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Epinephrine Administration Intervals: Seeing the Forest for the Trees

The current pediatric and adult life support recommendations
suggest an epinephrine administration interval (EAI) of 3–5 minutes
during cardiopulmonary resuscitation (CPR) (1, 2). These
recommendations are expert opinion based on the half-life of
epinephrine in animal studies, but there are few clinical data about
EAI during CPR. Adult observational data are inconsistent, reporting
better outcomes with shorter EAI (3), longer EAI (4, 5), or neither (6).
A practical approach uses a fixed 4-minute EAI that allows providers
to synchronize with the 2-minute chest compressor change, rhythm
check, and defibrillation. Thus, pediatric intensivists have a range of
choices for a fixed or variable EAI and little evidence to guide their
practice.

A 2017 retrospective review of 1,630 pediatric in-hospital
cardiac arrests in a large national database related EAI to the
rates of return of spontaneous circulation (ROSC) and survival
to hospital discharge (7). They calculated EAI as the duration
of CPR after the first epinephrine dose divided by the total
number of epinephrine doses. ROSC and survival were better
with EAIs from 5 to 8 minutes and best with EAIs from 8 to 10

minutes compared with the 1-to-5-minute EAI group. The duration
of CPR was longer in the 5-to-8-minute group and longest in the 8-
to-10-minute group. The time to first epinephrine administration
was 2.4 minutes in all three groups. Worse outcomes were
associated with total epinephrine dosage administered. The authors
concluded that the administration of less epinephrine with less
frequency was associated with better outcomes.

In this issue of the Journal, Kienzle and colleagues (pp. 977–985)
provide contradictory findings on the association of EAI with
outcomes in pediatric cardiac arrest (8). This 2021 retrospective
review of an institutional database of 125 pediatric in-hospital
cardiac arrests examined the effects of the EAI during CPR on the
rates of ROSC, survival to hospital discharge, and return to
neurologic baseline (8). Their method for determining the EAI
was to round epinephrine administration times to the closest
minute and average the intervals from the first epinephrine dose
to the end of resuscitation. They compared the frequent
administration of epinephrine (EAIs<2 min) with standard EAIs
(>3 min) and found that frequent epinephrine administration
was associated with better rates of ROSC, survival, and return to
neurologic baseline. They found that CPR duration was shorter in
the frequent epinephrine group and was associated with better
outcomes. The time to first epinephrine dose—1 minute in the
frequent group and 2 minutes in the standard group—was not
statistically different. The authors concluded that more frequent
epinephrine dosing (<2-min intervals) was associated with better
outcomes.
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The authors of both observational studies acknowledge that
prospective clinical trials would better test the impact of EAI on
pediatric resuscitation outcomes. The design and implementation of
clinical trials will be exceedingly difficult not only because of the
challenging clinical situation but also because of the large number of
variables aside from EAI that might affect outcomes. Even evidence
for whether to routinely administer epinephrine in adults and
children remains low (1, 2). A trial would need to determine whether
to remain within or to exceed guidelines, whether to use fixed or
variable EAIs, when to administer the first dose, and what total dose
to use. In addition, the etiology of arrest, the duration of arrest, the
quality of CPR, the baseline condition of the patient, and the
preparedness of the team all can modify outcome and treatment
response.

Determining the effect of the EAI on outcome would help
determine a more specific treatment guideline, but this question may
be missing the forest for the trees. Perhaps there is not a single EAI
that is best for all resuscitations, and investigators should focus on
developing a personalized and responsive approach based on
physiologic feedback that adapts to the situation and condition of the
patient.

For example, a witnessed ventricular fibrillation arrest in an
adult has electrocardiographic physiologic feedback that can confirm
that myocardial energy stores are high (coarse fibrillation or increased
amplitude spectral array) and may have invasive monitoring that
shows that perfusion during CPR is good (high systolic and diastolic
arterial pressures, high myocardial perfusion pressures, pulsations on
saturation monitors, high end-tidal carbon dioxide levels). Reassured
by this feedback and concerned for postresuscitation epinephrine
effects on ischemic myocardium, an intensivist might delay the first
and subsequent doses of epinephrine.

In contrast, an unwitnessed pulseless arrest due to a
tracheostomy plug in a pediatric ICUmay require a different
approach to epinephrine administration. In a piglet asphyxial arrest
model, diastolic blood pressure (a surrogate for coronary perfusion
pressure associated with outcome in pediatric patients [9]) increased
rapidly when the asphyxia duration was short (11 min) but had a
delayed and smaller increase when the asphyxia duration was long
(20 min) (10). These data suggest that an asphyxial arrest might
require early epinephrine and a longer arrest might require more
frequent epinephrine.

