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A B S T R A C T   

Regardless of their nature of stochasticity and uncertain nature, wind and solar resources are the 
most abundant energy resources used in the development of microgrid systems. In microgrid 
systems and distribution networks, the uncertain nature of both solar and wind resources results 
in power quality and system stability issues. The randomization behavior of solar and wind en
ergy resources is controlled through the precise development of a power prediction model. Fuzzy- 
based solar PV and wind prediction models may more efficiently manage this randomness and 
uncertain character. However, this method has several drawbacks, it has limited performance 
when the volumes of wind and solar resources historical data are huge in size and it has also many 
membership functions of the fuzzy input and output variables as well as multiple fuzzy rules 
available. The hybrid Fuzzy-PSO intelligent prediction approach improves the fuzzy system’s 
limitations and hence increases the prediction model’s performance. The Fuzzy-PSO hybrid 
forecast model is developed using MATLAB programming of the particle swarm optimization 
(PSO) algorithm with the help of the global optimization toolbox. In this paper, an error 
correction factor (ECF) is considered a new fuzzy input variable. It depends on the validation and 
forecasted data values of both wind and solar prediction models to improve the accuracy of the 
prediction model. The impact of ECF is observed in fuzzy, Fuzzy-PSO, and Fuzzy-GA wind and 
solar PV power forecasting models. The hybrid Fuzzy-PSO prediction model of wind and solar 
power generation has a high degree of accuracy compared to the Fuzzy and Fuzzy-GA forecasting 
models. 

The rest of this paper is organized as: Section II is about the analysis of solar and wind resources 
row data. The Fuzzy-PSO prediction model problem formulation is covered in Section III. Section 

Abbreviations: ANFIS, Adaptive Neuro-Fuzzy Inference System; ANN, Artificial Neural Network; ARIMA, Autoregressive Integrated Moving 
Average; ARMA, Auto-Regressive Moving Average; BPNN, Back Propagation Neural Network; CA, Cultural Algorithm; CNN, Convolutional Neural 
Network; DNI, Direct Normal Insolation; DSI, Diffused Solar Insolation; ECF, Error Correction Factor; FF, Firefly Algorithm; FOA, Fruit Fly Opti
mization Algorithm; FR, Fuzzy Regression; GA, Genetic Algorithm; GHI, Global Horizontal Irradiance; LSSVM, Least-Square Support Vector Ma
chine; MAPE, Mean Absolute Percentage Error; NRMSE, Normalized Root-Mean-Square Error; PSO, Particle Swarm Optimization; PV, Photovoltaic; 
SVM, Support Vector Machine; SVR, Support Vector Regression. 

* Corresponding author. 
** Corresponding author., 
*** Corresponding author. 

E-mail addresses: demsewmitku@gmail.com, demsew.mitiku@aastu.edu.et (D.M. Teferra), livingngoo@gmail.com, lngoo@mmu.ac.ke 
(L.M.H. Ngoo), georgennyakoe@gmail.com, nyakoe@eng.jkuat.ac.ke (G.N. Nyakoe).  

Contents lists available at ScienceDirect 

Heliyon 

journal homepage: www.cell.com/heliyon 

https://doi.org/10.1016/j.heliyon.2023.e12802 
Received 25 February 2022; Received in revised form 30 December 2022; Accepted 2 January 2023   

mailto:demsewmitku@gmail.com
mailto:demsew.mitiku@aastu.edu.et
mailto:livingngoo@gmail.com
mailto:lngoo@mmu.ac.ke
mailto:georgennyakoe@gmail.com
mailto:nyakoe@eng.jkuat.ac.ke
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2023.e12802
https://doi.org/10.1016/j.heliyon.2023.e12802
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2023.e12802&domain=pdf
https://doi.org/10.1016/j.heliyon.2023.e12802
http://creativecommons.org/licenses/by-nc-nd/4.0/


Heliyon 9 (2023) e12802

2

IV, is about the results and discussion of the study. Section V contains the conclusion. The ref
erences and abbreviations are presented at the end of the paper.   

1. Introduction 

Wind and solar resources are the most plentiful renewable energy resources and will dominate the world’smajority of green power 
generation soon. The main challenge in utilizing these resources is their volatile nature. The availability of both solar and wind re
sources varies from time to time, and they have an indeterministic nature. This uncertain characteristic will cause system planning, 
system stability and security, maintenance scheduling, and power quality issues [1]. Therefore, a precise forecast of both solar and 
wind-based power generation is one of the solutions to reduce its intermittency. This will mitigate the above-mentioned power system 
issues that exist during the integration of wind and solar PV generators into the power system network [2]. In the last ten years, various 
types of research have been carried out on the prediction of solar and wind power generation, including some statistical models like 
ARMA, ARIMA, and intelligent renewable energy prediction models like Fuzzy, Fuzzy-PSO, ANFIS, ARIMA-ANN, etc. [3–8]. The 
intelligent solar and wind prediction models are categorized as hybrid and stand-alone approaches. The stand-alone prediction 
approach consists of a single intelligent prediction technique such as a fuzzy model, a support vector machine model, or an ANN. On 
the other hand, the hybrid approach includes one or more intelligent or statistical prediction techniques combined with another 
prediction approach to enhance the weakness of the individual prediction models. Some hybrid renewable power generation pre
diction models are wavelet-ANFIS-PSO, ARMA-ANN, ARIMA-SVR, etc. [9–11]. However, all the prediction approaches mentioned 
above are based on weather-based forecasts, whereas the proposed prediction approach in this paper also introduces a new input 
variable called the ECF in addition to the weather parameters that improve the forecast accuracy. 

