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Network science has evolved into an indispensable platform for studying
complex systems. But recent research has identified limits of classical
networks, where links connect pairs of nodes, to comprehensively describe
group interactions. Higher-order networks, where a link can connect more
than two nodes, have therefore emerged as a new frontier in network science.
Since group interactions are common in social, biological and technological
systems, higher-order networks have recently led to important new discov-
eries across many fields of research. Here, we review these works, focusing
in particular on the novel aspects of the dynamics that emerges on higher-
order networks. We cover a variety of dynamical processes that have thus
far been studied, including different synchronization phenomena, contagion
processes, the evolution of cooperation and consensus formation. We also
outline open challenges and promising directions for future research.
1. Introduction
The theory of complex networks [1,2] provides us with a framework for investi-
gating the structure and dynamics of interacting systems. Indeed, network
science has proven highly efficient in elucidating the dynamics of complex sys-
tems arising from many different contexts in the physical, biological as well as
technological and social sciences [3,4]. Many key developments have been
made in view of identifying and improving the concepts of association among
the constituents of a network. To illustrate, the necessity of considering the
links of networks that are different in nature has led to the formulation and
detailed analysis of multilayer networks [5]. Further, time-varying networks
[6,7] are investigated in which interactions do not persist for all the course of
time, rather they arise or vanish over time. It is unquestionably true that all
these developments have helped us to perceive many scenarios better, but we
have specifically assumed dyadic or pairwise interactions as the backbone for
connections among the units of the system. However, for a complete explanation
of many complex systems, one needs to further improve the structural modelling
of networked systems [8,9]. For instance, group interactions take place predomi-
nantly in systems arising in neurobiology [10,11], social systems [9,12]
and ecology [13,14]. The network framework has been intrinsically limited to
explanation through pairwise interactions, which are sufficient only to model
the dyadic relationships, and so larger group interactions need a better formu-
lation for networked systems [15–17]. It has been argued that higher-order
structures, namely hypernetworks and simplicial complexes, are excellent frame-
works to characterize the organization of many social, biological and other
scenarios encoded in group interactions of three or more constituents [8,18].

Previously, not much attention has been paid to the analysis of networks
exposed to higher-order interactions. However, a significant number of recent
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advances have demonstrated that the incorporation of higher-
order architecture can remarkably improve our understanding
and prediction ability of their dynamics. The studies related
to these higher-order structures have thus come to the fore-
front of network dynamics research. Among some highly
significant studies on higher-order networks, the one by
Benson et al. [19], which investigates datasets from different
disciplines ranging from various social networks to biology
and demonstrates a variety of characteristics of the higher-
order structures emerging therein, is particularly noteworthy.
In addition, the problem of higher-order link prediction is
formulated as this has been found to be essentially different
from the traditional dyadic link prediction [20]. This issue of
link prediction in networks subject to the presence of higher-
order structures is also studied in [21] while dealing with
different link prediction algorithms. The inverse problem of
inferring higher-order interactions from observational data
has also been discussed in [22], whereas higher-order inter-
actions are inferred from the traditional dyadic interaction
network data through a Bayesian approach in [23]. An analyti-
cal treatment (statistically validated hypergraphs) is
propounded [24] for the problemof finding themost important
relationships among the constituents of a higher-order net-
work. Tie strengths are quantified by considering higher-
order interactions encoded by groups of three or more individ-
uals in social networks by the measure ‘Edge PageRank’ [25].
This measure has proved to be much more efficacious than
the traditional approaches for detection of tie strength. A
vector centrality measure is proposed for higher-order net-
works with the aim of identifying the most influential nodes
in the system [26].

Different models of higher-order networks [27] have been
developed so far. Detailed analysis of models of growing sim-
plicial complexes [28–30] is presented, built upon the concept
of ‘network geometry with flavour’ (NGF) [31,32]. The
models yield exponential or scale-free generalized degree distri-
bution based on the non-preferential or preferential attachment
rules. A ‘simplicial activity-driven model’ [33] is proposed and
analysed that captures both the higher-order structure and the
temporal nature of interactions among the nodes. A ‘simplicial
configuration model’ [34,35] with a uniform Markov chain
Monte Carlo sampler is introduced, even for arbitrary degree
and size distributions [36]. In order to provide formalism for
modelling heterogeneous, polyadic network data, the configur-
ation models of random hypernetworks [37] and the annotated
hypergraph model [38] are presented as a generalization of
directed graphs. On the other hand, higher-order network
set-ups are used to generalize the formalism of structural
controllability to time-varying networks [39], for which both
synthetic and real-world datasets are examined to illustrate
the minimum time required to control the concerned systems.
Group research collaborations of three or more individuals
are illustrated through a higher-order interaction framework
and further encoded undermultilayer formalismwith collabor-
ation data taken fromdifferent research disciplines [40]. Further,
heterogeneous dynamics of higher-order structures in time-
varying social networks is examined for a number of social
datasets [41].

