the DPPH scavenging activity of extracts. We calculated the synergistic
effect for antioxidants extracted by NADES from F. vesiculosus based on the mixture effect
for the first time. Notably, NADES, besides their reduced environmental impact, enable
high stability for active metabolites from F. vesiculosus and preserve the antioxidant activity
of extracts. Thus, the results of our experiments highlight the potential of NADES for the
recovery of hydrophilic and lipophilic compounds from F. vesiculosus.

Supplementary Materials: The following are available online, Figure S1: Typical chromatogram
of ascorbic acid (reference), Figure S2: Typical chromatogram of Fucus vesiculosus extract obtained
with NADES1 (conventional extraction), Figure S3: Typical chromatogram of Fucus vesiculosus
extract obtained with NADES1 (ultrasound assisted extraction), Figure S4: Typical chromatogram
of fucoxanthin (reference), Figure S5: Typical chromatogram of Fucus vesiculosus extract obtained
with EtOH (percolation), Figure S6: Typical chromatogram of Fucus vesiculosus extract obtained with
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NADES1 (ultrasound assisted extraction), Figure S7. Typical chromatogram of Fucus vesiculosus
extract obtained with NADES2 (ultrasound assisted extraction).
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