The fuzzy-based solar irradiance forecast model takes into account the previous day’s meteorological and solar radiation mea
surements, which are then optimized using the fuzzy c-mean clustering algorithm and simulated annealing [12]. The subtractive 
clustering technique is used by the model based on the fuzzy c-mean clustering method to generate the fuzzy rules from the prediction 
dataset. They also developed a second model based on fuzzy c-mean clustering and a simulated annealing algorithm to improve the 
accuracy of the fuzzy logic system. The results of the proposed model demonstrate that the root-mean-square error (RMSE) for the 
second model modified by simulated annealing was roughly 88%, compared to 79.75% accuracy for the first model. 

Furthermore, in other literature, various weather variables have also been considered. Climatic data like as solar radiation, wind 
speed, precipitation, and temperature are used in short-term solar power forecasts based on solar PV power and weather data obtained 
from 182 sites [13]. The authors, in Ref. [13] proposed deep learning and ANN as a training technique for accurate forecasting of solar 
PV power. In this paper, the goal of the forecast is to maintain the stability of solar power generation while the validity of the proposed 
approach is evaluated using the root-mean-square error (RMSE), mean absolute percentage error (MAPE), and normalized 
root-mean-square error (NRMSE). This methodology demonstrated the best forecast has an RMSE of 8.768. 

In [14], a short-term solar power forecast using a novel hybrid approach called the Mycielski-Markov method has been introduced. 
This new hybrid approach is developed using two different methods; the Mycielski and the Markov chain technique. The Mycielski 
approach of identifying the data trend and correlation that determines the recurring of the solar radiation data. It deterministically 
forecasts future data patterns based on their recurrence. The Markov approach, on the other hand, generates transition probabilities for 
solar energy levels and forecasts states based on these probabilities. The findings of the hybrid Mycielski-Markov solar power gen
eration forecast model have a very low forecasting accuracy whose MAPE is 30.64% while the RMSE is 32.65. A solar prediction 
approach based on a support vector machine (SVM) with reliable data has been developed [15] to decrease prediction error. To 
construct the training samples, comparable datasets were identified from the obtained historical datasets using a pattern recognition 
algorithm with Euclidean distance. Applying a wavelet decomposition and developing a different SVM solar power generation forecast 
model using a similar day training dataset yields an RMSE error of 19.05% [16]. presents a unique approach for estimating 24-h sun 
radiation using predefined artificial neural networks. The historical daily weather data obtained from the solar PV system location was 
utilized to supplement the standard artificial neural networks approach. The ANN-based solar PV power generation prediction model 
produces good forecasting results with low prediction errors. 

A wind power prediction model using a least-square support vector machine (LSSVM) has been developed by Ref. [17]. According 
to this model, the performance of the LSSVM in predicting wind power generation is depending on the accuracy of selecting the 
parameters of the LSSVM. The authors introduce a fruit fly optimization algorithm (FOA) to avoid human-made errors in choosing the 
parameters of the LSSVM. The performance of the FOA-LSSVM wind power generation forecast model is compared with the LSSVM and 
LSSVM-PSO. The FOA-LSSVM wind power generation prediction model has a good prediction RMSE accuracy of 14.23% while that of 
the LSSVM has an accuracy of 19.14% and the LSSVM-PSO has an accuracy of 17.59%. In Ref. [18], the convolutional neural network 
(CNN) and genetic algorithm (GA) based wind power generation forecast for a large wind farm is proposed to handle the forecasting 
error, which is caused by both inherent stochastic factors and extrinsic stochastic factors. The performance of the CNN-GA model is 
compared to the GA alone and the backpropagation neural network (BPNN). It has a relatively good prediction RMSE accuracy of 
14.3% as compared to GA with 16.15% and BPNN alone with 14.62%. 

The estimation of wind and solar power generation based on a modified fuzzy prediction interval using fuzzyregression (FR), firefly 
algorithm (FF), cultural algorithm (CA), genetic algorithm, and particle swarm optimization is developed in Ref. [19]. According to 
this model, for a short prediction interval (less than 1 day), the GA-based fuzzy prediction model provides a better prediction accuracy 
(RMSE of 1.88), whereas, for a longer prediction interval (>1day), the PSO-based fuzzy prediction model has better performance 
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(RMSE of 7.5) [19]. For one-day-ahead hourly solar PV [20] and short-term wind power prediction [21], a hybrid solution based on a 
mix of PSO, ANFIS, and genetic algorithms is presented. The proposed method is compared to two additional prediction methods: 
persistence and back propagation neural network (BP-NN) [20]. The model has been evaluated on several solar PV systems, and the 
new PSO-ANFIS prediction model outperforms both the BP-NN and Persistence methods. Table 1 highlights the performance of the 
various solar PV and wind power prediction methods and serves as a baseline for evaluating the performance of the model mentioned 
in this study. 