Because of the perception that higher-order clusters
are particularly important, the concept of higher-order cluster-
ing coefficients is introduced in [42], which quantifies the
closure probability of higher-order cliques. This measure is
used to examine the clustering behaviour of both model
and real-world networks. The problem of clustering in hyper-
networks with categorical edge labels can be addressed with
a procedure based upon the combinatorial objective function
[43]. The efficiency of this mechanism is validated for edge-
label community detection and clustering with time-stamped
data. Simplicial communities are detected from real-world
data of social networks while showing that the spectra of the
Hodge Laplacian encodes the communities [44]. A stochastic
generative model is introduced to hypernetwork clustering
with heterogeneous node degree and hyperlink size distri-
bution [45]; this is shown to be highly scalable and efficient
with the utilization of synthetic and various real-world data.
Tudisco & Higham [46] have recently come up with their
study of a family of spectral centrality measures in order to
recognize important nodes and hyperlinks in hypernetworks,
which extends the existing concepts for dyadic interactions.
However, the formalism constructed by Veldt et al. [47], using
hypernetworks to measure ‘homophily’, unravels that homo-
philous group configurations are impossible owing to the
combinatorial impossibility of hypernetworks.

Concerning dynamical processes, frameworks for hyper-
network robustness and analysis of higher-order percolation
processes [48–50] are put forward for multiplex hypernet-
works. Analogous to the largest eigenvalue of the matrix
representing the interaction structure of a network built
upon dyadic connections, the concept of an ‘expansion eigen-
value’ for hypernetwork dynamical processes is proposed and
approximated through a mean-field approach [51]. Quite
interestingly, in the case of random interactions in ecological
communities, the presence of higher-order species interactions
can certainly alter the traditional relationship between diver-
sity and stability [52]. For instance, even though dyadic
interactions cause sensitivity to the species addition, four-
way interactions result in sensitivity to the removal of species.
Also, the merger of the dyadic and higher-order interaction
induces both upper and lower bounds on the number of
species. Moreover, there exists evidence of higher-order inter-
actions stabilizing the dynamics in ecological communities
[14] where interaction between species is influenced by other
species. In both open and closed ecological communities,
higher-order interactions have noticeable impacts that stabil-
ize the dynamics for competitive models. Stochastic models
under higher-order interactions help further in the sustained
coexistence of species (see also [13] and references therein).

In the next section (§2), we briefly recall the basic defi-
nition of relevant terminology in higher-order interactions.
We then start discussing the phenomenon of synchronization
emerging in higher-order networked systems (see §3). Then,
in §4, we move on to explore various social dynamics
evolving over higher-order structures. Specifically, we inves-
tigate the processes of contagion dynamics, consensus
formation and evolutionary game dynamics in §§4.1, 4.2
and 4.3, respectively. Section 5 deals with the dynamics of
random walk and diffusion. Finally, §6 offers a summary
and discussion about potential research in the future.
2. Basic concepts
Hyperlink: Hyperlink is the fundamental backbone of a higher-
order network, which instead of joining only two nodes (for
the traditional networks of pairwise interactions) can connect
any number of nodes.
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Figure 1. The higher-order building blocks, namely the simplices (a) and the
hyperlinks (b) of dimension 1, 2 and 3. Adapted from [8].
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Hypernetwork: Hypernetwork is a generalization of the
notion of network, and is composed of hyperlinks. This
implies that a hypernetwork H can be considered as the
pair (V, E) in which V is the set of nodes and E (a subset of
the power set P(V ) of V) is the set of hyperlinks.

Simplex: A d-dimensional simplex (or a d-simplex) is simply
a set of d + 1 fully interacting nodes. Essentially, a 0-simplex is a
node, a 1-simplex is a link, a 2-simplex is a triangle, a 3-simplex
is a tetrahedron and so on.

Simplicial complex: Similar to the networks as a collection
of links, a simplicial complex comprises simplices. From the
context of hypernetworks, a simplicial complex is a
particular type of hypernetwork that accommodates each
subset of all the hyperlinks. This means that a simplicial com-
plex S is a hypernetwork that fulfils the criterion that, for
each e∈ E and 8e0 # e ðe0 = ;Þ, one also has e0 ∈ E.

In figure 1, examples of simplices (figure 1a) and hyper-
links (figure 1b) of dimension from 1 to 3 are depicted that
clarify the higher-order building blocks upon which the
higher-order networks are generally built.

In the next section, we focus on elaborating the principal
findings and the novel effects in the dynamical processes
that the higher-order interactions bring about, and hence
can be of interest for the perception of a number of natural
occurrences. We, however, mention here that we do not
really distinguish between the dynamics on hypernetworks
and the dynamics on simplicial complexes; rather, we present
an excerpt of diverse dynamics on top of higher-order
networks, in general.
3. Synchronization
The phenomenon of synchronization [53–58] corresponds to a
process wherein interacting dynamical systems adjust certain
properties of their motion to a common dynamics, and this
interaction pattern plays decisive roles for the emergence of
synchrony. Synchronization is considered to be one of the
most important phenomena in complex dynamical network
theory, havingcrucial applications in severalphysical, biological
and technological systems.Hence, there has been a strongdesire
to explore different aspects of synchronization in coupled
systems in the last two decades. However, only recently have
the investigations tended towards higher-order interactions.

