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BACKGROUND Atrial fibrillation (AF) is a common cardiac
arrhythmia in both human and equine populations. It is associated
with adverse outcomes in humans and decreased athletic perfor-
mance in both populations. Paroxysmal atrial fibrillation (PAF) pre-
sents with intermittent, self-terminating AF episodes, and is
difficult to diagnose once sinus rhythm resumes.

OBJECTIVE We aimed to detect PAF subjects from normal sinus
rhythm equine electrocardiograms (ECGs) using the Symmetric Pro-
jection Attractor Reconstruction (SPAR) method to encapsulate the
waveform morphology and variability as the basis of a machine
learning classification.

METHODS We obtained ECG signals from 139 active equine athletes
(120 control, 19 with a PAF diagnosis). The SPAR method was
applied to 9 short (20-second) ECG strips for each subject. An
optimal SPAR feature set was determined by forward feature selec-
tion for input to a machine learning model ensemble of 3 different
classifiers (k-nearest neighbors, linear support vector machine, and
radial basis function kernel support vector machine). Imbalanced
data were handled by upsampling the minority (PAF) class. A final
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subject classification was made by taking a majority vote over re-
sults from the 9 ECG strips.

RESULTS Our final cross-validated classification for a subject gave
an accuracy of 89.0%, sensitivity of 94.8%, specificity of 87.1%,
and receiver operating characteristic area under the curve of 0.98,
taking PAF as the positive class.

CONCLUSION The SPAR method and machine learning generated a
final model with high sensitivity, suggesting that PAF can be
discriminated from short equine ECG strips. This preliminary study
indicated that SPAR analysis of human ECG could support patient
monitoring, risk stratification, and clinical decision-making.

KEYWORDS Paroxysmal atrial fibrillation; Symmetric Projection At-
tractor Reconstruction; Equine ECG signals; Normal sinus rhythm;
Diagnostic; Machine learning
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Introduction
Atrial fibrillation (AF) is a common cardiac arrhythmia in
both human and equine populations. In humans, AF is asso-
ciated with a decreased athletic performance1 and an
increased risk of sudden cardiac death, stroke, and other cor-
onary heart disease deaths.2 A decreased performance of
equine athletes has also been associated with AF.3–6 In an
otherwise healthy horse, performance generally improves if
normal sinus rhythm can be regained, although recurring
AF episodes and other cardiac abnormalities give a much
poorer prognosis.3,4 Furthermore, there are indications that,
as in humans, equine AF episodes may be associated with
collapse and sudden death.7,8

AF in both human and equine populations is diagnosed
through the examination of electrocardiogram (ECG) traces;
normal sinus rhythm is disrupted during an AF episode, pre-
senting with irregular R-R intervals and an absent P wave,
often replaced by small, rapid baseline undulations called
CC BY license https://doi.org/10.1016/j.cvdhj.2022.02.001
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KEY FINDINGS

� Symmetric Projection Attractor Reconstruction (SPAR)
provides a visual distinction between the normal sinus
rhythm electrocardiograms (ECGs) of subjects with a
previous paroxysmal atrial fibrillation (PAF) diagnosis
and those without.

� Machine learning using SPAR features, which quantify
the morphology and variability of the signals, gave a
cross-validated accuracy of 89.0% and an area under
the receiver operating characteristic curve of 0.98
when discriminating between the PAF and non-PAF di-
agnoses.

� Our final machine learning model had excellent classifi-
cation power for PAF, with a sensitivity of 94.8% and
specificity of 87.1%.

� Our SPAR and machine learning methodology is easily
implemented and uses only short ECG segments, sup-
porting its incorporation into the monitoring and risk
stratification of equine subjects for PAF.
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“fibrillatory (f) waves.”2,8 Paroxysmal atrial fibrillation
(PAF) is a type of AF where these intermittent arrhythmic ep-
isodes terminate spontaneously.2,8 In humans, PAF is
believed to progress to sustained forms of AF, and has
been indicated to carry an equivalent risk of stroke.9–11

While the underlying mechanisms for this are unclear, it
supports the importance of the early detection of PAF.
However, PAF is notoriously difficult to detect when the
symptoms of AF have resolved and normal sinus rhythm
has resumed. Longer-term, ambulatory monitoring is often
used with the aim of capturing an AF event,12 although the
robust analysis of large data volumes can be challenging.

