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Liver segmentation and recognition from computed tomography (CT) images is a warm topic in image processing which is helpful
for doctors and practitioners. Currently, many deep learning methods are used for liver segmentation that takes a long time to
train the model which makes this task challenging and limited to larger hardware resources. In this research, we proposed a very
lightweight convolutional neural network (CNN) to extract the liver region from CT scan images. The suggested CNN algorithm
consists of 3 convolutional and 2 fully connected layers, where softmax is used to discriminate the liver from background. Random
Gaussian distribution is used for weight initialization which achieved a distance-preserving-embedding of the information. The
proposed network is known as Ga-CNN (Gaussian-weight initialization of CNN). General experiments are performed on three
benchmark datasets including MICCATI SLiver’07, 3Dircadb01, and LiTS17. Experimental results show that the proposed method
performed well on each benchmark dataset.

1. Introduction

Liver disease is among the most serious medical conditions
that can threaten human life and health. Liver tumors are the
second primary reason of death in men and the sixth
foremost cause of death in females. In 2008, 750,000 people
have been identified with liver malignancy and 960,000
people died as a result of the disease [1]. CT scan is a

prominent technique for surgical planning and to diagnose
organs in the abdomen [2]. Therefore, CT scan is also
regularly used to diagnose liver cancer. Liver segmentation is
a critical step in computer-aided therapeutic interpolation
using CT images, such as volume estimation, radiation, and
surgery of liver transplantation. Manual allocation of each
slice is a quiet regular clinical rehearsal for the liver de-
scription. As a result, manual segmentation is inefficient,
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independent, and time-consuming. In this manner, creating
a fully automated system capable of diagnosing, monitoring,
and expediting therapeutic planning is critical. Numerous
techniques for segmenting the liver in CT scans have been
described, and a summary of these techniques is provided in
[3]. Generally, these methods are classified into three classes,
which are interactive [4], semiautomatic [5-7], and auto-
matic [8,9]. Interactive and semiautomatic methods depend
on a little or a massive user interaction while automatic
methods do not depend on any type of user interaction.
Semiautomatic approaches have a potential to reduce the
effectiveness of a physician.

To date, there are two types of automatic methods
frequently used for liver segmentation. Some approaches
based on learning and some approaches are based on
antilearning including graph cuts [6,10,11], level set [12,13],
and region growing [14]. For some challenging datasets,
Wang et al. [15] presented a method that defined a shape-
prior-level set method to describe the borders of the liver
have a level of changeability that is comparable to those
which manually achieved. The popular graph cut approaches
for the segmentation of the liver are the extension of
standard graph cut method proposed by Boyokov et al.
[16,17]. Linguraru et al. [18] presented a method for liver
segmentation where the generic-affine-invariant shape pa-
rametrization method is integrated with the geodesic-active-
contour method and segmented a tumor with the graph cut
method. The deformable graph cut method is proposed by Li
etal. [19] to detect the surface of the liver using the graph cut
with a shape constraint. Rusku et al. [14] proposed a
neighborhood-connected region growing method that in-
tegrated the local neighborhood of the voxels to segment the
3D liver from CT images. In liver segmentation, level set
methods are very successful because it can capture complex
shapes and also control shape regularity. Using a sparse
representation for local and global information of an image,
a level set method is proposed by Sheikhli et al. [20]. Atlas-
based methods and active shape models (ASMs) are the
traditional learning-based methods. Basically, ASM methods
first build a shape of the liver and then tie it to the target
image. To challenge the task of liver segmentation, Heimann
etal. [21] suggested a technique which is the mixture of SSM
and a deformable mesh. A probabilistic active contour
method is proposed by Wimmer et al. [22], which combined
the shape, boundary and region information into an indi-
vidual level set equation. A multitiered statistical shape
model for liver segmentation is proposed by Erdt et al. [23].
For the precise segmentation of hepatic veins, liver, portal
veins, and its tumors simultaneously, Wang et al. [24]
presented a method using the sparse-shape-composition
(SSC) to build a dynamic contour preceding for the liver. The
abovementioned active shape model (ASM) performs well
on the liver segmentation but it needs a larger dataset and it
is also very complicated to build these time-consuming
methods. Then registration algorithms are also needed for
the correspondence between the liver atlases and their
targets. So, these methods are not independent, they need
prior knowledge to tackle the segmentation problems. The
registration process is also time-consuming and very
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complicated in terms of liver abdominal CT images. In atlas-
based methods, label fusion and selection of atlases are not
easy tasks; therefore, these methods have a very limited
clinical usage. When the above machine learning methods in
the literature are used on challenging cases that have some
limitations, especially in liver segmentation which have an
irregular shape, the same intensity level in nearby organs
(spleen, heart, and right kidney) and tumor in the liver make
it more challenging. Figure 1 shows some of challenges in the
CT abdominal images having liver and surrounding organs.