Specifically, three-body interactions in an ensemble of
phase oscillators can give rise to an infinite number of multi-
stable synchronized attractors beyond a critical interaction
strength [59]. Simplicial complexes of large ensembles of inter-
acting oscillators are consideredwhile modelling the three-way
interactions on top of a multilayer framework [60]. A conti-
nuum of abrupt transitions to desynchronization is observed
therein as a result of multistability consisting of an infinite
number of stable partially synchronized states. An analytical
treatment is provided based upon dimensionality reduction
through a variation of the Ott–Antonsen ansatz. In addition,
synergistic effects of higher-order interactions of different
order (namely, 1-, 2- and 3-simplex) on synchrony arising in
heterogeneous Kuramoto phase oscillators is analysed [61].
Here, it has been shown that the interplay of these simplicial
structures can yield abrupt transitions to both desynchroniza-
tion and synchronization, and can stabilize strong synchrony
even under repulsive pairwise interaction. The authors also
enunciate the phenomena while dealing with UK power grid
and macaque brain networks. Gambuzza et al. [62] have
recently presented a general framework for the stability of syn-
chronization in networks subject to higher-order interactions of
any order. The authors demonstrate the existence of complete
synchrony as an invariant solution and provide the necessary
conditions for the synchronous solution. The generality of the
proposed formalism is elucidated by considering a paradig-
matic chaotic Rössler system and model systems pertinent
to neurodynamics. Furthermore, cluster synchronization is
studied in amodel of a simplicial complex of Rössler oscillators.

Analysis of D (≥2)-dimensional Kuramoto dynamics on
top of simplicial structures (1- and 2-simplices predominantly)
is presented in [63]. Theoretical analysis and extensive numeri-
cal simulations are put forward wherein reasoning behind
different synchronization patterns resulting from odd and
even dimensions is explained [64]. Interestingly, discontinuous
transition to desynchronization for any dimension at positive
interaction strength, discontinuous transition for odd dimen-
sions at zero coupling strength and the state of partial
synchronization for all odd D (along with D = 2) at negative
interaction strength are described. Further, a globally coupled
ensemble of the D-dimensional Kuramoto oscillators consist-
ing of only contrarians possesses collective synchrony in the
absence of any conformists, if the underlying connection
among the units goes beyond dyadic interactions [65]. This
result, in particular, is forbidden in networks with only pair-
wise communications. A notably interesting formulation of
the higher-order Kuramoto dynamics that designates inter-
actions among oscillators placed not only on the nodes but
also on the higher-dimensional simplices such as links, tri-
angles etc. permits one to describe a topologically projected
dynamics on lower- and higher-dimensional faces [66]. It has
been shown that, besides a simple continuous transition to syn-
chronization, with an adaptive coupling between the dynamics
projected on the lower- and higher-dynamical phases the
networked system exhibits explosive transition to synchrony.

Furthermore, the interaction between dynamical signals
defined on nodes and links yields explosive topological
synchronizationwherein the phases ascribed on the nodes syn-
chronize to the phases defined on the links at a discontinuous
transition [67]. Detailed analytical treatment is provided that
explores this scenario and the associated closed hysteresis
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loop in the limit of large size of the networks. Besides dealing
with simplicial complexes, the model has been tested on the
human and Caenorhabditis elegans connectomes. To be precise,
a simplicial complex of N[n] simplices of dimension n (i.e. N[0]

nodes, N[1] number of links, N[2] triangles, etc.), with B[n] as
the nth incidence matrix for the nth boundary operator, are
assumed. Then the phase vector u ¼ ðu1, u2, . . . , uN½0� Þ associ-
ated with the nodes obeys the following dynamical equation:

_u ¼ v� sB½1� sinðBT
½1�uÞ, ð3:1Þ

where σ is the interaction strength, with each ωk chosen from a
given distribution, say a normal distributionvi � N ðV0, 1=t0Þ.
Consequently, the associated order parameter can bewritten as

R0 ¼ 1
N½0�

XN½0�

k¼1

eiuk
�����

�����: ð3:2Þ

The higher-order topological Kuramoto model defined on
phases f ¼ ðfl1 , fl2 , . . ., flN½1�

Þ associated with the links is
described as

_f ¼ ~v� sBT
½1� sinðB½1�fÞ � sB½2� sinðBT

½2�fÞ, ð3:3Þ

with ~vl � N ðV1, 1=t1Þ as the internal frequencies for the links.
With the synchronization dynamics defined on the higher-
order n( = 1)-dimensional signals, the projections ϕ [−] and ϕ [+]

on the n− 1 simplices (i.e. nodes) and n− 2 simplices (i.e. tri-
angles) are ϕ [−] =B[1]ϕ and f½þ� ¼ BT

½2�f, which, respectively,
act according to the following dynamics:

_f
½�� ¼ B½1� ~v� sL½0� sinðf½��Þ

and _f
½þ� ¼ BT

½2� ~v� sLdown
½2� sinðf½þ�Þ,

9=
; ð3:4Þ

where L½0� ¼ B½1�BT
½1� and Ldown

½2� ¼ BT
½2�B½2�, and the correspond-

ing order parameters obtain the forms:

Rdown
1 ¼ 1

N½0�

XN½0�

k¼1

eif
½��
k

�����
�����

and Rup
1 ¼ 1

N½2�

XN½2�

k¼1

eif
½þ�
k

�����
�����:

9>>>>>=
>>>>>;

ð3:5Þ

Then, unlike the adaptive coupling between these two
dynamics of the same dimension as in [66], here signals of
different dimensions are coupled through the order parameters
of the node and link dynamics (i.e. equations (3.2) and (3.5)).
In particular, two models named nodes–links (NL) and
nodes–links–triangles (NLT) are considered. The former is
described as

_u ¼ v� sRdown
1 B½1� sinðBT

½1�uÞ
and _f ¼ ~v� sR0BT

½1� sinðB½1�fÞ � sB½2� sinðBT
½2�fÞ,

9=
;

ð3:6Þ

with the projected dynamics following:

_f
½�� ¼ B½1� ~v� sR0L½0� sinðf½��Þ

and _f
½þ� ¼ BT

½2� ~v� sLdown
½2� sinðf½þ�Þ:

9=
; ð3:7Þ
The latter is defined as

_u ¼ v� sRdown
1 B½1� sinðBT

½1�uÞ
and _f ¼ ~v� sR0R

up
1 BT

½1� sinðB½1�fÞ � sRdown
1 B½2� sinðBT

½2�fÞ,

9=
;

ð3:8Þ

where the projected dynamics obeys

_f
½�� ¼ B½1� ~v� sR0R

up
1 L½0� sinðf½��Þ

and _f
½þ� ¼ BT

½2� ~v� sRdown
1 Ldown

½2� sinðf½þ�Þ:

9=
; ð3:9Þ

Now, with these two dynamical models NL and NLT in
hand, extensive numerical simulations are carried out on
two models of simplicial complexes, namely the configur-
ation model [35] and the NGF model [31]. Figure 2 displays
the values of the order parameters R0, Rdown

1 and Rup
1 as func-

tions of the coupling strength σ in the top, middle and bottom
panels, respectively. The first two columns correspond to the
NGF model for flavour s =−1 and d = 3-dimensional simpli-
cial complexes with an underlying power-law network
(exponent γ = 3), whereas the last two columns are for the
configuration model for the power-law (exponent γ = 2.8)
generalized degree distribution, with N[0] = 500 nodes for
both cases. Moreover, the first and third (second and
fourth) columns depict the outcomes for the NLT (NL)
model. As confirmed, in both the scenarios, explosive tran-
sitions to the state of synchronization take place. The
transitions occur along with the hysteresis loop formed by
the forward and backward transitions. For the NLT model,
all the order parameters R0, R

up
1 and Rdown

1 show discontinu-
ous transitions to synchrony at the same coupling strength.
But in the case of the NL model, although R0 and Rdown

1

demonstrate discontinuous transitions for some critical inter-
action strength, Rup

1 ensures an independent transition at
zero coupling strength for both network models. This is
because, in the NL model, the adaptive interaction couples
only the phases ϕ [−] and θ, and not the phase ϕ [+]. For
further details of the analytical treatment alongside the
numerical results, see [67].

Synchronization in an ensemble of Kuramoto phase
oscillators subject to the interplay of interactions built upon
1-simplex (i.e. the links) and the 2-simplex (i.e. the triangles)
faces of homogeneous four-dimensional simplicial complexes
is reported in [68]. In the presence of only dyadic interactions,
increasing positive coupling strength leads to a continuous
transition to complete synchrony, whereas negative coupling
results in a partial synchronization. It needs to be mentioned
here that no synchrony is observed for negative coupling in
scale-free networks. Moreover, introduction of the higher-
order (2-simplex) coupling impedes the synchrony induced
by the pairwise interaction, and causes the hysteresis
loop with abrupt transition to desynchronization for
negative pairwise coupling. Also, in a recent work [69], the
authors assume an adaptive higher-order (triadic) interaction
formalism relying on the Hebbian learning mechanism in
networks of Kuramoto phase oscillators and showed that
such a coupling can induce the first-order transition to desyn-
chronization. The presented scenario is further explained
through a detailed mean-field analysis. Partial loss of
synchronization can also be witnessed in a generalized
Sakaguchi–Kuramoto model formed through the inclusion
of linear and nonlinear frustrations in the simplicial
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Figure 2. The evolution of the order parameters R0, Rdown1 and Rup1 with respect to the coupling strength σ. The first two columns (from the left) correspond to the
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Kuramoto model [70] and weights on the simplices. A precise
mathematical framework is presented in the article apart
from the computational results for this frustrated model
on links while dealing with measures such as the order
parameter and Hodge decomposition.