Although the mechanism of AF is not fully known, a PAF
diagnosis has been associated with pathophysiological
changes, including left atrial enlargement and a loss of
contractility, in both human13,14 and equine populations.15,16

These potential structural changes in the heart may result in
subtle changes in the ECG, even once it has returned to sinus
rhythm, and a number of recent studies using human data
have suggested that the PAF diagnosis can be detected
from such recordings.17,18 While this has been less consid-
ered in equine ECG, a diagnosis of PAF has been shown to
be associated with a decreased sinus rhythm ECG complexity
metric19 and can be classified using restitution analysis of the
signals.20

Herein we present a preliminary study to discriminate be-
tween equine athletes with and without a diagnosis of PAF
from normal sinus rhythm ECGs. The ECG data used in
this work were obtained during periods of sinus rhythm in
the subject to assess whether abnormalities could be detected
in such baseline electrical signals that might reflect a predis-
position to AF episodes. We investigated the indication of
subtle differences in the signals by applying the recently
developed Symmetric Projection Attractor Reconstruction
(SPAR) method,21–23 which provides a novel and
innovative means of visualizing and quantifying the shape
and variability of an approximately periodic waveform,
such as the ECG. The technique overcomes the challenge
of detecting and extracting features directly from a signal,
and uses all the available data to encapsulate the waveform
morphology in a 2-dimensional image, while reducing the ef-
fect of baseline wander and being robust to signal outliers.
Recent studies applying SPAR analysis to ECG signals
include the detection of a genetic mutation associated with
increased risk of arrhythmias in murine ECG,24 the capture
of changes induced by dofetilide in human ECG,25 and the
discrimination of sex in human ECG.26
Methods
We obtained a total of 139 ECG recordings from 19 equine
athletes with a PAF diagnosis and 120 controls. After prepro-
cessing of ECG strips of normal sinus rhythm, the SPAR
method was applied to extract features of the ECG waveform
shape and variability, and machine learning was employed to
distinguish between horses with and without a diagnosis of
PAF. An overview of the methodology is given in
Figure 1, and further detail on all aspects of the method is pro-
vided in the Supplemental Material.
Ethics statement
The electrocardiographic data used in this study were
collected as part of routine clinical work in line with the Vet-
erinary Surgeons Act. The study has also gone through the
University of Surrey Non-Animal and Scientific Procedure
Act (NASPA) ethical review self-assessment and based on
the answers submitted, no further ethical review/approval is
required, with local policy requiring sign-off by the Head
of Department.
Data
Data were obtained from 139 horses of racing age and in race
training that presented for routine clinical work at Rossdales
Equine Hospital and Diagnostic Centre (Newmarket, Suf-
folk, UK). The complete dataset consisted of 139 modified
base-apex ECG recordings of equine athletes, split between
19 PAF subjects and 120 control subjects. PAF subjects
were defined as those diagnosed with PAF by a specialist
in equine internal medicine based on the presence of AF on
previous ECG recordings, whereas those subjects in the con-
trol group had no known history of PAF episodes. ECGs
were primarily recorded at rest, but also contained periods
affected by environmental stimulus or exercise. The length
of recording varied from 25 minutes to 48 hours, and we ex-
tracted a window from each signal of no more than 3 hours
from the start of the recording to reduce unwanted change
due to any diurnal effects.

Initially, ECGs were available for 91 of the 139 subjects
(81 control and 10 PAF). These data were denoted dataset
1 and were used to develop the initial machine learning



Figure 1 Flowchart of the overall methodology from the raw data to final
classification. ECG 5 electrocardiogram; SPAR 5 Symmetric Projection
Attractor Reconstruction.
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model (see Machine learning classification section below).
Subsequently, the ECG recordings for the remaining 48 sub-
jects (39 control and 9 PAF) were obtained and denoted data-
set 2. This new set of data provided an independent test set
that was used to perform an evaluation of the initial model
performance, and then to generate a revised model. Finally,
the 139 subjects were combined as dataset 3, which was
used to develop a final machine learning model. Details of
these 3 datasets are given in Table 1.

ECG preprocessing
For each animal, 3 60-second strips of normal sinus rhythm
with an acceptable signal quality (eg, clear R peaks and small
baseline wander) were manually selected at an approximately
equal spacing within a window of no more than 3 hours from
the start of the recording. For some recordings, especially
those with large sections of artefacts, it was necessary to
take the 3 best available 60-second strips, which may not
have been as widely separated.

Each 60-second strip was then split into 3 20-second sub-
strips, giving a total of 9 records for each subject and 1251
records for 139 subjects overall. Although most of the strips
selected were reasonably clean, there still existed baseline
variation and high-frequency noise, and therefore filtering
was applied as a final preprocessing step. The ECGs were
filtered with an eighth-order high-pass Butterworth filter to
Table 1 Details of the 3 datasets, showing the number of subjects and
latter in brackets, and being 9 records per subject)

Total size, subjects
(sub-strips)

Control, su
(sub-strips

Dataset 1 91 (819) 81 (729)

Dataset 2 48 (432) 39 (351)

Dataset 3 (being 1 and 2 combined) 139 (1251) 120 (1080

PAF 5 paroxysmal atrial fibrillation.
remove low-frequency baseline variation, a zero-order Sa-
vitzky-Golay filter to smooth out sharp corners and edges,
and a low-pass Parks-McClellan filter to remove high-
frequency noise. Further details of the filtering method can
be found in the Supplemental Material.