Recently, deep learning approaches have earned con-
siderable interest for their ability to learn a hierarchy of
features from high to low [36-39]. A review of different deep
learning method for COVID-19 is presented [40-42]. These
are very powerful methods as compared to machine learning
[43], which can acquire more classified features for image
segmentation [44] and classification tasks [45-49]. Qadri
et al. [25,26], employing a deep belief network, suggested an
approach for segmenting the spine from CT images. Ahmad
et al. [27] suggested a system for segmenting the liver using
stacked autoencoders that learned unsupervised features. A
work based on stacked sparse autoencoder (SSAE) for pe-
destrian gender recognition achieved outstanding results
[28]. Hirra et al. [29] used a deep belief network for breast
cancer classification using histopathological images. The
skin is segmented using a stacked autoencoder to capture the
high-level features [50]. CNN is a form of traditional deep
learning technique, which may detect nonlinear mappings
between its inputs and outputs [51,52] and visual object
recognition [53]. Zhang et al. proposed a two-dimensional
convolutional neural network for multimodal infant brain
image segmentation [31]. In [54], using a combination of
deep learning and graph cut techniques, created a fully
automatic system for liver segmentation. It starts with a liver
segmentation simultaneously using a probability map
learned from a 3D CNN. The graph cut method is used to
refine the initial segmentation, and this technique is com-
pletely automated and capable of simultaneously learning
low-to-high-level features. While [32] presented a deep
learning technique called a 3D CNN for automated liver
segmentation, which trained and got the subject-specific
probability map of the liver that acts as a shape prior and
gives the initial surface of the liver. This model is built on the
preceding segmentation using local and global information.
The global information is used in the healthy part of the liver
to learn the area appearance and intensity dissemination,
and the local nonparametric information is used to get the
abnormal liver information. To resolve the problem of liver
segmentation [33], a new 3D convolutional neural network
is presented. The suggested model 3D-DSN is better than the
simple CNN model in terms of discrimination capability,
optimization, efficiency, and effectiveness. 3D-DSN model is
a fully convolutional model that is effective in learning. The
deep supervision approach to the hidden layer in this work
has been used which improve the convergence rate of op-
timization and increase the precision. To refine the seg-
mentation in postprocessing, a conditional random field is
used. Liver and its tumor segmentation are carried out using
Octave CNN, which got better results [35,55]. Deep learning
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FiGure 1: Sketch of challenges in automatic liver segmentation. The shape of the liver changes in different cases. Nearby organs have a

similar intensity level.

methods are being used to detect the tumor from CT images
and get reasonable results [56,57]. FCNN was trained on a
3D CT volume of the liver [34], and then a cascade fully
convolutional neural network (CFCN) was applied to
CT data slices to extract the liver and its lesion. Afterward,
3D-CREF is applied for postprocessing to enhance the seg-
mentation results. Larger parameters, sufficient memory
requirements, and extra computational powers are needed in
tully 3D convolutional neural network models [58]. To avoid
the fully three-dimensional CNN network, two-dimensional
patches are utilized and processed these patches for seg-
mentation. The major reason behind it is to discourage the
fully 3D CNN because this method is very much expensive in
terms of parametric complexity which takes longer time to
train the network. So, over segmentation problem might
occur due to the biases in rare classes [59]. Table 1 sum-
marizes the recently published deep learning methods. There
are some recent deep learning methods which have been
used for the detection of different diseases that performed
well [60-67].

We extracted the 2D patches from our datasets and
processed them with a 2D convolutional neural network to
avoid the complexity of fully 3D CNN. Preprocessing is
performed to get the enhanced CT image. The input of 2D
patches is given to CNN then acquire the probability map:

(1) We developed a lightweight convolutional neural
network to separate the liver from CT scan images.

(2) The proposed CNN model consists of three con-
volutional and two fully connected layers hence
efficiently segmenting the liver.

(3) The weights are initialized using a random Gaussian
distribution, which does a distance preserving of the
information. We added the LRN layer after each
convolutional layer to enhance the data adaptability.