2. Solar and wind resources data analysis 

The precision of wind and solar power generation forecasting is determined by both intrinsic and external stochastic variables. The 
inherent stochastic factor is related to the model parameter and methodology, whereas the extrinsic stochastic factor is associated with 
the model data inputs. From the past research article, the inherent factors are the heart of the wind and solar power generation 
forecasting models, which accounts for the critical extrinsic stochastic input parameters. That is why the temperature, time, ECF, 
historical irradiance, and wind speed information in this paper is considered extrinsic input parameter. This approach also reduces the 
computational time of the prediction model for a large iteration number of PSO. The MATLAB/Simulink simulation software is used to 
model both the Fuzzy and Fuzzy-PSO predictive algorithms. An accurate forecast model of wind and solar power requires testing and 
training datasets. The training and testing datasets of solar radiation, wind speed, and weather information have been collected from 
the National Metrology Agency of Ethiopia. The hourly normal and diffused solar irradiances, wind speed, and temperature data have 
been collected from 2017 to 2019/20 and analyzed for the Fuzzy-PSO solar PV and wind power prediction models. The Fuzzy-PSO 
models are trained using 17,520 hourly data in 2017 and 2018, while the 2019/20 wind and solar data are used to verify the 
Fuzzy-PSO power prediction models of the wind and solar systems, respectively. 

2.1. Solar PV power 

The output of the solar PV power plant depends on the PV efficiency, the global horizontal irradiance (GHI), and the atmospheric 
temperature [22]. The GHI can be computed using the DNI (direct normal insolation), DSI (diffused solar insolation), and considering 
the solar zenith angle (sza) [19]. 

GHI=DNI.cos(sza) + DSI (1) 

The solar power output is estimated using the data in Eq. (1), the temperature coefficients of the PV cell, the ambient temperature, 
and cell efficiency. 

Ppv = η.Apv .GHI(t)[1+(α − β).ΔT] (2) 

Table 1 
Selected wind and solar PV power prediction models summary table.  

No. Paper Title Model System RMSE MAPE Reference 

1. Short-Term Solar Power Forecasts Considering Various 
Weather Variables 

Deep Learning and ANN Solar 
PV 

8.768 – [13] 

2. Short-Term Solar Power Generation Forecasting: A Novel 
Approach 

Mycielski signal processing and 
probabilistic Markov chain technique 

Solar 
PV 

32.65 30.64 [14] 

3. Short-term solar radiation prediction based on SVM with 
similar data 

support vector machine, SVM Solar 
PV 

19.05 – [15] 

4. Wind Power Day-ahead Prediction Based on LSSVM With Fruit 
Fly Optimization Algorithm, 

FOA-LSSVM Wind 14.23 – [17] 
LSSVM-PSO 17.59 – 
LSSVM 19. 

17 
– 

5. Research on Wind Power Prediction Method Based on 
Convolutional Neural Network and Genetic Algorithm 

CNN-GA Wind 14.3 – [18] 
GA 16.15 – 
BPNN 14.62 – 

6. Renewable Generation (Wind/Solar) and Load Modeling 
through Modified Fuzzy Prediction Interval 

FR Solar 
PV 
Wind 

8.52 8.91 [19] 
CA 39.5 26.78 
FF 9.42 8.94 
GA 10.19 8.35 
PSO 7.5 9.8 

7. PSO-ANFIS-based Hybrid Approach for Short-Term PV Power 
Prediction in Microgrids 

PSO-ANFIS Solar 
PV 

6.82 3.47 [20] 
BP-NN 9.17 4.78 
Persistence 11.32 6.26 

8. Short-Term Wind Power Prediction in Microgrids using a 
Hybrid Approach Integrating GA, PSO, and ANFIS 

GA-PSO-ANFIS Wind – 6.79 [21] 
I. 
NF 

– 6.92 

II. 
GA-BP NN 

– 7.03 

III. 
BP NN 

– 7.07  
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where, η is the efficiency of the PV cell (15%), Apv is the size of the PV panel, α = 20e-6A/oc and β = 5e-3V/oc are the temperature 
coefficient of current and voltage respectively, ΔT = (Tac − Tstc) is the temperature deviation of the PV module. 

The value of α and β depends on the insolation level and the types of PV cell material, and it should be converted into percentage per 
degree cent grade (%/oc) using the standard values of an open circuit voltage, Voc = 720 mV (β = 0.69%/oc), and a short circuit 
current, Isc = 350A/m2 (α = 0.057%/oc) to compute the solar PV power using Eq. (2) [23]. 

The three-year hourly average DNI and DSI solar resource data on a seasonal basis are presented in Figs. 1–4. The seasonal average 
daily solar PV power density profile and the yearly average daily solar PV power density profiles are computed using Eq. (2). The 
information in Figs. 1–4 are utilized to learn and verify a fuzzy prediction model of solar power generation using PSO. 

2.2. Wind power 

The wind generator’s power output depends on the height of the turbine, the electromechanical conversion efficiency, the wind 
speed, the air density, and the area swept by the turbine blade [24]. 

Eq. (3) expresses the link between wind speed and turbine height. 

V2 =V1

(
Z2

Z1

)a

(3)  

where, v1 is the initial wind speed measurement at a height of z1, v2 is the transformed wind speed at the turbine height, z2 and a (0.25 
for cities containing tall buildings) is a shear exponent that measure the surface roughness of the terrain. Figs. 5-8 show the three-years 
wind speed data at 50 m above the ground on a seasonal basis. 

