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Abstract
Radiomics is a novel technique in which quantitative phenotypes or features are extracted from medical images. 
Machine learning enables analysis of large quantities of medical imaging data generated by radiomic feature ex-
traction. A growing number of studies based on these methods have developed tools for neuro-oncology appli-
cations. Despite the initial promises, many of these imaging tools remain far from clinical implementation. One 
major limitation hindering the use of these models is their lack of reproducibility when applied across different 
institutions and clinical settings. In this article, we discuss the importance of standardization of methodology and 
reporting in our effort to improve reproducibility. Ongoing efforts of standardization for neuro-oncological imaging 
are reviewed. Challenges related to standardization and potential disadvantages in over-standardization are also 
described. Ultimately, greater multi-institutional collaborative effort is needed to provide and implement standards 
for data acquisition and analysis methods to facilitate research results to be interoperable and reliable for integra-
tion into different practice environments.
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The field of artificial intelligence (AI), particularly machine 
learning, enables analysis of medical imaging data and helps aug-
ment current diagnostic imaging practice in the era of increasing 
clinical demand.1 AI algorithms are currently being researched to 
solve a number of clinical problems.2 In neuro-oncology, machine 
learning tools have been utilized for the development of radiomics 
models for tumor diagnosis and therapeutic response using non-
invasive imaging techniques such as MRI and positron emission 
tomography (PET). Furthermore, radiomics can sometimes be 
categorized into predefined feature-based techniques versus 
deep learning-based techniques that do not require predefinition 
or the intermediate feature extraction step.3,4 Despite the prom-
ises of this developing field, most radiomic tools remain far from 
clinical implementation due to a number of challenges such as 
technical complexity, poor study design, overfitting of data, and 
lack of standards for validating results.5,6 The purpose of this ar-
ticle is to review current efforts of standardization for neuroim-
aging, more specifically to discuss the advantages of standardized 

methodology and reporting within radiomic and neuro-oncology 
research. Challenges related to standardization and potential dis-
advantages in over-standardization are also discussed.

Need for Imaging Standardization

Advances in radiomic and machine learning methods have led 
to rapidly increasing efforts to generate automated tools and to 
help solve clinical problems in medicine. The field of radiomics 
is a swiftly developing novel technique in which image-based 
phenotypes of lesions including shape, size, and texture are 
extracted from medical images.7 A growing number of studies 
based on radiomic and machine learning methods have aimed 
at several neuro-oncology applications, including preoperative 
classification of central nervous system neoplasms including 
their histology, grade, and molecular signatures, as well as 

Standardization of imaging methods for machine 
learning in neuro-oncology

  

applyparastyle "fig//caption/p[1]" parastyle "FigCapt"
applyparastyle "fig" parastyle "Figure"

http://creativecommons.org/licenses/by/4.0/
mailto:ryhuang@bwh.harvard.edu?subject=


 iv50 Li and Huang: Standardization of radiomics in neuro-oncology

evaluating treatment response for better determination of 
treatment efficacy and prediction of subsequent clinical 
outcome. For example, machine learning models based on 
radiomic features of preoperative MRI have been developed 
to predict IDH1/2 mutations in both high- and low-grade 
gliomas.8,9 Classification models have also been developed 
to distinguish “pseudoprogression” from true tumor pro-
gression in glioblastomas receiving chemoradiation treat-
ment.10 Other studies have shown that machine learning 
classifier can predict the tumor type of brain metastases.11,12 
Studies in radiomics with additional modalities such as PET 
have gained increasing attention and shown to differen-
tiate brain tumor or metastasis versus radiation injury,13,14 
lymphoma versus glioblastoma,15 or predict underlying 
mutational status.16 Advanced MRI techniques have also in-
corporated radiomics such as MR perfusion for the identifi-
cation of pseudoprogression in glioblastoma.17