The inconsistent findings from retrospective reviews of EAI
may indicate that resuscitation teams are already using clinical signs
to guide drug administration. There is significant variability in the
EAI used in adult cardiac arrests and in pediatric ICUs, but the
reasons that resuscitators chose to deviate from guideline
recommendations are not known. Observational studies assume that
this variation is a random effect when trying to posit a causal
relationship between EAI and outcomes. This approach is very
limited if the EAI was based on some physiologic feedback or clinical
impression that revealed that this patient responded better to more
frequent or less frequent administration.

Ideally, intensivists would individualize epinephrine dosing on
the basis of physiologic feedback such as diastolic blood pressure
response. Clinical trials using physiologic feedback such as diastolic
blood pressure or other monitoring to direct epinephrine
administration would be a better next step than trials of different
EAIs. The authors of the current study have already laid groundwork
for these clinical trials by previously showing the use of

hemodynamic directed CPR in animal models (11, 12) and
determining clinical target values for diastolic blood pressure during
CPR in infants (25 mmHg) and children (30 mmHg) (9).�
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Philips Respironics Recall of Positive Airway Pressure and
Noninvasive Ventilation Devices
A Brief Statement to Inform Response Efforts and Identify Key Steps Forward

On June 14, 2021, Philips Respironics issued a voluntary recall
notification in the United States and a field safety notice
internationally of the vast majority of models of continuous
positive airway pressure (CPAP), bilevel PAP (BPAP), and
mechanical ventilator devices produced over the last decade. The
goal was to “ensure patient safety in consultation with regulatory
agencies” (1) because of 1) risk of exposure to particulates released
from polyester-based polyurethane sound abatement foam and 2)
off-gassing of potentially toxic or carcinogenic concentrations of
volatile organic compounds (VOCs). High environmental humidity
and use of unauthorized ozone-based cleaning devices may
accelerate degradation of foam. Potential symptoms listed by the
manufacturer include rhinitis and sinusitis, upper airway irritation,
cough, chest pressure, headache, or dizziness, which were reported
by 11 (0.03%) patients in 2020 (2). The U.S. Food and Drug
Administration (FDA) advised on July 22, 2021, that more than
1,200 complaints and 100 injuries were reported on this issue (3).
The duration of exposure necessary to produce symptoms has not
been reported or is unknown. For example, Philips has not clarified
whether a one-time overnight exposure, such as a 2- to 8-hour
period for a split-night or full-night titration sleep study, would
impose unacceptably high risk. Exposure-related cancer and deaths
have not been reported thus far.

The guidance from the manufacturer (current as of August 15,
2021) is that 1) patients using recalled life-sustaining mechanical
ventilator devices should continue therapy as prescribed until
discussion with the healthcare provider and 2) patients using recalled
CPAP and BPAP devices should discontinue use and work with the
healthcare or durable medical equipment provider to determine next
steps. A timeline for replacement or repair by Philips remains
unclear. Devices from other manufacturers are not reported to be
affected by this recall.

Logistical Impact of the Recall Is Vast and
Unprecedented in Scope

The recall notice impacts 3–4 million devices worldwide, resulting in
exceedingly high population attributable and public safety risk of
untreated sleep-disordered breathing (SDB) and pulmonary disease if
device usage is discontinued without replacement or alternative
therapy (4). The majority have underlying SDB (i.e., obstructive sleep
apnea, central sleep apnea, or hypoventilation disorders). Thus, the
scale and logistical impact of this recall far exceed that of the field
safety notice of adaptive servo-ventilators that followed the release of
results from the SERVE-HF (Treatment of Sleep-disordered
Breathing with Predominant Central Sleep Apnea by Adaptive Servo
Ventilation in Patients with Heart Failure) trial with implications
focused on central sleep apnea (5, 6). One challenge is that many PAP
users may not be aware of the recall or whether their device is
affected. In addition, ongoing supply chain shortages for replacement
devices are posing a global threat to many patients in sleep,
pulmonary, and critical care medicine. Even ongoing (e.g., ADVENT-
HF [Effect of Adaptive Servo Ventilation on Survival andHospital
Admissions in Heart Failure] NCT01128816) and planned clinical trials
have been affected. Finally, given the lack of guidance for sleep
laboratories using these devices, patients who need but who are not yet
using recalled devices are also affected by delays in care.

Three immediate conundrums emerged:

1. The need to qualify the recommendation by Philips Respironics
to discontinue CPAP and BPAP therapy immediately;

2. The need to relay this voluntary recall notification in a timely
manner to the millions of afflicted patients; and

3. The need to determine how sleep laboratories that use recalled
equipment for titration studies should manage their clinical
testing needs.

This editorial aims to summarize current knowledge and offer
suggestions for clinical decision-making.

Immediate Discontinuation of PAP Therapy
May Harm Some Patients

For patients who use mechanical ventilators for immediate life-
sustaining reasons, the decision to continue therapy is clear, as the
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