The estimated wind generator power from the information given in Eq0.3 and the wind conversion coefficient (Cp) and turbine 
blade swept area (Asw) is given in Eq. 4. Albert Betz discovered that by whirling a rotor, no wind turbine can transform more than 
59.3% of the wind’s kinetic energy into mechanical energy. This is known as the Betz Limit, and it represents the theoretical maximum 
power efficiency of any wind turbine. This variable is used to compute wind power [25]. 

Pw =
1
2

ρ ∗ Asw ∗ Cp(γ, β) ∗ V3 (4)  

where, ρ is the density of air (1.225 kg/m3), γ is the tip speed ratio determined by the linear speed of the wind and the rotational speed 
of the rotor, and β is the pitch angle. 

3. The fuzzy-PSO model problem formulation 

3.1. Fuzzy system 

For the solar power prediction model, the fuzzy logic system has four fuzzy input variables: time, temperature, ECF, and previous 
solar power. However, the wind power prediction model has three input fuzzy variables: time, ECF, and previous wind power. The 

Fig. 1. Fall season hourly average DNI and DSI profile.  

D.M. Teferra et al.                                                                                                                                                                                                     



Heliyon 9 (2023) e12802

5

predicted solar PV and wind power results are the only output fuzzy variables of both models. Since the Gaussian membership function, 
u(x)-in Eq. (5), is the most effective and well-defined representation of most real-world problems and it is considered for this study. The 
representation of the Gaussian membership function is defined using two fundamental parameters (mean, c and standard deviation, b) 
as shown in Fig. 9. 

u(x, b, c)= e
− (x− c)2

2b2 (5) 

In this research, a novel fuzzy input variable is introduced in the Fuzzy-PSO wind and solar power forecasting models to improve 
the forecasting accuracy. This variable is called the error correction factor (ECF), and it was computed from the initial fuzzy prediction 
model of time series forecast result and validation data set using Eq. (6). It is used to pre-adjust the behavior of the prediction, which is 
based on the fuzzy-alone information that has been done before tuning the model using PSO. The Fuzzy-PSO forecasting model can 
intelligently generate the rules and membership functions of the fuzzy system using the input-output training dataset pairs. The three- 
year hourly dataset of solar and wind resources has been collected from the National Metrology Agency of Ethiopia and a short-term 

Fig. 2. Winter season hourly average DNI and DSI profile.  

Fig. 3. Spring season hourly average DNI and DSI profile.  
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daily forecast of solar and wind power generation on a 24-hourly basis is conducted based on the seasonal and the overall annual 
average historical datasets. The accuracy level of the newly developed Fuzzy-PSO solar PV and wind power prediction model is 
compared to the fuzzy-alone, Fuzzy-GA without ECF, and the different solar PV and wind power prediction models developed in the 
literature. An ECF introduced in this paper has greatly enhanced the performance of the prediction models and is defined in Eq. (6). 

Fig. 4. Summer season hourly DNI and DSI profile.  

Fig. 5. Fall season hourly average wind speed profile @50 m.  

Fig. 6. Winter hourly average wind speed profile @50 m.  
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ECF=
FA − FF

FA
(6)  

where, FA is the actual (validation) solar PV or wind power dataset, and FF is the corresponding forecasted dataset. 
The value of ECF is considered as a guide for fuzzy rule generation and helps to easily understand the correlation between the input 

and output fuzzy variables. Negative values of the ECF indicate the forecasted dataset values are greater than the validation dataset 
values, whereas the positive valves of ECF indicate the validation dataset is greater than the forecasted dataset values. Therefore, when 
the ECF is positive, the fuzzy rules and the fuzzy input and output variables correlation should be revised to increase the forecasted 
dataset values and minimize the values of the error measurement. On the other hand, when the ECF is negative, the fuzzy rules and the 
fuzzy input and output variables correlation should be adjusted in such a way that to decrease the forecasted dataset values and 
minimize the values of the error measurement to zero. 

Fig. 7. Spring season hourly average wind speed profile @50 m.  

Fig. 8. Summer season hourly average wind speed profile @50 m.  

Fig. 9. The Gaussian fuzzy membership function.  
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3.2. Particle swarm optimization 

Kennedy and Eberhart proposed PSO in 1995 [26], which is basically the intelligence of birds flocking or schooling of fish. 
However, Shi and Eberhart improved the original PSO in 1999 [27] to enhance the premature convergence and degree of precision 
given the inertia weight factor, ω. It was a six-step iterative process to get the optimal solution of the fuzzy rules and membership 
functions. PSO is selected over the other heuristic optimization algorithm because of its superior performance to search both local and 
global optimal points and provides better solutions; fast convergence rate and ease to program. In addition, its simplicity to manage 
premature convergence is also made PSO a preferred optimization algorithm by most researchers. 

PSO algorithm steps: 28  

i. Initialization of PSO coefficients [r1, r2, ω, c1, c2].  
ii. Generation of the initial solution randomly in the search space domain. From the fitness function of the initial solution, the 

particles position and velocity are evaluated to identify the personal best and global best values.  
iii. Use Eqs. (7) and (8) to update the particles position and velocity. 

Vt+1
id =ω.Vt

id + c1r1
(
Pt

id − xt
id

)
+ c2r2

(
Gt

d − xt
id

)
(7)  

xt+1
id = xt

id + Vt+1
id (8)  

iv. Using Eq. (9), the inertia weight factor is also adjusted at every iteration. 