The filtered signals were then normalized by their respec-
tive 99.9 percentile amplitude values to remove amplitude
disparity caused by different recording equipment.
SPAR analysis
The SPAR method transforms the entirety of an approxi-
mately periodic signal into a corresponding 2-dimensional
image, and the technique is well described in the original pa-
per by Aston and colleagues.21 To apply the SPAR method,
we place 3 equally spaced points on the signal. As these
points move along the signal, we can generate a bounded rep-
resentation of the whole waveform in 3-dimensional phase
space. This 3-dimensional object is then projected to a 2-
dimensional image, which we call an “attractor,” that pre-
sents with 3-fold symmetry, making it simpler to discern
changes in the waveform morphology. Finally, a density is
overlaid, highlighting the areas of the attractor image most
frequently visited, and providing a visualization of waveform
shape and variability that can be quantified by the features of
the attractor density.

For this study, we placed our 3 points on each 20-second
ECG sub-strip, equally spaced by one-third of the average
cardiac cycle length (average R-R interval, where the R peaks
were determined by peak detection). We therefore generated
an attractor for each 20-second sub-strip, which gave 9 attrac-
tors for each subject. A visual distinction could be observed
between the attractors of the control and PAF groups for most
subjects, which presented as a rotation of the central core re-
gion of the attractor, as illustrated in Figure 2 for 2 control
and 2 PAF subjects. However, this difference was subtle,
and we therefore chose to explore it further by applying ma-
chine learning techniques, which may also incorporate differ-
ences that could not be discerned visually in the attractor.

Each attractor image was quantified by taking 73 SPAR
features that comprehensively captured its size, shape, sym-
metry, and density distribution over 7 regions (the core and
6 equal “arm” segments). These features included the
number of electrocardiogram 20-second sub-strips obtained (the

bjects
)

PAF, subjects
(sub-strips) Usage

10 (90) Training set for the initial model
development

9 (81) Independent test set for the initial
model evaluation

Feature selection for revised model
development

) 19 (171) Cross-validation for final model
development and evaluation



Figure 2 The 20-second electrocardiogram (ECG) sub-strip and its corresponding attractor for 2 different control subjects (a, b) and 2 different paroxysmal
atrial fibrillation (PAF) subjects (c, d). Subtle differences in the rotation of the central core region of the attractor could be observed between the control and PAF
groups for most subjects. This figure illustrates the differing appearance of equine ECGs and also that the attractor is independent of any vertical shift of the signal,
since the resulting image remains centered on the origin of the (v,w) plane (see Aston and colleagues21 for further details).
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maximum density of the attractor, the length of the
arms, the angle of orientation of the arms, and the
size of the central core region. In addition, we included
the mean R-R interval of each strip as a further feature
(giving 74 features in total), as the SPAR method pro-
vides a time normalization of the signal to concentrate
on its morphology.
Machine learning classification
We applied machine learning with the aim of classifying each
20-second ECG sub-strip as either control or PAF using the
features drawn from the attractor. The results from each of
the 9 sub-strips for a subject were then combined in a major-
ity vote to classify the subject. Further details supporting our
machine learning methodology can be found in the



Figure 3 Posterior probability scores for likelihood of a paroxysmal atrial
fibrillation (PAF) diagnosis by subject for the 48 subjects of dataset 2, with
control subjects in blue and PAF subjects in red. a: Results for initial model
trained using features derived from only dataset 1 (91 subjects). b: Results
for revised model trained using features derived from the combined dataset
1 and dataset 2 (91 1 48 subjects), but trained on only dataset 1 data.
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Supplemental Material and we restrict ourselves to an over-
view here.

The observed visual differences between control and
PAF attractors were subtle and we sought to avoid overfit-
ting to the data, so we chose to adapt an ensemble approach
to classification of the 20-second sub-strips, combining the
results from 3 machine learning classifiers. For these classi-
fiers, we chose algorithms with fundamentally different
approaches, taking a k-nearest neighbors (k-NN) algorithm
as a “local” classifier and 2 support vector machine
(SVM) algorithms with different kernels as “global” classi-
fiers.27 For k-NN, we took k 5 9 and a standardized
Euclidean distance. The first SVM classifier applied a linear
kernel with standardized features, while the second used a
radial basis function (RBF) kernel without feature standard-
ization, as noise in the features can be amplified by stan-
dardization and the nonlinear RBF kernel tends to overfit
to this noise.