(4) Three benchmark datasets SLiver’07, 3Dircadb01,
and LiTS17 are used to analyze the model perfor-
mance which improves the stability of our model.

The whole article is organized as follows: Sections 2-4 are
the proposed method, experimental setup, and results and
discussion, respectively. The conclusion is given in Section 5.

2. Proposed Method

This section provides details of the method we followed in
this study. The whole pipeline of our system is illustrated in
Figure 2.

2.1. Data Preparation. A simple preprocessing is applied in
the proposed work on each axial CT slice. We enhanced the
contrast and normalized the dataset using zero mean and
unit variance to obtain the data range between 0 and 1. On
both the training and testing datasets, we applied similar
steps. For the training dataset, we applied the additional step
to augment the input data. We crop the train data where liver
slices are not affected and rotate the images on 90, 180, and
270°. The detail of data augmentation is given in the liter-
ature [68,69]. We sliced each axial 2D image into 32 x 32
patches for both training and testing data and picked 1.3
million patches from the background and foreground
randomly for training data. The image patches of two classes
are equally taken with a ratio of 1:1 for stable training and
validation.

2.2. Convolutional Neural Network. We briefly discuss the
convolutional neural network (CNN) in this section. More
detail on CNN can be found in [51,70]. The CNN is a
discrepancy of a multilayer perceptron. The core part of
CNN is based on convolutional and subsampling layers. For
the hierarchy of feature learning in the convolutional neural
network, numerous convolutional layers are heaped to-
gether. Every convolutional layer is capable of obtaining the
feature map from the layer before it. These layers are
connected with some filters. We indicate that Con™ ! and
Con™ are the input and output of the n convolutional
layers, respectively, and Coni(") denotes ith feature map of
the n'™ layer in a particular CNN. The following equation can
be used to calculate the output of the nth layer.

e - Fw,b<zc¢-1 : Wé?’b?>~ )
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TaBLE 1: The recently published deep learning methods to perform different classification and segmentation tasks.
Isl;). Author Technique name Purpose pubDlailstf)e d
1 Qadri et al. Deep belief network with two hidden layers Deep belief network is used for the spine 2018
[25] segmentation from CT images.
) Qadri et al. Pa-DBN with two hidden layers Employing a deep l?elief netvx.rork, suggeste.d an 2019
[26] approach for segmenting the spine from CT images.
Ahmad . . Segmenting the liver from CT images using stacked
3 et al. [27] DSAE with two hidden layers a%ltoencoiers that learned unsupegrvised f%atures. 2017
Raza et al. HOG-based features generated and then sparse
4 (28] Stacked sparse autoencoder (SSAE) stacked autoencoder is used for pedestrian gender 2018
recognition.
5 Hirra et al. Pa-DBN-BC Deep belief petwqu for breas.t cancer classification 2021
[29] using histopathological images.
Lei et al. The skin is segmented using a stacked autoencoder to
6 [30] Stacked autoencoder ca;%ture the higl%—level features. 2016
Zhang et al. CNN with three convolutional and a fully Propose a two-dimensional convolutional neural
7 31] connected layer is used; after the convolutional network for multimodal infant brain image 2015
layer, local response normalization layer is used segmentation.
Presented a deep learning technique called a 3D CNN
Hu et al for automated liver segmentation which trained and
8 32] ’ 3D CNN got the subject-specific probability map of the liver 2016
that acts as a shape prior and gives the initial surface
of the liver.
Dou et al. The suggested model 3D-DSN is better than the
9 (33] 3D-DSN simple CNN model in terms of discrimination 2016
capability, optimization, efficiency, and effectiveness.
FCNN is trained on a 3D CT volume of the liver and
Christ. then a cascade fqlly convolutiona} neural network
10 et al. [34] FCNN (CFCN) was applied to CT data slices to extract the 2017
) liver and its lesion. Afterward, 3D-CRF is applied for
postprocessing to enhance the segmentation results.
Ahmad Liver segmentation is performed from CT images
L ;3 5’] DBN-DNN using deep belief network. This method gives good 2019

accuracy and DSC.

Here, Wi(,’-l) is the kernel relating of ith and jth output map
and #* is the denotation of the convolution and 4" denotes the
bias of the jth output record of the nth layer in a particular
convolutional layer. Fy, ,(.) denotes a nonlinear activation
function. For nonlinear activation, the function has many op-
tions, which are rectified linear unit (ReLU), sigmoid, and
hyperbolic tangent. A subsampling layer after the convolutional
layer is used to reduce the computational complexity. So, in this
manner, we adapt the max-pooling layer which is commonly
used. Fully connected layers are often used after the convolu-
tional layers and at the end, a softmax classifier is used to classify
the results. In binary classification problems, the regression
model is being used to normalize the results of kernel convo-
lution. Convolutional layers are sharing the weights which is the
key advantage of CNN. Each pixel in the layer uses the same
filter. The main advantage is to improve the performance as well
as reduce the memory size.