ωt+1 =ωmax −
(ωmax − ωmin) × current iteration

maximum iteration
(9)    

v. At each iteration, the particle’s personal best and global best positions should be updated. 

Pt+1
id = xt+1

id if f[Xk(t+ 1)] ≤ f
[
Pb

k(t)
]

(10)  

Gb
k(t+ 1)=Xk(t+ 1) if f[Xk(t+ 1)] ≤ f

[
Gb

k(t)
]

(11)    

vi If the termination requirement is not met, go to step-iii; otherwise, the procedure should be terminated. 

where, f is the fitness function (RMSE and MAPE), t is the iteration value, c1 & c2 are the cognitive and social acceleration coefficients 
respectively, r1 & r2 are random numbers between 0 and 1, and Pt

id & Gt
d are personal best and global best positions of the particles in 

the population. 

3.3. Fuzzy variable encoding process using PSO 

The PSO algorithm is used to adjust the membership function and rules of the Mamdani Fuzzy Inference System in the solar 
photovoltaic and wind production forecasting models. Fig. 10, Table 2, and Table 3 demonstrate the fuzzy encoding process using PSO. 

Table 2 
The fuzzy parameter encoding using the PSO for Solar PV prediction model.  

Fuzzy Input & Output Variables Fuzzy Membership Function Parameters Number of Parameters 

b1
i c1

i b2
i c2

i b3
i c3

i b5
i c5

i b5
i c5

i 

Time Night Noon Evening     2× m1 = 2 ∗ 3 = 6 
x11 x11 x12 x12 x13 x13 – – – – 

Temperature Low Normal High     2× m2 = 2 ∗ 3 = 6 
x21 x21 x22 x22 x23 x23 – – – – 

ECF Negative Null Positive     2× m3 = 2 ∗ 3 = 6 
x31 x31 x32 x32 x33 x33 – – – – 

Previous power Very Low Low Average High Very High 2× m4 = 2 ∗ 5 = 10 
x41 x41 x42 x42 x43 x43 x44 x44 x45 x45 

Output (Power) Very Low Low Average High Very High 2× qt = 2 ∗ 5 = 10 
y1 y1 y2 y2 y3 y3 y4 y4 y5 y5 

Total unknown parameters 38 

All the 38 unknown fuzzy parameters are encoded using the population size of PSO particles. If the swarm size is 50, then each fuzzy parameter is 
encoded with 50 particles of the swarm. Every time the PSO algorithm is executed, the values of the 38 fuzzy parameters are modified after evaluating 
the cost function. 
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In the process, the membership function, and rules of the fuzzy are generated and tuned to improve both solar PV and wind power 
prediction accuracy. 

The original fuzzy model in the Fuzzy-PSO model formulation is based on the fuzzy-alone wind and solar power forecast model 
before being merged into the PSO technique. The fuzzy prediction model is based on a Gaussian membership function for both input 
and output fuzzy sets, and it incorporates all conceivable fuzzy rules. The starting and ending membership functions of all fuzzy sets are 
represented by left and right-skewed Gaussian functions Fig.10. 

The following key ideas underpin the fuzzy and PSO integration to boost the forecasting performance of the fuzzy prediction model.  

- The design variables (parameters) of the PSO are the mean (ci) and standard deviation (bi) of the input and output fuzzy sets.  
- As in Eq. (20) and (21), the design variables (parameters) are represented using the PSO particles (swarm) to optimize the value of 

ci and bi. 
- The fuzzy solar and wind power prediction model values of the design variables (parameters) are taken to initialize the PSO al

gorithm and the rules are generated based on the correlation of the fuzzy input and output training dataset.  
- The process continued until the desired prediction error is minimized or the desired prediction accuracy level is achieved. 

The fuzzy inference engine employs all available fuzzy rules to assist in mapping the output from the fuzzy input inputs. Fuzzy rules 
are developed based on the correlation between input and output training data sets. Let be Ak

i is the input and Bt be the output variables 
membership function respectively, then the fuzzy rules can be written as: 

If x1 is Ak
1 and x2 is Ak

2 and …. …. and xn is Ak
n, then yi is Bt. 

Therefore, all possible fuzzy rules are generated on a similar principle based on the relationship between the input and output fuzzy 
variables. 

Within the domain of swarm’s search space, the membership function of both the input and output fuzzy variables may be rep
resented using PSO particles. These functions are represented using the parameters of the Gaussian function (b & c). Considering an ‘m’ 
and ‘t’ membership function of each input (X) and output (Y) fuzzy variables respectively, the total number of unknown parameters (N) 
(mean, c and standard deviation, b) of the Gaussian membership function are represented in Eq. (12) and (13). The elements of the 
fuzzy input (X) and output (Y) are encoded with PSO particles are presented in Eqs. (14)–(21). 

Nx =
∑n

i=1
2 × mi (12)  

Ny =
∑q

i=1
2 × tI (13)  

where, Nx, and Ny are the total number of the fuzzy input and output parameters. m and t are the fuzzy membership function of the 
input and output variables respectively. 

Each membership parameters (b and c) of the fuzzy input (X) and output (Y) variables are encoded with PSO using Eqs. (14) and 
(15) [29]. 

X=

[
xb

xc

]

(14)  

Y=

[
yb

yc

]

(15)  

Table 3 
The fuzzy parameter encoding using the PSO for wind power prediction model.  