The SPAR features from each 20-second ECG sub-strip
were input to each classifier, and the posterior probability
scores (between 0 and 1) were obtained. Our ensemble model
was then completed by a simple majority vote of the 3 clas-
sifiers (k-NN, SVM with linear kernel, and SVM with RBF
kernel), giving a combined posterior probability for the likeli-
hood of the 20-second sub-strip being PAF, with values
ranging from 0 (control) to 1 (PAF).

Finally, the classification of a subject was determined as a
majority vote of the 9 20-second sub-strips for the subject.
The score for the majority vote was obtained as the number
of records classified as PAF (between zero and 9) divided
by the number of records (9), giving a value between 0 (con-
trol) and 1 (PAF). A score threshold of 0.5 between a classi-
fication of PAF or control was chosen to provide a simple
majority vote.

Minority class oversampling
Owing to the natural prevalence of PAF, the PAF subjects
were significantly under-represented compared with the con-
trols, and this imbalance can significantly impact the perfor-
mance of a machine learning classifier.28 We therefore
applied an oversampling to increase the PAF class in the
training data by generating synthetic data points, using the
recently developed cluster-based Adaptive Semi-
Unsupervised Weighted Oversampling method.29 Further
details about this technique are given in the Supplemental
Materials. We emphasize that our ensemble model was
trained with data that included synthetic points, but we
only classified the real data.

Cross-validation
As we only had data from a relatively small number of sub-
jects, we assessed the performance of the machine learning
model for both feature selection (see Feature selection below)
and our final model using cross-validation, applying a modi-
fiedMonte Carlo cross-validation technique,30 which we will
term stratified repeated random sampling (SRRS). The SRRS
method randomly allocated subjects to either the training or
test set. The PAF records in the training set were then over-
sampled (as described in Minority class oversampling
above), the ensemble model was trained, and a classification
obtained for the test set subjects. This process was repeated a
predefined number of times, enforcing unique combinations
of the training set to avoid duplicate runs. We observed a
decreasing absolute difference of the record and subject ma-
jority vote performance metric (see Performance metrics
below) means between consecutive runs, suggesting that
repeated SRRS provided a good indication of model perfor-
mance.

When developing our initial model with the 91 subjects
in dataset 1, we performed SRRS for feature selection (see
Feature selection below) taking 74 control and 7 PAF sub-
jects in the training set, with the remaining 7 control and 3
PAF in the test set. For our final model generated using the
combined data in dataset 3 (139 subjects in total), we took
108 control and 15 PAF subjects for training and the re-
maining 12 control and 4 PAF for testing, and applied
SRRS for both feature selection and evaluation of the final
model.

Feature selection
We obtained 74 features from each 20-second ECG sub-
strip by applying the SPAR method. It is likely that some
of these features are less relevant for distinguishing PAF.
Furthermore, machine learning algorithms can suffer from
the “curse of dimensionality” and may perform better



Table 2 Classification performance metrics for the initial, revised, and final machine learning models

Classification Accuracy Sensitivity (TPR) Specificity (TNR) ROC AUC F1 PAF F1 CTR

Initial model, features selected from dataset 1, trained on dataset 1, tested on dataset 2 (48 subjects)
Sub-strip 81.3% 53.1% 87.8% 0.790 51.5% 88.4%
Subject 85.4% 55.6% 92.3% 0.863 58.8% 91.1%

Revised model, features selected from dataset 1 1 dataset 2, trained on dataset 1, tested on dataset 2 (48 subjects)
Sub-strip 80.1% 74.1% 81.5% 0.843 58.3% 86.9%
Subject 81.3% 77.8% 82.1% 0.907 60.9% 87.7%

Final model, features selected from dataset 3, SRRS cross-validated training and testing using dataset 3 (139 subjects)
Sub-strip 87.9%

(76.0% - 97.9%)
88.7%
(66.6% - 100%)

87.6%
(72.2% - 100%)

0.936
(0.829 - 0.998)

79.0%
(62.2% - 95.6%)

91.4%
(82.1% - 98.6%)

Subject 89.0%
(75.0%–100%)

94.8%
(75.0%–100%)

87.1%
(66.7%–100%)

0.978
(0.896–1)

82.1%
(60.0%–100%)

92.0%
(80.0%–100%)