If the training set is made up of m labeled samples,

{4 9N, (x5 9D, ..., (x™, y™) }, y' can be 0 or 1,
where I=(1, 2, 3, ..., m).

0 indicates all the important parameters including bias,
kernel, and softmax parameters of the CNN. Concerning 0,
we reduce the following cost function for logistic regression.

1 [ . X .
E(0)=-— [Z y'log Fo(x') +(1 - y')log(1 - Fy(x')) |
i=1
(2)

For regularization of classification, weight decay can be
used to castigate the larger values of the softmax layer.
Gradient-based optimization can be utilized to reduce the
cost function [52] and backpropagation is used to calculate
the partial derivatives [51].

2.3. Proposed Ga-CNN Architecture. For any low-dimen-
sional data, random estimation is a general sampling ap-
proach [71-73]; a deep neural network with random weights
is a general system that can separate the data. The angles
among its points, it is observed that there are larger angles
among different classes [74-77]. The intraclass angles are
more important than interclass ones in a deep network.
The recent study shows that the vital property of
Gaussian distribution is to preserve the ratio among the
angles in the data during the DNN training. Therefore, it
does not give a priority in any direction but it treats the
same to each direction; the above discussion is leading to
the behavior of distances and angles throughout the DNN
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FiGURE 2: Flow diagram of our methodology.

net. In common, there are small angles between the points
in the same class but have a larger distance in different
classes. Random Gaussian weights would be a good choice
for the DNN network parameters if it holds all the points.
We adopted the random Gaussian weights for the ini-
tialization of the training network, where the hypothetical
details and proofs are given in the literature [78]. To ad-
dress the problem of liver segmentation in CT images, a
patch-based methodology is being developed. The first 2D
image is separated into M number of patches. The input
image of axial slice with size of 512512 is divided into
1 x 32 x 32 patch size, where 1 is the channel of the image
patch. Figure 3 shows the foreground and background
patches.

The proposed DNN method has the input of 1 x NxN
2D patch of CT scan images. The most important and
necessary layer for building the CNN model is a convolu-
tional layer. Numerous convolutional layers are placed on
top of one another to create a feature hierarchy. Each layer

receives its input from the layer that was previously con-
nected. The convolutional layer executes the stack of input
CT image patches and outputs the number of feature maps.
Each region of interest corresponds to a topological ar-
rangement inside the responsive map of a specific nonlinear
spatial feature abstraction. These learning parameters could
very certainly be applied to any spatial neighborhood layout
using the sliding window architecture. The convolutional
layer activation process is dependent on the single plan of an
input CT image. The feature map from previous layers is
often included in the information plan for subsequent layers.
In the proposed model, we are using three convolutional and
two fully connected layers. Convolutional layers are the
main components of CNN, reducing the number of di-
mensions while increasing the depth. The filter size of 7 x7
in the first, 5x5 in the second, and 3x3 in the third
convolutional layer are used. Figure 4 shows the proposed
Ga-CNN network architecture. The other information re-
garding each layer in our model is given in Table 2.



Computational Intelligence and Neuroscience

Foreground

4>| 32x32 |—>| 1x32x32

Backgroung
T AR

.
i —>|32><32 l—»l 1x32x32 ‘

—>| 32x32xM |—>| Mx1x32x32 ‘

F1GURE 3: The foreground and background patches. Each patch size is 32 x 32 pixels, and M is the total number of extracted patches.

32@1x13x13

ReLU LRN

192@1x6x6

Convolution 7x7 Convolution 5x5
PS;rgle 1;12 Max Pooling 3x3 Stride 1x1
adding 2x Stride 2x2 Padding 2x2
Padding 0x0
Softmax
: ReLU LRN ReLU

256@1%x3%x3 LRN ReLU
N
Fully Connected

(2) Convolution 3x3
: Max Pooling 2x2 Stride 1x1
Dropout Str i(.ie 2x2 Padding 1x1 Max Pooling 3x3
Padding 0x0 Stride 2x2
Padding 0x0
Fully Connected
(4096)

[l Convolutional Layer
[ ReLU Layer

[ Max Pooling Layer
Local response normalization

[] Fully connected Layer
I Output Layer

FIGURE 4: Proposed Ga-CNN architecture.