Fuzzy Input & Output Variables Fuzzy Membership Function Parameters Number of Parameters 

b1
i c1

i b2
i c2

i b3
i c3

i 

Time Night Noon Evening 2× m1 = 2 ∗ 3 = 6 
x11 x11 x12 x12 x13 x13 

ECF Negative Null Positive 2× m2 = 2 ∗ 3 = 6 
x21 x21 x22 x22 x23 x23 

Previous power Low Average High 2× m3 = 2 ∗ 3 = 6 
x31 x31 x32 x32 x33 x33 

Output (Power) Low Average High 2× mt = 2 ∗ 3 = 6 
y1 y1 y2 y2 y3 y3 

Total unknown parameters 24  
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xb =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x11
b

x21
b

.

.

xn1
b

x12
b … x1m

b

x22
b … x2m

b

. . .

.

xn2
b

.

…

.

xnm
b

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(16)  

xc =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x11
c

x21
c

.

.

xn1
c

x12
c … x1m

c

x22
c … x2m

c

. . .

.

xn2
c

.

…

.

xnm
c

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(17)  

yb =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y11
b

y21
b

.

.

yq1
b

y12
b … y1t

b

y22
b … y2t

b

. . .

.

yq2
b

.

…

.

yqt
b

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(18)  

yc =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y11
c

y21
c

.

.

yq1
c

y12
c … y1m

c

x22
c … y2m

c

. . .

.

yq2
c

.

…

.

yqm
c

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(19) 

The matrix elements in Eqs. (16)–(19)- are encoded using PSO particles, p1, p2, p3, … … ps, as in Eq. (20) and (21). 

X11
b = [ p1 p2 … ps ] (20)  

y11
b = [ p1 p2 … ps ] (21)  

where, X is a 2 × m× n and Y is a 2×q× t parameters of the input and output variables respectively. xij
c and xij

b are the mean and 
standard deviation elements of the input variables’ ijth. The fuzzy parameter encoding of the wind and solar power prediction models 
using PSO are presented in Tables 2 and 3 

Similarly, from Table 3, the particles population in PSO need to encode 24 unknown fuzzy parameters to develop the wind forecast 
model. The initial fuzzy-alone prediction model of both wind and solar power is taken as an initial fuzzy parameter value for both input 
and output fuzzy variables. The Fuzzy-PSO wind and solar PV power forecast models are an example of a multi-input single-output 
(MISO) system. For the solar PV power prediction, the input variables are temperature, time of the day’s, an error correction factor 
(ECF), and previous day power. Time, ECF, and previous day’s power are taken as inputs for the wind power prediction model. The 
predicted power is considered as the only fuzzy output variable in both cases. 

3.4. Performance measurement and fitness function 

As a measure of how well the prediction models are doing, three metrics are used: the normalized root-mean-square error (NRMSE), 
the root-mean-square error (RMSE), and the mean absolute percentage error (MAPE). The NRMSE, RMSE, and MAPE can be computed 
using the validation data and the forecasted time series datasets in the forecasting horizon and is given in Eqs. (22)–(24)respectively. 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

i=1

(FAi − FPi)
2

N

√
√
√
√ (22)  

NRMSE=
RMSE

FA,max − FA,min
(23)  

MAPE=
1
N

∑N

i=1

FAi − FPi

FAi
× 100 (24)  
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where, FAi is the actual dataset, FPi is the forecasting dataset, and N is the forecasting horizon or the total number of datasets. The 
formulation of the optimization problem is: 

fi(bi, ci)=min(RMSE) (25)  

fi(bi, ci)=min(MAPE) (26)  

0≤ bi ≤ ci  

where, fi(bi, ci) is the fitness function. Table 4 illustrates the PSO parameter values considered for simulation of the Fuzzy-PSO solar PV 
and wind power prediction models. 

4. Results and discussion 

The results of both the wind and solar power forecasting models using Fuzzy-PSO and Fuzzy-GA (with no ECF input) prediction 
approaches on a seasonal basis are presented in Figs. 11–20. The cost function introduced in Eqs. (22)–(24) has been applied to the 
proposed Fuzzy-PSO and Fuzzy-GA wind and solar power forecasting models to measure the accuracy level of the forecast. The results 
in Tables 5 and 6 summarizes the performance of the proposed hybrid Fuzzy-PSO, fuzzy-alone, and Fuzzy-GA wind and solar power 
forecasts. The performance metrics of the three-cost functions in Eqs. (22)–(24)) clearly indicate the newly introduced Fuzzy-PSO 
model has an outstanding performance over the other modeling approaches which are presented in both Tables 5 and 6 The best 
fitness values in terms of MAPE of wind and solar power prediction results using the proposed Fuzzy-PSO model are 1.36% (Winter 
season) and 2.42% (Winter season) whereas the result using Fuzzy-GA 6.34% (Winter season) and 4.35% (Spring season) and Fuzzy- 
alone models are 5.67% (Spring season) and 16.26% (Fall season) respectively. Due to the addition of a new input parameter (ECF) to 
the proposed Fuzzy-PSO model, a high degree of accuracy is shown. 