Sensitivity (true-positive rate, TPR), specificity (true-negative rate, TNR), and area under the receiver operating characteristic curve (ROC AUC) taking parox-
ysmal atrial fibrillation (PAF) as the positive class. The F1 scores are given for PAF and control subjects (F1 PAF and F1 CTR, respectively). Models assessed with
stratified repeated random sampling (SRRS) cross-validation over 1000 runs show the mean result and the 95% coverage intervals (2.5th – 97.5th percentile
range).
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when fewer features are input.31 Therefore, we applied a
sequential forward feature selection approach, weighted to
emphasize the correct classification of PAF subjects, to
determine an optimal reduced set of features.32 Details
of the feature selection can be found in the Supplemental
Material and in the Results below.
Performance metrics
We present a range of performance metrics33 for the classifi-
cation of the 20-second sub-strips and the subjects to provide
a broad summary of our results and allow comparison with
other studies. In addition to accuracy, we also provide the
sensitivity (true-positive rate), specificity (true-negative
rate), and area under the receiver operating characteristic
curve (ROC AUC), where we took PAF to be the positive
class. Finally, we show the F1 scores for each of PAF and
control. The F1 score is a result between 0 and 1, where a
higher score indicates better precision and increased robust-
ness.
Results
Feature selection and initial ensemble model
training using dataset 1
For dataset 1 (91 subjects with 81 control and 10 PAF), 9 20-
second ECG sub-strips were obtained for each subject, and
the corresponding attractors were generated, from which
we extracted 74 features. We then applied a forward feature
selection (see Feature selection), which reduced this to an
optimal set of 17 features. These included various statistical
measures (mean, median, minimum, maximum, standard de-
viation, and quantiles) of the attractor symmetry, the length
and density of the attractor arms, the size and density of the
attractor core region, and the degree of rotation of the attrac-
tor arms from an “expected” position. These 17 features
formed the input to an ensemble machine learning model,
and an initial model was generated by training on all 91 sub-
jects of dataset 1.
Testing the initial model with dataset 2
We were subsequently provided with a further 48 subjects
(39 control, 9 PAF), which comprised dataset 2. This new
set of data was collected under the same conditions and there-
fore provided an independent test set that could be used to
perform a preliminary evaluation of the initial model.
Figure 3a shows the posterior probability of PAF predicted
by the model on these unseen subjects. The classification re-
sults for dataset 2 using the initial model (trained on dataset 1)
were undiscriminating, with only 5 out of 9 PAF subjects
correctly identified. The general performance of the model
is shown in Table 2 under “Initial model.”
Revising the selected feature set
As the initial model was trained on only 91 subjects (dataset
1), it was suggested that this limited the choice of optimal fea-
tures for PAF detection. As a test of this, we applied the for-
ward feature selection process (see Feature selection) to the
combined dataset of all 139 subjects (dataset 3), which re-
sulted in a revised feature set of 14 features. While the fea-
tures selected differed from the original set, the revised
optimal feature set contained a similar spread and variety
of attractor measures. However, it is difficult to draw any spe-
cific interpretation about individual features from this, since
it is the combination of the subtle differences in weak predict-
ing features rather than a single strong predicting feature that
gives rise to accurate PAF detection.

We then trained a revised model on dataset 1 only (as
before), but using the new optimal feature set of 14 features.
As shown in Figure 3b, the resultant PAF detection rate went
up to 7 out of 9 subjects and the posterior probabilities for all
PAF subjects were increased (or the same for 1 subject), ie,
most PAF subjects being more likely PAF by the model clas-
sification. A summary of the classification results is given in
Table 2 under “Revised model,” supporting that the revised
feature set improved the ability to classify PAF subjects
correctly. While our test data are not wholly independent of



Figure 4 Mean posterior probability scores for likelihood of a paroxysmal
atrial fibrillation (PAF) diagnosis over 1000 stratified repeated random sam-
pling cross-validation runs for dataset 3, with control sub-strips/subjects in
blue and PAF sub-strips/subjects in red. a: Classification of each 20-
second sub-strip record (1251 sub-strips, 9 per subject). b: Classification
of subject (139 subjects).
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the model in this case, owing to the inclusion of the data in the
feature selection process, the revised model was still only
trained on the original data, and we would anticipate that
the features obtained from feature selection using only the
training set would be more comprehensive and reliable as
more equine data becomes available.
A final cross-validated model with dataset 3
To assess the performance of the model reliably with the inclu-
sion of the new data, we repeated the SRRS cross-validation
technique on all the available data (dataset 3, 139 subjects
with 139 ! 9 5 1251 records), using the 14 features previ-
ously selected, as previously described (Revising the
selected feature set). Over 1000 cross-validation runs, a
mean accuracy of 89.0% (87.9%), a mean sensitivity of
94.8% (88.7%), and a mean specificity of 87.1% (87.6%)
was achieved by subject (sub-strip), as shown in Table 2 un-
der “Final run.” By including dataset 2 in the training set, we
observed improvements in all metrics compared with the
initial and revised models, except for a small decrease in
specificity. In addition to this, the sensitivity is very high,
which is expected given that we placed a larger emphasis
on detection of PAF by assigning a heavier penalty on the
sensitivity (true-positive rate) in the feature selection process
(see Feature selection). Additionally, a mean ROC AUC of
0.978 was obtained, which further confirmed the excellent
classification power of the final model. We again acknowl-
edge that the cross-validated test sets are not wholly indepen-
dent of the model, owing to using dataset 3 in the feature
selection process. When more equine data become available,
we would anticipate that the features selected using only the
training set would be more representative and consistent, and
a k-fold cross-validation incorporating both the feature selec-
tion and the model generation steps would allow us to
comment further on the generalizability of the model.