Each convolutional layer is tailed by a ReLU, LRN, and
max-pooling layer. Our network contains three max-pooling
layers, where 3 x 3 sub-window size is being used with stride
of 2 in the first and second max-pooling layers and a sub-
window size of 2 x 2 with a stride of 2 is used in every path of
third max-pooling layer [79]. ReLU is a piecewise linear

transformation max (x, 0) that improves convergence by
selecting important invariant features that enhance the
execution’s generality [51]. ReLU has a required property
that does not need any input normalization to stop them
from soaking. If a positive input is produced by a training
example that is given to ReLU, that neuron will be learned.
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TaBLE 2: The CNN model’s detailed architecture is employed in this work.

Type of layer Kernel Stride Padding Output Depth Trainable parameters
Input — — — 32x32 1

Convolution 7 2 0 13x13 32 1600
Max-Pooling 3 2 0 13x13 32 0
Convolution 5 1 2 13x13 192 153792
Max-Pooling 3 2 0 6x6 192 0
Convolution 3 1 1 6Xx6 256 442624
Max-Pooling 2 2 0 3x3 256 0
Fully connected 1 — 1x1 4096 9,441,280
Fully connected 1 — — 1x1 2 8,194
Softmax — — — 1x1 2

Total 10,047,490

Therefore, LRN still adds the generalization. The following
formula is used to calculate the LRN.

b, = -
xy = min(N-1L,I+N/2) ( j \2B’ )
K+ o) ax0.-n) (al,)

where b;,y is the response normalization activity, where
the sum runs across N neighboring kernel maps and the
layer comprises N number of kernels at the same spatial
position. We used the same LRN hyperparameters as in
[51]. The convolutional layer produces the output of the
feature mapping procedure as an input from the pre-
ceding convolutional layer. From the perspective of the
neural network, feature maps are associated with the
hidden layers of neurons. Each coordinate subset of
features is associated with a single neuron, and the size of
the receptive field is proportional to the kernel size. Fi-
nally, at the network’s end, two fully connected layers are
added. The fully connected layer executes the scalar
product, where the input is a vector and it returns a scalar.
The first fully connected layer with a neuron size of 4096
and the dropout factor of 0.3 is used. Dropout is employed
during the training phase to keep the network from
overfitting. The second fully connected layer which is final
layer of our system, and then softmax classifier is used to
perform classification for our model (Background and
Liver). We reconstructed the image on the bases of
classification results to perform a segmentation. Mean-
while, after segmenting each 2D liver image, we used a
5x5 median filter to smother the resultant liver. Total
trainable parameters of our model (Ga-CNN) are about 10
million; if we compare these parameters with Alexnet,
which has 62 million, and VGG16, they are about 138
million. In terms of complexity, our model is less complex
and stable. The information of trainable parameters is
given in Table 2.

3. Experimental Setup

In total, 60 contrast-enhanced CT images with ground
truths were used to train the network. We used three
challenging datasets in our work, which are the SLiver’07
training set, 3Dircadb0l1, and LiTS17 training dataset. We
have selected 10 CT images from the SLiver’07 training
set, 10 CT images from 3Dircadb01, and 40 CT images

from the LiTS dataset for training and validation. All three
benchmark datasets are freely available online. In total, 30
contrast-enhanced CT images were selected for testing
purposes, where the axial slice resolution was 512 x 512
pixels. We randomly selected 10 CT images from
SLiver’07, 10 CT images from 3Dircadb01, and 10 CT
images from the LiTS17 dataset. For experiments, we
adopted the MATLAB 2021a for implementation of our
model. We selected the parameters which are Stochastic
Gradient Descent with Momentum (SGDM) and initial
learning rate of 0.01 for this experiment. A computer with
windows operating system, Intel Core i-7, 8565U pro-
cessor, 32 GB of RAM with 2 GB GPU (NVIDEA GeForce
250) was used.