Many researchers are increasingly automating the pipe-
lines to generate radiomic models in order for easier in-
tegration into clinical use. A  majority of these pipelines 
consist of numerous steps such as imaging acquisition and 
postprocessing. When examining the methods by which 
most of these models are constructed, one can readily dis-
cover that there is wide variability in every step leading to the 
final model. Variations in methodology among studies using 
radiomic approach often include patient demographics, 
patient selection criteria, patient cohort design, molecular 
or pathology data generation, imaging acquisition, image 
preprocessing, lesion segmentation, radiomic feature ex-
traction, and machine learning computation. Even a small 
change in one or more of these key steps can result in signifi-
cant differences in model accuracies and reproducibility. Due 
to these variations in the methodology, it is often difficult to 
show that one set of results are better or worse compared to 
the others by only directly comparing accuracies. Similarly, 
it is also not clear whether the results from one study can 
be applied to data obtained at another institution. Finally, a 
significant part of the challenge in determining the reproduc-
ibility of machine learning models is the frequent lack of suf-
ficient methodology details in the published studies.

Due to the rapid development and application of 
radiomics methods, there is a lack of a standardized ap-
proach to analysis and reporting. To date, only a small 
number of studies that developed radiomic models for 
cancer care investigated their repeatability and reproduc-
ibility and provided details related to imaging processing 
and feature extraction.18 While researchers often employ 
cross-validation or include independent validation datasets 
to show reproducibility of trained radiomic models,19 the 
generalizability of these models can still be limited if they 
are applied to datasets that are sufficiently different from 
those that are used in training and validation. Thus, the 
development and implementation of standard imaging 
data acquisition methods can reduce variations that limit 
generalizability.

Sources of Variability in Radiomic 
Methodology

Radiomics is a complex multistep process that requires 
a close examination of each of these steps in order to 

investigate sources of variability and to improve the repro-
ducibility of the end results.

Patient Cohort and Study Design

Within a different patient population, the type and prev-
alence of certain imaging findings and underlying pa-
thology may be variable. One study with a homogenous 
patient cohort may get completely different results com-
pared to another patient cohort with a more diverse un-
derlying population. The inclusion and exclusion criteria 
for patient selection should therefore be clearly defined 
and potential biases related to these selection criteria 
should be discussed. In neuro-oncology, recent updates 
to the World Health Organization CNS tumor classifica-
tion include molecular data in defining tumor subtypes.20 
It is important to include details related to these molec-
ular markers for the study population so that the resultant 
radiomic/AI models can be correctly applied clinically ac-
cording to the updated criteria. Due to these changes in 
disease definitions, one should also be cautious in com-
paring radiomic models that were constructed using dif-
ferent disease criteria.

Imaging Acquisition

Imaging acquisition methods including scanner types 
and sequence parameters can affect radiomic feature cal-
culations. Studies show that computed tomography (CT) 
features may be nonreproducible and redundant by com-
paring 5 different scanners with the same CT parameters.21 
Unlike CT where pixel intensities are directly related to 
tissue attenuation, the intensity values derived from MRI 
typically do not have physical meaning and widely vary 
depending on acquisition parameters and this results in 
significant variations among radiomic features derived 
from MRI.22 Based on MRI phantom analyses of commonly 
used MRI sequences, a study showed that FLAIR sequence 
is the most robust, although only 15 out of 45 radiomic 
features showed excellent robustness and reproducibility 
across all sequences.23 Evaluation of imaging protocol var-
iability using a PET phantom demonstrates at least good 
reliability when parameters are in clinical range though 
there should be caution combining patients from different 
scanners into the same radiomics dataset.24 Another study 
using a PET phantom concluded that the repeatability 
of PET radiomic features depends on a number of fac-
tors and recommends high-level image acquisition and 
preprocessing standardization.25

Imaging Preprocessing

Several imaging preprocessing steps are often performed 
prior to radiomic feature extraction in order to minimize 
intensity-related variations. These include noise filtering, 
inhomogeneity correction, and intensity normalization. 
When preprocessing steps are applied to MRI dataset, 
the robustness of radiomic features has improved based 
on phantom analyses26 as well as data from patients with 
glioblastoma.27
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Intensity standardization or normalization is a 
preprocessing technique that changes the values of pixel 
intensity using a predefined algorithm in order to reduce 
variations from data acquisition. There are several nor-
malization methods that can affect the reproducibility of 
radiomic features.28 Histogram matching is a commonly 
used normalization method and has been shown to con-
tribute more than other preprocessing steps in reducing 
feature variability of conventional MRI sequences.29