Figure 4 shows the mean posterior probability of PAF
over 1000 SRRS cross-validation runs for each 20-second
ECG sub-strip (Figure 4a) and subject (Figure 4b), and we
observed that, on average, there is a clear difference between
the control and PAF subjects. In Figure 4a, we observed that
our voting classifier was able to detect a majority of the PAF
sub-strips (red dots), as their posterior probabilities were
generally closer to 1, compared with the control records
(blue dots). This was even more pronounced in Figure 4b
by subject, with all 19 PAF subjects being correctly classified
and 103 out of 120 control subjects being correctly classified
on average over the 1000 SRRS cross-validation runs, with
the respective 95% coverage intervals given in Table 2 under
“Final run.”

SPAR density profiles
Despite the excellent predictive power of our final ma-
chine learning model, it may not be easy to explain and
interpret how a classification was made. Therefore, we
also examined the attractor images to support our under-
standing of how the machine learning model may distin-
guish between control and PAF subjects. A simple way to
visualize an attractor image is by considering its polar co-
ordinates and determining the density distribution in the
radial (r) direction and the angular (q) direction. The r
density distribution can be further split into 2 regions,
the high-density core at the center of the attractor and
the lower-density attractor “arms.” Further details on the
construction of a density profile can be found in Aston
and colleagues21 and Lyle and colleagues.26

The density profiles can also be used to visualize a number
of attractors together, as shown in Figure 5 for all 139 sub-
jects (1251 attractors from 1251 20-second sub-strips). Sepa-
rating the control and PAF subjects by color, we observed
clear differences in their respective densities. These plots
are useful because we can visualize the mean distributions
and the associated variations in the attractors for the control
and PAF classes. We observed a higher average peak of the
r densities for the PAF subjects in Figure 5a, along with taller
peaks and slightly shifted peaks in the q arm densities for
PAF subjects in Figure 5b. Most strikingly, we noticed the
taller peaks for the PAF subjects in terms of their q core den-
sities shown in Figure 5c. We note that the attractor arms are
associated with the R peaks (which may be a positive or nega-
tive deflection in horses) in the ECG signal, whereas the core
region is derived from the remainder of the signal and is
clearly the more significant part of the attractor for this clas-
sification, as illustrated by comparing Figure 5b and
Figure 5c.



Figure 5 Density profiles for the attractors of dataset 3 (139 subjects, 1251
attractors) for (a) r density, (b) q arm densities, (c) q core densities, where r is
the distance from the center of the attractor and q reflects the angular move-
ment around the attractor. Control records are shown in blue, paroxysmal
atrial fibrillation records are shown in red. The solid lines correspond to
the mean for each class of the data, the dotted lines correspond to the
mean plus standard deviation, and the shaded regions indicate the data be-
tween the 5th and 95th percentiles.

Figure 6 The q core density profiles of the attractors for (a) the 6 parox-
ysmal atrial fibrillation (PAF) subjects with the (originally) 256 Hz electro-
cardiograms (ECGs), (b) the 13 PAF subjects with 500 Hz ECGs, and (c) the
6 PAF subjects with the (originally) 256 Hz ECGs after the signals were
multiplied by -1. The solid lines correspond to the mean for each class of
the data, the dotted lines correspond to the mean plus standard deviation,
and the shaded regions indicate the data between the 5th and 95th percentiles.
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Using the density profile to identify a data problem
The density profiles also played an important role in identi-
fying a data problem with the ECG recordings for 6 PAF sub-
jects in dataset 2, which were also the only records originally
captured at 256 Hz (rather than 500 Hz). Initially, all 6 sub-
jects were consistently misclassified with near 100% confi-
dence by the model. However, when we reviewed the
density profiles of the corresponding attractors, it was clear
that q core densities from these 6 subjects were out of phase
with the q core densities from the other 13 PAF subjects, as
shown in Figure 6a and 6b, respectively. This indicated
that the attractors of these 6 subjects were rotated by p
(180�) from their expected presentation, corresponding to a
difference in the signs of the signals between the (originally)
256 Hz and 500 Hz ECGs,21 which suggested that the
misclassification of these subjects resulted from a difference
in the recording equipment. Therefore, the 6 256 Hz ECG
signals were multiplied by -1 before generating the attractors,
which provided the expected density profiles, as illustrated in
Figure 6c, and resulted in 5 out of the 6 subjects being
correctly classified in the final model.
Discussion
This preliminary study has shown that the SPARmethod was
able to discriminate between equine athletes with and without
a PAF diagnosis, both visually in the attractors and their den-
sity profiles and quantitatively through generating machine
learning models. Our final classifier had a high sensitivity,
which is important, as it is more significant clinically to avoid
misclassifying PAF cases compared with misclassifying con-
trols, and indicated that it was possible to successfully detect
PAF cases from short strips of (apparently) normal sinus
rhythm ECG.