The stability of synchronization in ensembles of oscil-
lators subject to higher-order interactions of any order and
built upon any complex underlying hypernetwork structure
with arbitrary coupling functions can be analysed through
a general formalism of a multiorder Laplacian [71]. Different
network set-ups are investigated, including the one that
deals with both attractive and repulsive interactions [72].
Datasets ranging from synthetic to empirical are studied
under this framework. Higher-order interactions embedded
in clique complexes can optimize the collective synchroniza-
tion in the Kuramoto model subject to equitable increases
in the strength of the higher-order connections relative to
the pairwise interactions [73]. Synchronization dynamics
and formation of Turing patterns in nonlinear chaotic systems
are studied in higher-order networks while using the master
stability function (MSF) framework and analysing an appro-
priate combinatorial Laplacian [74]. The processes are
examined for general hypernetworks with a heterogeneous
distribution of hyperlinks, and are not restricted to any
specific form of the coupling function. Different synchroniza-
tion patterns from cluster synchrony to chimeras are realized
in generalized networks, including multilayer networks,
hypernetworks and time-varying networks through the sim-
ultaneous block diagonalization (SBD) approach [75]. MSF
formalism has also been generalized for hypernetworks in
[76] to treat the linear stability of the phenomenon of synchro-
nization, where the special class of Laplace-type interactions
has also been examined. The dynamical systems known as
coupled map lattices are extended to the scenario of higher-
order interactions, namely to the concept of coupled hyper-
graph maps [77]. The process of cluster synchronization is
investigated in such a system through the analysis of
a hypernetwork Laplacian for different chaotic discrete dyna-
mical systems. Very recently, in [78] the authors consider
three-body interactions along with the dyadic couplings for
an interacting Hindmarsh–Rose neuronal model while deriv-
ing the necessary conditions for the emergence of synchrony
by means of linear stability analysis.
4. Social dynamics
Diverse social processes have always been a major area of
research in complexity science. A wide list of scenarios ran-
ging from opinion, cultural and language dynamics to
crowd behaviour, hierarchy formation, human dynamics,
evolution of cooperation and social spreading is considerably
influenced by peer-to-peer interaction among individuals
embedded in social networks. Such contagion effects direct
researchers to explore the dynamics from a mathematical
point of view. For this purpose, network science has emerged
to play the most significant role. In the past decade, we have
witnessed a golden age in the study of social dynamics over
networks, from different perspectives. The research commu-
nities have long been interested in the interactions between
individuals leading to diverse emerging behaviour. However,
as noted in the reviews by Castellano et al. [79] and Mal-
mgren et al. [80], there are significant aspects of real social
contagion phenomena that need to be captured with much
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more sophisticated approaches than before, from the perspec-
tive of both dynamics on networks and dynamics of
networks. In the following, we go through different genres
of studies of social dynamics exposed to higher-order
interactions.
43
4.1. Contagion processes
In order to take into account the group interactions of differ-
ent sizes, Iacopini et al. [81] formulated a higher-order
simplicial model of social contagion. The model incorporates
both pairwise and higher-order contacts, and thus combines
the essences of both simple and complex contagion processes.
Simplicial structure leads to a discontinuous transition to the
endemic state and bistability emerges in which endemic and
healthy states coexist. The former scenario has been demon-
strated analytically along with numerical demonstrations on
random Erdös–Rényi model and empirical higher-order
networks. This model is then extended to the framework of
temporal networks [82], in which dyadic and higher-order
interactions can be formed and destroyed temporally.
Going through a microscopic Markov chain approach it has
been shown that the same number of infectious seeds may
or may not generate an endemic state, which actually
depends on the temporal properties of the underlying net-
work. The impact of degree heterogeneity on the simplicial
contagion over time-varying higher-order networks is also
investigated in the article thereafter. Social contagion
dynamics is further investigated on hypergraphs in de
Arruda et al. [83]. The authors particularly embodied the
critical-mass dynamics into the previously framed model of
Iacopini et al. [81]. Analytical and numerical results
are presented to show the emergence of continuous and
discontinuous transitions together with bistable regimes
and hysteresis.

In addition to demonstrating that the standard network-
generating algorithms with tunable clustering characteristics
can yield diverse higher-order structures so that dynamics
can differ on the networks with the same clustering and
degree distribution profiles, Ritchie et al. [84] formulated a
new metric for measuring order-4 structures. The authors
emphasize that the higher-order structural differences (arising
in networks possessing the same clustering) have conse-
quences for epidemic prevalence and epidemic threshold
while dealing with susceptible–infected–susceptible (SIS) and
susceptible–infected–recovered (SIR) dynamical models.
Landry & Restrepo [85] studied the dynamics of an SIS
model on hypergraphs by means of hyperdegree-based
mean-field analysis on networks with higher-order inter-
actions. Both degree-correlated and -uncorrelated cases are
analysed, and it is shown that the abrupt first-order transitions
can be suppressed through heterogeneous degree distribution
of the dyadic interactions under certain assumptions on degree
correlations. Besides inferring the conditions for bistability and
hysteresis, the issues related to higher-order healing and the
‘hipster effect’ are further discussed in their article.