Tumor Segmentation

Segmentation of lesions is an important step to focus fea-
ture extraction on imaging pixels that are most relevant to 
the pathological process of interest and excluding other 
tissue types such as normal brain or treatment-related 
changes. Different lesion segmentation methods can in-
troduce variability in subsequent feature calculations. For 
manual segmentation, it has been shown that interobserver 
variability in segmentation does impact radiomic anal-
ysis.30 Newer techniques of segmentation are developed 
to shorten the processing time. Semiautomatic techniques 
such as using software like 3D Slicer and TumorPrism3D 
have shown to reduce variability between observers.31,32 
One study claims that interactive methods decrease varia-
bility compared to semiautomatic methods in segmenting 
glioblastomas.33 The Multimodal Brain Tumor Image 
Segmentation Benchmark (BRATS) introduced a large 
public dataset for the purpose of evaluating brain tumor 
segmentation algorithms with annual challenges.34 This 
benchmarking resource allowed the testing of a number of 
algorithms including fully automated ones. The develop-
ment of a fully automated segmentation technique would 
tremendously benefit clinical care and treatment planning. 
Initial results showed that different algorithms, including 
fully automated ones, showed promise for different subre-
gions of segmentation, but no single algorithm was top tier 
in all of the subregions34 in comparison to expert manually 
annotated results. Fully automated techniques are techni-
cally challenging partly due to variations in tumor structures 
and the displacement of normal structures due to mass ef-
fect.34 Since 2015, deep learning-based models, specifically 
convolutional neural networks (CNN), have been the top-
performing techniques based on BRATS benchmarking.35 
Many different deep learning techniques have been used 
including ensembles and a variety of neural networks.36 
Recently, CNN models trained using sequential MRI data 
provide automated segmentation of patients with glioblas-
toma in clinical trials and provide objective response as-
sessment comparable to expert evaluation.37,38

Radiomic Feature Extraction and Selection

Given a data type, some radiomic features show greater 
robustness compared to other features. Therefore, it is 
often advantageous to use the features with greater ro-
bustness to improve model reproducibility. In the textural 
analysis of MRI from patients with a brain tumor, many 
features derived from a standard radiomic library lack ro-
bustness.39 Many radiomic features are shown to not be 
robust in the setting of different matrix size and dynamic 

range configurations.40 Without standardization of matrix 
size and dynamic range configurations, it would be chal-
lenging to obtain reliable and comparative results across 
different centers.39 Initial evaluation of feature variability 
in FDG-PET showed that many of the radiomic features do 
have high retest and interobserver stability with increased 
robustness seen in features more stable in repeated PET 
imaging.41 Gray-level co-occurrence matrix and shape 
features have been shown to be least sensitive to PET im-
aging system variations.42

Techniques have been developed to increase the robust-
ness of radiomic features. One commonly used method 
is to introduce perturbations to images to help select ro-
bust features that are not susceptible to these perturba-
tions.43 Automated machine learning systems have also 
been developed to scan for novel features and optimize 
parameters.44 There are methods to assess the stability and 
discriminatory capacity of radiomic features on apparent 
diffusion coefficient images.45

Machine Learning Algorithms

As different machine learning approaches are used for neu-
roimaging, the types of models used will impact the varia-
bility. While it is possible that with sufficient optimization 
of machine learning hyperparameters, the performance of 
different algorithms can be equivalent. In practice, how-
ever, the fine-tuning process of these parameters can vary 
due to differences in expertise. The difference in the choice 
of classification method can be a dominant source of per-
formance variation.46 The recent development in automatic 
machine learning algorithms such as Tree-based Pipeline 
Optimization Tool can select the best performing machine 
learning algorithms or hybrid algorithms.47 This automatic 
machine learning approach helps to remove the variation 
from machine learning algorithm selection and the differ-
ences in expertise between groups.