Traditional ECG analysis focuses on fiducial point identi-
fication and intervals based on the PQRST features of the
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signal. However, this gives a much reduced summary of the
waveform and captures little information about its
morphology. Under the premise that the discarded data
may contain useful information about the health of a subject,
we introduced the SPAR method, which uses all of the avail-
able waveform data and provides a unique visualization and
quantification of its shape and variability. Furthermore,
equine ECGs are often “noisier” than human ECGs, and
the normal waveform is more variable (eg, the R peak may
have a positive or negative deflection), making the robust
detection of interval metrics challenging, whereas the
SPAR method can still be applied.

Subtle differences could be visually discerned between
PAF and control cases in the SPAR attractor image, and we
elected to use machine learning on metrics drawn from the
image to emphasize these. While the visual output of
SPAR may indicate the use of deep learning on the attractor
images, as Aston and colleagues34 and Venton and col-
leagues35 have demonstrated, we did not have enough data
for such an approach, and therefore applied alternative ma-
chine learning algorithms using features extracted from the
attractors. Furthermore, the 2 classes (PAF and control)
were inherently imbalanced owing to the low prevalence of
PAF, which we addressed with a synthetic oversampling of
the PAF data, since machine learning on imbalanced classes
can lead to poor performance. To reduce overfitting, we
adapted an ensemble approach by taking the majority vote
of 3 classifiers (k-NN, linear SVM, and SVM with RBF
kernel) for each 20-second ECG sub-strip, with a further ma-
jority vote on the 9 ECG sub-strips for each subject to give a
final classification.

Prior to machine learning, a sequential forward feature se-
lection process was applied to identify an optimal feature set.
Our final model selected 14 features, which were taken from
across the attractor image, indicating that a number of weaker
predictors were needed to encapsulate the subtle differences
in the PAF subjects. The forward feature selection was made
based on a metric that was weighted to ensure that greater
emphasis was given to the correct classification of PAF
subjects, and we observed that this was successful, as the
sensitivity of the final model was high (94.8%). It would be
useful to extend this by exploring different weightings in
the selection metric to better understand the resulting sensi-
tivity and specificity that are achieved by the subsequent
model, as different monitoring applications or subject popu-
lations may benefit from an alternative balance of PAF and
control classification rates.

The ECGs used in this study were of normal sinus rhythm,
with subjects labeled as PAF cases owing to AF episodes
observed on prior recordings. Thus we cannot be certain
that all control labels were correct, since a horse may have
had an earlier AF episode that was not captured. Although
the PAF subject signals were obtained after the occurrence
of any AF episodes, our ability to discriminate between
PAF and control indicated that some difference remains in
the ECG waveform, and that this can be encapsulated by
the SPAR method. It would be useful to structure a further
study that used ECG signals obtained prior to identified AF
episodes to provide insight into whether subtle differences
can precede the onset of a PAF diagnosis. Since the SPAR
attractor is independent of the heart rate,21 it may also be
helpful to incorporate complementary metrics that have
been shown to be useful in the discrimination of AF episodes,
such as R-R intervals36 or features drawn from the Poincaré
plots of heart rate differences.37 Subtle changes in these met-
rics may also be distinguishable during normal sinus rhythm
(distant from the actual AF episodes) and support the detec-
tion of the PAF diagnosis.

We selected 3 60-second ECG strips within a window of
no more than 3 hours for each subject, since the ECG record-
ings were of different lengths and were frequently longer (up
to and over 24 hours) for the PAF cases. Therefore, we had a
consistent number of records for all subjects to avoid bias in
the machine learning classification. However, we would
expect that taking more records per subject would improve
the model performance, and the use of more ECG strips,
possibly spread over a longer window, should be explored,
as this could inform the most appropriate ECG capture proto-
col for detecting PAF. If more data were obtained, or more
ECG strips taken from each ECG recording, then a fully auto-
mated signal segment selection procedure based on deter-
mining both sinus rhythm and signal quality would be
needed, as it would not be practical to review each strip.