In our method, we initialized the weights manually from
a Gaussian distribution with a standard deviation of 0.0001.
We applied Gaussian weights to CNN network which
perform steady inserting of the input data that draw a linking
among the features produced by our model [78]. We trained
our model with 70 epochs where we set the initial learning
rate of 0.01. After 20 epochs, the learning rate dropped by a
factor of 0.1. Momentum was constant in the whole ex-
periment, which was 0.9. Weight decay and mini-batch size
were 0.0001 and 64, respectively. Stochastic gradient descent
with momentum (SGDM) is used as an optimization al-
gorithm. The SGD algorithm has trouble, where the surface
curve is much tighter in one dimension than another [80].
Momentum is the method that can help the SGD to ac-
celerate in a relevant direction [81]. The training hyper-
parameters are given in Tables 3 and 4. The proposed model
performance is analyzed by key modules that affect and
extract the patches. Figure 5 shows the visualization of three
convolutional layers in our training model.

After the training, the trained CNN algorithm is
learned iteratively from the initial liver probability map.
One of the test volumes in Figure 6 shows the iterative
results of the liver probability map. In the 8" iteration, the
liver and spleen had the same intensity and texture level
but in the 15™ iteration, the liver becomes brighter which
means liver pixels are stronger and easily differentiable. In
a 25" iteration, the spleen becomes smaller as in previous
iterations. In the 35" iteration, the spleen disap%eared
and the liver becomes brighter. In the 60™ to 70™ iter-
ations, the validation results converge and the shape of the
liver becomes accurate.
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TaBLE 3: Hyperparameters of Ga-CNN.
Parameter Value
Momentum 0.9
L2 Regularization 0.0001
Max epochs 70
Mini-batch size 64

TABLE 4: Learning rate schedule.

Learning rate Value
Initial 0.01
Schedule Piecewise
Drop factor 0.1
Drop period 20

4. Results and Discussion

In this section, we provide the detailed segmentation results
based on three benchmark datasets which are SLiver’07,
3Dircadb01, and LiTS17. The input image is converted into
multiple 2D patches and given as an input to Ga-CNN
model for detection and then segmentation is performed on
the input image.

All the three benchmark datasets (having normal and
abnormal CT scan images) are evaluated on eight perfor-
mance metrics such as SE, SP, ACC, Precision, FPR, FNR,
JSI, and DSC. In equations 4 to 11, true positive (TP) denotes
all the pixels related to the liver, true negative (TN) shows all
the pixels related to the background. False negative (FN)
denotes the liver pixels that do not classify accurately, and
false positive (FP) denotes the pixels which belong to the
background but are not identified as a background. The dice
similarity coefficient (DSC) is being used for the calculation
of automatic and manual segmentation, and JSI is used to
measure the similarity between the two images.

TP

SE=—, 4
TP + FN )
TN
SP= ——, 5
TN + FP 5
TP + TN
ACC = , 6
TP + TN + FP + FN ©)
TP
P 181 = —, 7
recision TP 1 TP (7)
FPR = 1 - Specificity, (8)
PNR = 1 — Sensitivity, 9)
DSC
SIl=——, 10
J 2 - DSC (10)
2TP
DSC=————. 11
FP + 2TP + FN (1
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The analysis of key components is analyzed which affect
and extract patches on the proposed model. In this section,
previous deep learning and machine learning methods are
being compared. Finally, the outcomes of three benchmark
datasets are conveyed by experimentation.

We presented the results of 10 CT images that were
randomly selected out of 20 CT images for testing purpose
in Sliver’07 dataset. The overall DSC of 95.0%, Jaccard
similarity index of 90.47%, the accuracy of the proposed
model of 95.1%, precision of 97.2%, sensitivity of 95%,
specificity of 95.2%, FNR of 0.048, and FPR of 0.05 are
noted on the SLiver’07 dataset. We observed from the
above results that our method performed well in classifi-
cation as well as in segmentation. Figure 7 depicts the
segmentation results on 2D axial slices of the SLiver’07
dataset on the proposed model. The axial slices are ran-
domly chosen from different CT images of the SLiver’07
dataset. Segmentation results show that the proposed
model efficiently recognized the boundaries of the liver,
where (a) is the original CT image, (b) is the original label,
(c) is the segmentation results of Ga-CNN model, and (d) is
the overlapping results of the original label (green) and
segmented results of Ga-CNN (red).

The qualitative results of 3Dircadb01 datasets are pre-
sented in Table 6. 3Dircadb01 dataset composed of 20 CT
images; we presented the mean results of 10 CT images,
which were selected from 3Dircadb0l dataset randomly for
testing. The DSC of 92.9%, JSI of 85.1%, the accuracy of the
proposed model of 93.1%, precision of 95.5%, sensitivity of
93.0%, specificity of 93.2%, FNR of 0.08, and FPR of 0.07 are
noted on the 3Dircadb0l dataset. Figure 8 shows the seg-
mentation results on 2D axial slices of the former dataset on
the proposed model. The axial slices are randomly chosen
from different CT images of the 3Dircadb0l dataset, where
(a) is the original CT image, (b) is the original label, (c) is the
segmentation results of Ga-CNN model, and (d) is the
overlapping results of original label (green) and segmented
results of Ga-CNN (red).