Lately, a higher-order model has been developed that
addresses a number of issues that have been mostly neg-
lected in epidemic modelling. Heterogeneity that arises in
environments such as offices and households and the tem-
poral heterogeneity in participation of the individuals in
these environments are analysed [86]. This heterogeneous
exposure subject to a minimal infective dose yields a univer-
sal nonlinear relation between the risk of infection and the
infected contacts, challenging the prevalent assumption of
a linear relationship between these two. As a result,
a discontinuous transition to an epidemic outbreak takes
place and a bistable regime emerges as well in which
outbreak and healthy states coexist.

Let us consider the interaction framework to be a hyper-
network in which the environments are defined by
hyperlinks of m individuals where each individual is incident
to k hyperlinks. A discrete-time process (t = 1, 2,…) is then
assumed where for each environment a participation time
τ∈ [1, τmax] is chosen for each individual. Then if a susceptible
individual is participating in an m-sized environment for dur-
ation τ under the presence of a fraction ρ of the other infected
participants, it receives an infective dose l∈ [0, ∞) from the
infected individuals, according to the distribution f (l; λ),
where λ≡ 〈l〉. Similar to the threshold models, it is then con-
sidered that someone develops the disease when l >K and
θm(ρ) is the infection kernel that represents the probability of
getting the infection in an m-sized environment subject to a
fraction ρ of other infected participants. Also, w≤ τmax is the
clearing window which represents the characteristic time for
the immune system to be free of any dose l <K. Then, for het-
erogeneous exposure periods described by a Pareto
distribution P(τ)∝ τ−α−1, where α > 0 and the characteristic
time to be infected is τc≡K/βg(m)ρ (g(m) governs the
number of contacts frequented by m nodes and β is a dose
accumulation rate), θm(ρ) takes the form umðrÞ � Datc

�a / ra

[86], with Dα being a constant. This is demonstrated in
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figure 3a for an exponential dose distribution f (l; λ) = e−l/λ,
g(m) = 1 and w→∞ for different values of α.

Further, the effects of nonlinear infection kernels are dis-
cussed while considering an SIS model with recovery rate
μ. With a degree-based mean-field approximation, for the
marginal probability ρk(t) of an individual to be infected at
time t and ~PðkÞ as the distribution of hyperdegree k of the
individuals, the global prevalence is IðtÞ ¼ P

k rkðtÞ~PðkÞ.
The temporal evolution of this prevalence is portrayed in
figure 3b, which mirrors the impact of the nonlinear infection
kernel. Specifically, superexponential growth is observed
whenever ν > 1, (θm(ρ)∝ ρν) whereas the growth is regular
exponential until saturation if ν≤ 1. Finally, figure 3c depicts
the stationary prevalence I* as a function of β. The absorbing
state I* = 0 remains unstable (see the dashed line in figure 3c)
whenever β > βu (the invasion threshold). On the other hand,
I* = 0 is globally stable (see the dotted line in figure 3c) for β <
βs (the persistence threshold). It is conspicuous from the
figure that the transition of I* can be either continuous (βs =
βu) or discontinuous (βs < βu) with a bistable solution.

A simplicial complex environment of interaction can again
result in a discontinuous transition to the endemic state [87]. In
particular, here two different facets of contagion have been
encountered, at the initial stage governed by the dyadic inter-
actions, whereas the later stage is controlled by the higher-
order interactions. Theoretical analysis is provided in the
homogeneous mixing limit along with rigorous computation
in order to explain the associated bistable regime. By now,
we all are aware of the fact that, in the case of contagions
over standard network models built upon dyadic interactions,
hubs play quite crucial roles. However, in higher-order net-
works, not only the individuals but also the groups play
decisive roles. So, with a view to exploring the roles of sets of
groups on the hypergraph contagion dynamics, considering
heterogeneity in both hyperdegree and hyperlink cardinality,
in St-Onge et al. [88] the authors construct a framework
based upon approximate master equations analysing conta-
gion dynamics on top of random higher-order networks.
Assuming the rate of infection as a nonlinear function of the
number of infectious individuals in groups, it is shown how
influential groups can govern the initial dynamics as well as
the final stationary state of the contagion. A mathematical for-
mulation has been provided to analyse the linear stability of
general dynamical processes on arbitrary hypernetworks
on the basis of a weighted-graph projection of the hypernet-
work [89]. In particular, the processes of social contagion and
diffusion dynamics are dealt with. Apart from these, the
study in Li et al. [90] investigated two competing SIS epide-
mic dynamics on a higher-order networked system
composed of 1- and 2-simplices. Rigorous computations and
the analysis of mean-field equations depicted a repertoire of
dynamical features owing to the higher-order interaction.
The absolute dominance of the epidemics for weak triadic
infection strength and the alternative dominance for higher
triadic infection strength depending on the initial seed of
infection are observed.
4.2. Consensus formation
Consensus dynamics on higher-order networked systems
(three-body systems, mainly) is analysed analytically and
numerically [91], in which it was disclosed that the dynami-
cal consequences of multibody interactions can be effective
only when the interaction function is nonlinear. As a result
of bringing in a nonlinear function herein, the emerged
dynamics causes shifts off the state of the average system,
depending on the underlying network and the initial con-
figuration. Consensus dynamics in higher-order networks
of any order is further studied in Sahasrabuddhe et al. [92]
while contemplating a number of social processes such
as homophily and peer pressure for modelling the inter-
actions. Apart from the hypergraph models like block
hypergraphs, analysis has been performed on real-world net-
works as well. In [93], the authors formulated a hypergraph
bounded confidence model and showed the appearance of
a scenario named ‘opinion jumping’, in which individuals’
opinions can jump from one cluster of opinions to another,
which one does not observe in dyadic connectivity.
Moreover, echo chambers are witnessed to emerge on hyper-
graphs with community structure. Large hyperlinks are
found to be playing more decisive roles for the consensus
than the small hyperlinks. Besides the computational demon-
strations, the scenarios are treated mathematically. Consensus
dynamics over higher-order networked systems can be inves-
tigated through the concept of generalized Hodge Laplacians for
the instances in which the weights for lower- and higher-
order interactions between simplices are different [94].
Using the Hodge decomposition, convergence can be ana-
lysed and thereafter with the techniques of algebraic
topology the role of simplicial complex homology can be
studied. In fact, lower- and higher-order interactions can be
balanced to optimize consensus dynamics.