In recent years, deep learning-based radiomics have 
been rapidly developed. Whereas other techniques are 
generally based on predefined features, deep learning 
methods allow for automatic extraction of high-level fea-
tures by using multiple layers of neural networks that im-
itate the functions of the human visual network.3,48 While 
this technique has the advantage of not requiring image 
segmentation or predefined features, it also increases 
the difficulty in performing step-wise quality control due 
to the intrinsic nature of complex, high-integrated neural 
network layers. In addition, deep learning techniques often 
need significantly larger datasets compared to traditional 
machine learning techniques to reduce the chance of over-
fitting due to a much greater number of features gener-
ated within the neural networks. The technique of transfer 
learning can help reduce the data requirement by using an 
artificial neural network model generated for another sim-
ilar task as a basis for a new task.49

Radiomic Model Validation

Since many commonly used machine learning algorithms 
can train a large number of features in proportion to the size 
of data, it is important to minimize the risk of over-fitting. 
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At the minimum, the trained models should be evalu-
ated in the internal dataset by cross-validation methods. 
Ideally, further validation using independent external co-
horts can further strengthen the credibility of the radiomic 
models.50,51 In order for this validation to be meaningful, 
it is necessary to ensure that the study populations of the 
internal and external datasets are comparable. The details 
of both populations should be clearly described. Similarly, 
the reference standard used to supervise the training of a 
machine learning model should also be comparable to that 
used in the validation population.

Pros and Cons of Standardization

There are several benefits to the standardization of 
radiomic methodology. When imaging acquisition, 
preprocessing, and postprocessing steps are standard-
ized, the variations of calculated radiomic features will be 
reduced, and the performance of radiomic models will be 
improved. Besides improving interoperability and repro-
ducibility, standardization can help define the processes of 
pooling results from multiple institutions and reduce the 
chances of incompatible datasets that would lower the ac-
curacy of radiomic models. By defining the methodology 
and reporting guidelines, a growing body of literature with 
standardized nomenclature can facilitate comparison of 
results.52

However, is standardization always good? The fields of 
AI and radiomics are rapidly developing and consistently 
changing. New emerging techniques and algorithms are 
being published and implemented rapidly. By forcing re-
searchers and organizations to follow a strict guideline, this 
may only be effective if the guidelines are updated to reflect 
the current development. If the guidelines are outdated, 
such efforts for standardization can potentially hinder inno-
vation. Since technology is constantly improving, today’s 
“standard” is likely going to be different from tomorrow. For 
these concerns, collaborative efforts should be dedicated to 
constantly reviewing and updating standard protocols.

Another potential downside for standardization is a more 
narrow range of imaging parameters or postprocessing 
methods that can limit the discovery of clinically useful 
biomarkers from “nonstandard” protocols. In other words, 
standardization facilitates the validation side of efforts but 
may impede the exploration of novel features. If the size of 
data collection is sufficiently large, a likely scenario due to 
ongoing efforts in open data sharing, this may obviate the 
need for restricting imaging parameters and allow a cer-
tain degree of data heterogeneity.

Current Efforts to Improve 
Standardization

Standardization efforts are being investigated throughout 
the field of AI. Leading organizations such as ISO and 
IEEE are involved in a broader sense as governing 
bodies.53 Within neuroimaging, the American Society 
of Neuroradiology has initiated a task force to develop 

training and educational programs related to AI in neuro-
imaging.54 For example, one branch is addressing quality 
assurance issues in regard to standardization, reliability, 
and reproducibility and also working in conjunction with 
the National Institute of Standards and Technology.