We presented the mean results of 10 CT images which
were selected from LiTS dataset randomly in Table 7. The
DSC of 97.31%, JSI of 94.76%, the accuracy of the proposed
model of 97.25%, precision of 97.06%, sensitivity of 97.56%,
specificity of 96.93%, FNR of 0.02, and FPR of 0.02 are noted
on LiTS dataset. The axial slices are randomly chosen from
different CT images of LiTS dataset. Figure 9 shows the
results of LiTS17 dataset, where (a) is the original CT image,
(b) is the original label, (c) is the segmentation results of Ga-
CNN model, and (d) is the overlapping results of original
label (green) and segmented results of Ga-CNN (red).

The intermediate results of all the three datasets are given
in Table 8. The mean DSC of 95.07%, JSI of 90.65%, ACC of
95.15%, precision of 96.58%, SE of 95.18%, SP of 95.11%,
FNR of 0.05, and FPR of 0.05 are noted. The overall per-
formance of the proposed model is better and can be
comparable to another state-of-the-art methods in the lit-
erature. Table 9 depicts the comparison of the proposed
method results with other recently published well-known
liver segmentation methods.
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FIGURE 5: Visualization results of filters of each convolutional layer. The 1" convolutional layer with 32 filters, the 2"¢ convolutional layer

with 192 filters, and the 3" convolutional layer with 256 filters.

FIGURE 6: Iterative results of liver probability map produced by Ga-CNN model on CT scan image of SLiver’07 dataset. From top left to
bottom right, 8", 15, 25™, 55, 60", and 70" iterative liver probability maps are shown. The brighter region shows the more probability

map of the liver.

TasLE 5: The segmentation results of SLiver’07 training dataset
using the proposed model.

DSC o, ACC Precision SE SP
Dataset JSI% % % % %

%
SLiver’07 95.0 90.47 95.1 97.2 95 95.2 0.048 0.05

FNR FPR

The comparison with other recently published liver
segmentation methods is given in this section. In [82], liver
segmentation is performed on CT images using two chal-
lenging datasets which are 3Dircadb01 and SLiver’07. DSC
of SLiver’07 and 3Dircadb01 datasets are 94.03% and 91.19%,
respectively. This method is somewhat complex and needs to
remove the rib from the CT image and then apply the

random walker algorithm to extract the liver but the pro-
posed method do not need to remove any other organ first.
Ga-CNN detects the liver boundaries very efficiently without
any other postprocessing support. If we compare our
method with that in [35], the DSC of our method is 95.07%
which is better. We conducted the experiments on three
benchmark datasets with 30 contrast-enhanced CT images,
that can also validate our algorithm. Another recently
published deep learning method using a stacked autoen-
coder (DSAE) [27] got 90.1% DSC that is less than the
proposed method. The training and validation of Deep
stacked auto encoder (DSAE) are performed on 2 publicly
available datasets (3Dircadb and Sliver’07); the limitations of
this method against our methods are obvious that DSAE
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F1GURE 7: The results of segmentation of SLiver’07 dataset.

TaBLE 6: The segmentation results of the 3Dircadb01 dataset using the proposed model.

Dataset DSC% ACC%

Precision% SE% SP% FNR FPR

3Dircadb01 92.9 93.1

95.5 93.0 93.2 0.08 0.07

cannot detect the abnormal liver in the image very well but
our method can efliciently segment the abnormal liver very
efficiently. In [46], the DSC of liver segmentation was noted
92% using LiTS17 dataset that is less than the DSC in our

proposed work. In [35], the two datasets, SLiver’07 and
3Dircadb01, that were used to segment the liver show the
DSC of 94.80% and 91.83%, respectively, which are obvi-
ously much fewer than Ga-CNN method. Proposed
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FIGURE 8: The results of segmentation of 3Dircadb01 dataset.

TaBLE 7: The segmentation results of LiTS17 training dataset using the proposed model.