In the above, we have already discussed how temporal
higher-order interaction patterns modulate the discrete
dynamics of social contagion [82]. Let us now elaborate
how temporality in network connectivity affects the con-
tinuous dynamics of consensus process developing in
higher-order networks [95].

The nodal dynamics is described by the following set of
equations:

_xi ¼
X
j,k

Aijk expðljxk � xjjÞ½ðxj � xiÞ þ ðxk � xiÞ�,

i ¼ 1, 2, . . . , N,

ð4:1Þ

where Aijk [ RN�N�N is the adjacency tensor representing the
interaction structure of the 3-hypernetwork and the term exp
(l|xk− xj|) is the scaling function that regulates the impacts
of the jth and kth nodes on the ith node. Then the temporal
network model of 3-regular hypergraphs is constructed by
defining a sequence of adjacency tensors A[1], A[2],… repre-
senting the network structures at different times with τ
being the length of the time periods between any two
successive adjacency tensors.

Let us then assume a network set-up with two (individu-
ally globally connected) clusters (say, clusters ‘A’ and ‘B’) of
the same size (N = 10 nodes) in which both intra-cluster and
inter-cluster hyperlink connections exist with the nodes in
cluster A (B) having the initial state xA(0) = 1 (xB(0) = 0).
Further, the clusters are connected via 20 randomly placed
hyper 3-links in such a way that the p∈ [0, 1]-fractions of 3-
links are oriented towards cluster A (i.e. the lesser number
of hyperlink nodes are part of cluster A rather than part of
cluster B) and the rest of the 3-links are oriented towards
B. Then three different schemes are studied, namely the
first-mover A, first-mover B and the aggregated scenario.
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To be precise, in the case of first-mover A (first-mover B),
firstly for a certain time all the A-majority (B-majority) sub-
groups interact, then all the B-majority (A-majority)
subgroups and then the entire hypernetwork interacts. For
the aggregated scenario, the hypernetwork remains static
and all the interactions take place concurrently.

Figure 4a portrays the value of consensus in terms of the
node state xi(t) as a function of the fraction p, averaged over
10 simulations. The consensus evolving in the hypernetwork
tends towards the initial opinion in cluster A or B for the
aggregated scenario. Whenever p = 0 (p = 1), the connecting
3-links are oriented towards cluster B (A), making the initial
opinion of cluster A (B) prevail. This outcome turns out to be
qualitatively the same in the first mover cases. As far as the
convergence speed is concerned, convergence is effectively
faster for the asymmetric initial opinion and when orientation
of the 3-links and the first-mover group line up (figure 4b).
Further, figure 4c demonstrates the consensus dynamics
with respect to the time scale τ for p = 0.5. It is clear from
the figure that the system is more prone to converge to the
aggregated dynamics whenever τ is small.

In Horstmeyer & Kuehn [96], the authors propose and
study an adaptive voter model under higher-order inter-
actions, specifically on a simplicial complex, that incorporates
the influence of the important social factor of peer pressure.
The rewiring rule of linking to agreeing nodes is adopted
while focusing mainly on the 2-simplex framework.
Peer pressure speeds up the transitions to both single-opinion
and two-opinion states. Also, this higher-ordermodel can exhi-
bit multiple time scales in which the 2-simplices vanish before
the active links are exhausted. In a recent work [97], a general-
ized dynamical model on a simplicial complex of several
consensus and synchronization processes is proposed and ana-
lysed. Many behaviours are detected here for consensus
dynamics that occur for dyadic interactions and also the emer-
gence of multistability in the steady states due to this model is
put forward.
4.3. Evolutionary game dynamics
Cooperation [98–104] is the process in which individuals
function together in groups for mutual benefits; it is observed
in diverse real systems including microorganisms and human
society. Significant attempts have been made previously in
order to explore the evolutionary game dynamics in popu-
lations subject to group interactions (see [103] and
references therein). In evolutionary game theory, the higher-
order interactions differ from pairwise interactions in the
derivation of pay-offs. If one’s pay-off in a higher-order inter-
action, to some degree, is equivalent to the sum of pay-offs in
interactions with each individual opponent, both higher-
order and pairwise interactions essentially are the same.
Otherwise, if one’s pay-off in this neighbourhood is nonlinear
to the sum of pay-offs in all pairwise interactions, higher-
order interactions lead to different dynamical processes. An
approach to capture the higher-order interaction is
a general multiplayer game, where one player’s pay-off is a
function of his and all neighbours’ strategies ([105–111] fur-
nish nice strict analytical results on multiplayer games).
When the pay-off function is nonlinear to the number of
cooperative neighbours, it presents the higher-order effects.