The SPARmethod provides a highly visual solution to the
challenge of analyzing waveform shape and variability. The
density profiles that provide one means of quantifying the at-
tractor image can also be used directly as a tool to aid the
interpretation of a machine learning classification, as we
demonstrated in Figure 5. Interestingly, the density profiles
also indicated a problem with the ECG data capture for 6 sub-
jects, which allowed us to make a simple adjustment to
rectify this.

While the detection of PAF from equine sinus rhythm
ECGs has clinical value, it has not been widely explored as
a classification problem until recently. Work has been under-
taken on similar study populations using restitution,20 where
the R-R, QT, and TQ intervals were taken as ECG features,
and complexity analysis,19,38 where the ECG signal was con-
verted to a sequence of binary numbers and its pattern
analyzed for a degree of disorderliness (complexity). While
the datasets were not identical, both studies showed that
PAF subjects could be detected, with best ROC AUC of
0.90 and 0.95 from restitution20 and complexity19 analysis,
respectively. Our comparable result in this study was a
ROC AUC of 0.98 achieved by subjects in our final model,
indicating that the SPARmethodmay provide supplementary
analysis for this problem. Furthermore, both restitution and
complexity analysis typically require low-heart-rate, resting
ECGs, whereas SPAR is not restricted. Overall, the restitu-
tion and complexity studies used less than the 3 minutes (3
60-second strips) of data applied in this study, but SPAR
was applied to individual 20-second sub-strips, which would
be too short for the alternative techniques, and still achieved a
ROC AUC of 0.94 as separate records. Our human ECG
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studies have typically used 10-second diagnostic
ECGs,25,26,39 and extension of this study should evaluate a
similar approach. We also propose that we should build on
our ensemble machine learning approach using the 3 classi-
fiers (k-NN, linear SVM, and SVM with RBF kernel) by
incorporating features drawn from the 3 techniques (SPAR,
restitution, and complexity) to assess their complementary at-
tributes in the classification of PAF.

This article has presented a further successful application
of the SPAR analysis of ECG signals, supporting that
SPAR can extract more nuanced information from a normal
sinus rhythm waveform to distinguish between horses with
and without a diagnosis of PAF. While our study focused on
retrospective equine data, there has been a recent surge of
interest in both the retrospective detection and prospective
prediction of PAF in human sinus rhythm ECGs, driven
by clinical need, and supported by larger labeled datasets,
advances in machine learning techniques, and more power-
ful hardware. Notably, Attia and colleagues40 obtained
more than 180,000 adult ECG recordings and achieved an
accuracy of 79.4% (ROC AUC of 0.87) for a single 10-
second, 12-lead recording extracted up to 31 days before
a recorded AF (or atrial flutter) ECG, which rose to
83.3% when all available sinus rhythm recordings from
the 31 days were used. Alexeenko and colleagues41

extended the complexity analysis from equine ECGs19 to
a pilot study using repeated 28-second single-lead sinus
rhythm ECG from 52 older adult subjects, and discrimi-
nated PAF patients with a ROC AUC of 0.92, indicating
the earlier methodology applied to equine ECG (ROC
AUC of 0.95) was appropriate for the analysis of human
ECG data. We recommend that a similar study be under-
taken to extend the detection of PAF using the SPAR
method to larger volumes of human data.
Conclusion
The SPARmethod is a novel and intuitive means of encapsu-
lating the morphology and variability of an approximately
periodic signal,21 and we have demonstrated that it is simple
to apply to normal sinus rhythm equine ECG data of varying
heart rates, generating attractor images that capture subtle
waveform differences and can be easily quantified. Coupling
this quantification with an ensemble machine learning
approach enabled us to develop a model with excellent clas-
sification power for PAF, while the SPAR density profiles
provided further insight into how this classification was
achieved. Our results appeared to be complementary to
similar analysis on equine ECG,19,20 and we now aim to
extend this to a larger study using human data.

While the ability to both detect PAF retrospectively and
predict a subsequent AF episode from apparently normal si-
nus rhythm ECG is an important problem when managing
equine athletes, it has an even greater relevance in human
populations, where it has been associated with various clini-
cally adverse events, including death.2 Our simple and suc-
cessful implementation of SPAR in this preliminary study
indicates that the SPARmethod is an ideal candidate to incor-
porate into the monitoring and risk stratification of human pa-
tients to support clinical decision-making.
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