Dataset DSC% JS1% ACC% Precision% SE% SP%

FNR

FPR

LiTS17 97.31 94.76 97.25 97.06 97.56 96.93

0.02

0.03
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F1GURE 9: The results of segmentation of LiTS dataset.

algorithm has a capability to find the edges and curves very ~ The application of our method is best for the donors of the
accurately, and the computational time for each slice is only  liver, because the normal liver can be efficiently segmented
6 seconds, which shows that Ga-CNN is very lightweight. ~ with correct boundaries. From the segmentation results
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TaBLE 8: The intermediate results of the proposed model on three benchmark datasets.
Dataset DSC% JS1% ACC% Precision% SE% SP% FNR FPR
SLiver’07 95.00 90.47 95.10 97.20 95.00 95.20 0.048 0.05
3Dircadb01 92.9 86.74 93.10 95.50 93.00 93.20 0.08 0.07
LiTS17 97.31 94.76 97.25 97.06 97.56 96.93 0.02 0.03
Mean 95.07 90.65 95.15 96.58 95.18 95.11 0.05 0.05
TaBLE 9: The comparison with other methods. 5. Conclusion and Future Work
Method Test dataset (s) D(ySOC This study proved the development of an accurate and
- robust technique of a liver segmentation. The developed
E:Eggg x:iig {Zﬂ 3?55:;1821 g}l(l)g algorithn.l accomplished the segmentation With a very light
DSAE [27] 3DircadbOl, SLiver'07 90.10 convolutional neural network (Ga-CNN) with randomly
VNET and WGAN . initialized Gaussian weights, which performed a steady
[46] LiTs17 92.00 insertion of the data that draw the linking between the
DBN-DNN [35] SLiver’07 94.80 magnitudes of the features produced by our network that
DBN-DNN (35] 3Dircadb01 91.83 still preserve the metric evidence of the complexity of the
Proposed 3Dircadb0ﬁ., TSSLli;er’OZ and oo - data and the original manifold. Adding ReLU activation
1

shown in Figures 7-9, it is clearly observed that the proposed
method correctly segments the areas of the liver from the CT
images, where the heart, stomach and spleen also having the
same intensity level. Normally, the spleen and stomach are
mis-segmented by many algorithms because of their same
intensity nature, but our DNN correctly identifies the liver
pixels and discriminates the other organs due to the efficient
feature learning. Liver shape variability is also a big problem
in CT images but our algorithm can solve it effectively.

In the above discussion, we compared our method
with deep learning and some other liver segmentation
methods. We observed the above given experimental
results that the proposed technique is better as compared
to the other recent methods in the literature. This proves
the applicability of the proposed method. The validation
results of three well-known benchmark datasets also make
our algorithm very proficient. Overall, we found in our
research that initialization of DNN with random Gaussian
weights perform better and have a steady insertion of a
data. The most important is to draw the connection among
the dimensions that are generated by the DNN and still
retain the complication of the data and matric informa-
tion of the original manifold. The results of the proposed
method show that deep neural networks are general
classifier for that data which is based on the angles of
major alliance among the classes in the data. Our random
Gaussian initialization is mainly focused on the previous
study that proved that this strategy is also better to train
the DNN models with low training samples. For liver
segmentation, this also helps us improve the results of the
abnormal liver, where the angles and shapes of the liver
could be detected in a better way. The 3Dircadb01 and
LiTS are both complex datasets, having different types of
tumors in it. But the mean DSC and precision of these two
datasets prove that our proposed model performed well
and can be approachable against other well-known
methods.

function after each convolutional layer makes the learning
very fast and found early convergence. Also, we introduced
local response normalization (LRN) after ReLU which im-
proved the precision and reduced the false positive rate. The
validation of three benchmark datasets including SLiver’07,
3Dircadb01, and LiTS17 prove that the proposed model
performed better on CT images to segment the liver. The
recorded mean dice, Jaccard index, accuracy, and precision
were 95.07%, 90.65%, 95.15%, and 96.58%, respectively, on
30 CT test images.

We tested our model on three datasets, which gives
better accuracy and DSC. On the bases of these results, we
are sure that our lightweight CNN could give better results
for the segmentation of liver with other datasets. In future,
we will add more dataset for more accuracy. Moreover, our
method could be applied on other organs for segmentation,
like the kidney, lungs, and heart. Our lightweight CNN
model is limited for the segmentation of a liver. On complex
datasets like 3Dircadb0l1, the accuracy of Ga-CNN is less
than other used datasets. For this purpose, we will improve
our preprocessing techniques to cope this situation. We will
also focus on liver tumor segmentation using Ga-CNN with
more improvements.
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