Within the scope of cancer biomarker development, 
the most comprehensive effort to standardize the extrac-
tion of image biomarkers comes from Image Biomarker 
Standardization Initiative (IBSI). The IBSI helps define 
some of the reporting guidelines.52 The main challenge ac-
cording to these initiatives is to help solidify the process of 
translating acquired imaging into high-throughput image 
markers. Before this initiative, there is felt to be a lack of 
available consensus-based guidelines. This effort provides 
guidelines into standardized image biomarker nomencla-
ture and definitions, general image processing workflow, 
tools for software implementation, and reporting guide-
lines. Another article by the Cancer Research UK and the 
European Organization for Research and Treatment of 
Cancer described the creation of an imaging biomarker 
roadmap for cancer studies by assembling a group of ex-
perts to discuss the challenges of imaging biomarker vali-
dation and standardization.55

Due to existing variations in imaging hardware, stand-
ardization of imaging acquisition is often challenging. 
Most ongoing efforts are to minimize acquisition variations 
by defining a standard range of acquisition parameters 
for major equipment vendors or platforms. For example, 
brain tumor imaging protocol (BTIP) was developed as a 
standard brain MRI protocol for imaging of primary brain 
gliomas56 that are increasingly adopted in recent clinical 
trials. This standard protocol includes a 3D T1-weighted se-
quence that was adopted from a preexisting standard im-
aging sequence used for imaging of Alzheimer’s disease.57 
More recently, BTIP-BM has been proposed as standard 
protocol for assessment of brain metastases.58 Similar im-
aging acquisition criteria are created for PET imaging for 
glioma.59 Here the challenge is in making a standard pro-
tocol that clinical groups of different practice settings are 
willing to adopt without clear proven clinical benefit. Thus, 
if a new standard protocol can be modified from another 
existing, commonly used standard protocol it will allow 
easier implementation.

The IBSI also helps to make sure that the feature values 
from different groups follow the same feature definition. 
There are open-source tools that confirm to the IBSI such 
as pyradiomics.60 Calculators, such as RadCaT, help provide 
a calculation for a large number of radiomic features that 
are in compliance with IBSI standards.7 Imaging biomarker 
explorer is a software platform that is designed to imple-
ment common radiomic tasks.61 This software has also 
been shown to be highly compliant to the IBSI standards.62 
LIFEx is a radiomic feature calculator designed for multiple 
modalities including PET, SPECT, MRI, CT, and ultrasound 
which is at least partly compliant with IBSI standards.63 
Brain Cancer Imaging Phenomics Toolkit (brain-CaPTk) is 
developed as a type of cancer imaging phenomics toolkit 
for quantitative imaging analytics for precision diagnostics 
and predictive modeling of clinical outcome.64,65 Even with 
the development of these software tools, there may still 
be significant variations in features among software pack-
ages and indicates the need for standardization.66 Recently, 
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the IBSI standardized a set of 169 radiomic features, which 
could verify and calibrate different radiomics software.67

The creation of open-access high-quality imaging 
datasets has been promoted as a way to improve the 
model training and validation process.55 A popular repos-
itory that encourages the sharing of data is The Cancer 
Imaging Archive.68 One paper recommends at least 10–15 
patients for each feature evaluated.69 Having sufficient 
high-quality public data can make this task much easier.

Despite the best effort for researchers to adopt these strat-
egies to reduce variability, it is often not possible to com-
pletely control the numerous variables within each step in 
developing a machine learning-based imaging biomarker. 
Investigators should still provide details of all essential steps 
from acquisition to pre- and postprocessing in accordance 
with a standard reporting guideline (ie, IBSI) to maximize the 
ability for other researchers to reproduce research results.

Conclusions

Today, despite rapid advances in the development of AI 
technologies, major research organizations that perform AI 
research are often absent from the efforts in the standard-
ization of imaging biomarker methodology.53 Whether the 
research is performed in the industry or within academic 
institutions, successful AI and radiomics applications in 
clinical medicine require a clear demonstration of their re-
producibility and generalizability. With greater collabora-
tive efforts among different institutions for collecting data 
such as from oncology patients, standardization of data 
acquisition and analysis methods may facilitate research 
results to be interoperable and reliable for integration into 
different practice environments.
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