Tables 7 and 8 demonstrate the correlation between the input and output of the fuzzy-GA and fuzzy-PSO prediction models in terms 
of the correlation parameters, R and R2. R and R2 are the measure of the degree of correlation between the predictor (input) and 
response (output) variables. Stronger correlation between the predictor and response variable is indicated by higher values of R and R2. 
In Table 7, the historical wind power input variables have a strong correlation (R20.94) with the forecasted wind power as compared to 
the remaining input variables. In Table 8, the temperature, ECF, and historical solar PV power have a significant correlation with the 
predicted solar PV power. In general, compared to the Fuzzy-GA prediction model, the Fuzzy-PSO model offers a stronger correlation 
between the input and anticipated output variables of both solar PV and wind power. 

4.1. Prediction of wind power using Fuzzy-PSO algorithm 

The wind power prediction results on a seasonal basis are presented in Figs. 11–15. The result is based on the estimation of wind 
power from the wind speed data using an empirical formula. For each season, the energy from wind, is calculated from the available 
wind speed at a height of 50 m. The hourly calculated wind power-based yearly averages in 2017 and 2018 is considered as the training 
input dataset along with the ECF and the time of day, whereas the hourly wind power is based on the yearly average in 2019 that is 
used to validate the model. The simulation result shows, the Fuzzy-PSO wind prediction model effectively forecasts the wind power 
generation in the next 24 h with a maximum RMSE of 3.14 during the winter season and maximum prediction RMSE accuracy of 1.02 
during the Spring season. The Fuzzy-PSO wind power forecasting model is capable of accurately estimating the short-term power 
output of wind turbines. 

The proposed Fuzzy-PSO model outperforms the Fuzzy-alone, Fuzzy-GA, and previously established prediction models provided in 
Table 1. Based on the RMSE, the NRMSE, and the MAPE performance measurement index presented in Table 5, the Fuzzy-PSO wind 
power generation forecast model has superior performance. As we have seen from the wind power prediction result shown in 
Figs. 11–15 the proposed Fuzzy-PSO prediction model has superior performance, especially at higher wind power generation values, 
than the Fuzzy-alone and Fuzzy-GA forecasting models. 

In terms of the RMSE, NRMSE, and MAPE criterion, the Fuzzy-PSO model has performed significantly better than the fuzzy-alone 
and Fuzzy-GA models. The Fuzzy-PSO wind power prediction model easily beat both fuzzy-alone and Fuzzy-GA models throughout the 
forecasting seasons, which is presented in Table 5 as a comparison result. All of the findings verify the proposed method’s capacity to 
directly estimate wind power from daily meteorological data with fair accuracy and superior precision to existing forecasting 
methodologies. 

4.2. Prediction of Solar Power using Fuzzy-PSO Algorithm 

The solar power prediction result on a seasonal basis is presented in Figs. 16–20. The estimation of solar power using an empirical 
formula is used to forecast solar power generation. The available solar irradiation and temperature data are used to determine the solar 
PV power for each season. The average calculated power for each season in 2017 and 2018 is considered as the training input dataset 
along with the temperature data, ECF, and time of the day, whereas the Fuzzy-PSO forecasting model is validated using the average 
solar PV power in 2019. The proposed Fuzzy-PSO solar power prediction model effectively forecasts the solar power in the next 24 h 
with a maximum RMSE of 10.78 and a MAPE of 6.21% during summer season. The best RMSE value of 0.708 and MAPE of 2.42% 
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during the winter season is obtained. In general, the Fuzzy-PSO solar power prediction model can effectively forecast the short-term 
power generation of solar PV systems with a high level of accuracy. 

The Fuzzy-PSO solar power prediction model performed significantly better than the fuzzy-alone and Fuzzy-GA forecasting models 
according to the cost function standard measure in Table 6, the RMSE, NRMSE, and MAPE criterion, only falling behind during the 
spring season. The Fuzzy-PSO solar PV power prediction model has outperformed both fuzzy-alone and fuzzy-GA models throughout 
the four seasons, including the overall system average solar power forecast result shown in Fig. 20. The overall solar power prediction 
result verify the new technique’s ability to precisely forecast solar power from daily weather variables with superior precision than the 
other forecasting methodologies stated in this paper and in the introduction section of Table 1. 

Using a two-year training and one-year validation dataset of the Fuzzy-PSO forecasting model of both solar PV and wind power is 
one of the limitations of this research. Considering a longer period of training and validation dataset (>5 years) in the Fuzzy-PSO wind 
and solar power forecasting model is expected to enhance the effectiveness and accuracy of the model. 

Table 4 
PSO parameters used for simulation.  

PSO Constants Constant values (rule generation) Constant values (MF optimization) 

c1 = c2 1.5 1.5 
ωmin 0.1 0.1 
ωmax 0.99 0.99 
Swarm Size, n 100 100 
Stall iteration number Max. 20 20 
Max. Number of iteration 100 300  

Table 5 
Performance evaluation of the wind power prediction model and the optimized generated rules.   

Seasonal 
Algorithms 

Fuzzy-alone Fuzzy-GA Fuzzy-PSO Initial rules Optimized PSO rules 

RMSE NRMSE MAPE RMSE NRMSE MAPE RMSE NRMSE MAPE 

Fall Season 29.25 1.2339 27.37 7.12 0.1321 12.47 2.63 0.0507 2.37 27 17 
Winter Season 68.77 0.1941 23.45 10.70 0.0302 6.34 3.14 0.0089 1.36 27 17 
Spring Season 3.38 0.0185 5.67 3.13 0.0391 7.21 1.02 0.0144 4.95 27 14 
Summer Season 5.27 0.1047 16.75 1.47 0.2920 21.23 1.29 0.0256 5.92 27 19 
System Average 15.08 0.1037 15.24 4.08 0.0281 8.46 1.97 0.0136 4..23 27 21  

Table 6 
Performance evaluation of the solar PV power prediction model and the PSO optimized generated rules.   

Seasonal 
Algorithm 

Fuzzy-alone Fuzzy-GA Fuzzy-PSO Initial rules Optimized PSO rules 

RMSE NRMSE MAPE RMSE NRMSE MAPE RMSE NRMSE MAPE 

Fall Season 15.25 0.0943 16.26 13.89 0.0859 14.23 1.387 0.0086 3.36 135 98 
Winter Season 17.44 0.1460 23.43 2.99 0.0250 8.43 0.708 0.0059 2.42 135 29 
Spring Season 19.24 0.1350 24.15 3.78 0.0265 4.35 4.014 0.0282 5.47 135 41 
Summer Season 68.98 0.1697 32.68 20.68 0.0509 10.27 10.78 0.0265 6.21 135 98 
System Average 12.14 0.0676 12.79 4.95 0.0276 6.34 1.67 0.0093 3.74 135 87  

Table 7 
Correlation coefficients of input and output variables of wind power prediction model.   

Seasonal 
Correlation Coefficients/Forecasted Power/ 

Fuzzy-GA Fuzzy-PSO 

time Hpower time Hpower ECF 

R R2 R R2 R R2 R R2 R R2 

Fall Season 0.211 0.044 0.946 0.895 0.211 0.045 0.949 0.898 0.410 0.168 
Winter Season 0.430 0.185 0.978 0.957 0.439 0.193 0.982 0.963 0.338 0.114 
Spring Season 0.405 0.164 0.973 0.947 0.414 0.171 0.977 0.955 0.216 0.047 
Summer Season 0.215 0.046 0.959 0.920 0.225 0.051 0.956 0.915 0.618 0.382 
System Average 0.343 0.118 0.974 0.949 0.413 0.171 0.977 0.954 0.109 0.012  
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Table 8 
Correlation coefficients of input and output variables of solar PV power prediction model.   

Seasonal 
Correlation Coefficients/Forecasted Power/ 

Fuzzy-GA Fuzzy-PSO 

time Temperature Hpower time Temperature Hpower ECF 

R R2 R R2 R R2 R R2 R R2 R R2 R R2 

Fall Season 0.03 0.001 0.645 0.416 0.940 0.884 0.08 0.006 0.643 0.413 0.903 0.816 0.914 0.836 
Winter Season 0.065 0.004 0.727 0.528 0.974 0.948 0.07 0.004 0.736 0.541 0.973 0.947 0.974 0.948 
Spring Season 0.02 0.000 0.83 0.686 0.994 0.989 0.019 0.000 0.830 0.689 0.994 0.988 0.908 0.824 
Summer Season 0.121 0.015 0.796 0.654 0.980 0.961 0.12 0.014 0.803 0.645 0.970 0.941 0.598 0.356 
System Average 0.075 0.006 0.808 0.653 0.987 0.975 0.078 0.006 0.816 0.665 0.989 0.978 − 0.30 0.09  
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5. Conclusion 

The Fuzzy-PSO-based hybrid strategy is developed in this paper for short-term wind and solar power forecasts by introducing a new 
fuzzy input variable called the ECF. To verify its performance with fuzzy-alone and fuzzy-GA forecasting techniques, a comparison 

Fig. 10. PSO-fuzzy tuning algorithm process Block Diagram.  

Fig. 11. Fuzzy-PSO prediction of wind power in Fall.  

Fig. 12. PSO-Fuzzy prediction of wind power in Winter.  
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Fig. 13. Fuzzy-PSO prediction of wind power in Spring.  

Fig. 14. PSO-Fuzzy prediction of wind power in Summer.  

Fig. 15. Yearly average wind power prediction result.  
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Fig. 16. Solar power prediction result in Fall season.  

Fig. 17. Solar power prediction result in Winter season.  

Fig. 18. Solar power prediction result in Spring season.  
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study was conducted. The simulation results for both wind and solar power forecasting models demonstrate the proposed Fuzzy-PSO 
forecasting model provides a substantial improvement over the conventional Fuzzy-alone and Fuzzy-GA forecasting models. In 
addition to that, the Fuzzy-PSO forecasting model is an effective and autonomous technique to manipulate a substantial amount of data 
from the past that is used for prediction modeling where the perfect correlation between the input and output variables is difficult to 
determine using statistical techniques. The RMSE, the NRMSE, and the MAPE are considered as an indicator of the performance of the 
proposed approaches. The RMSE of the proposed approach for the average wind and solar power prediction models are 1.97 and 1.67 
respectively which is far better than the fuzzy-alone and Fuzzy-GA prediction models of an RMSE value of 4.08 for wind and 4.95 for 
solar PV. The effectiveness of the proposed technique in terms of MAPE for the average wind power prediction model is 4.23% and for 
the solar PV power prediction model is 3.74%, which is far superior than the fuzzy-alone and Fuzzy-GA forecasting models whose 
MAPE of 8.46% and 6.34% for wind and solar PV power prediction models respectively. 
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