In particular, the review by Perc et al. [103] clarifies how
larger group sizes can help in preserving cooperation in net-
works formed upon dyadic interactions which are often
insufficient to explain all the essence of group interactions.
Keeping this in mind, Burgio et al. [112] came up with their
work on diverse hypernetworks in pursuance of having
a clearer perception of the development of cooperation in
networked groups while examining the evolution of
cooperation in the public goods game (PGG), and demon-
strated that group interactions can, indeed, enhance
cooperation. The method adopted to generate the hypernet-
works preserves the dyadic projection and the authors, in
particular, deal with hypernetworks formed from the
Holme–Kim and the Dorogovtsev–Mendes models. Besides
mean-field approximation for homogeneous interactions,
invasion analysis is presented for heterogeneous structures
explaining how increasing the order of connections can cause
higher reciprocity. The developed reciprocity is specifically
due to the adopted mechanism that replaces some first-order
3-cliques with second-order triangles. The article also dis-
cusses how cooperative and non-cooperative states can
coexist subject to the modality of interaction structures.

The evolutionary dynamics of the PGG is also investigated
in social networks built upon higher-order interactions [113].
The study reveals that this game on uniform hypernetworks
in which there is no hyperdegree–hyperdegree correlations
is consistent with the replicator dynamics in the well-mixed
regime. The article further incorporates heterogeneity in
both order and hyperdegree, and demonstrates how these
characteristic features affect the evolutionary game dynamics.
As this higher-order network framework is capable of
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appropriately describing the group structures, the study actu-
ally has been able to depict how synergy factors depending on
the group size result in critical scaling in the defection to
cooperation transition. Hierarchical hypernetworks are
observed to impede cooperation in a structured population.
The network set-up is further employed in collaboration data-
sets as well. Higher-order group (three-player with two-
player) interactions along with adaptation are taken into
account in order to propose the adaptive simplicial snow-
drift game [114]. Adaptation in the network topology and
the state of the system is assumed; this explores for both math-
ematical and numerical treatments that, even under the
higher-order structural framework, the stability of the equili-
brium points remains unaltered. An evolutionary model of
group choice dilemmas is proposed and analysed on hyper-
networks where the decisions between a safe alternative and
a risky one are taken in different sized groups; this model is
capable of explaining how opinion diffuses following an imi-
tation process [115]. Further, an organized study of a
different form of strategic interaction of signalling games in
populations subject to higher-order structures, namely the
dynamical evolution of honesty in the sender–receiver game,
was presented recently [116]. Unlike the instance of the sole
presence of dyadic interactions, honesty has been witnessed
to be existent even under the temptation to lie. Also, moral
strategy persists even if lies favour the receiver at a cost to
the sender. The evolutionary dynamics is investigated in
populations based upon the assumption of a well-mixed set-
ting, in hyper-ring as well as in real-world hypernetworks.

A different approach was adopted very recently to model
evolutionary game dynamics for higher-order interactions
among individuals, where, apart from the strategies of a
focal player and one of the neighbours, strategies of other
neighbour(s) coming out of indirect interactions also influ-
ence the game dynamics [117]. Diverse social dilemmas
with different Nash equilibria being played over 1- and
2-simplices are investigated, demonstrating that such a sim-
plicial framework results in the appearance of the non-
dominant strategies and its coexistence with the dominant
strategies. Further, transition from the dominant defection
state to the state of cooperation with respect to the higher-
order structure is established.

The two-strategy (cooperation (C) and defection (D)) two-
player game configuration can be described by the following
pay-off matrix:

C D
C R S
D T P

ð4:2Þ

Each player receives a pay-off R = 1 (reward) under mutual
cooperation and P = 0 (punishment) for mutual defection on
the agreement of the strategies. Instead, if theplayers’ strategies
disagree, the cooperator receives a pay-off S∈ [−1, 1] (sucker),
whereas the defector receives T∈ [0, 2] (temptation). Concern-
ing the network formulation, initially starting with a fully
connected sub-network of n0(=5) nodes, in the next time step
m(=1) new nodes are added. These new nodes are linked to
the endpoints of randomly chosenm links, and thusm new tri-
angles are created in the sub-network. Reiterating this step of
addition of nodes, the final network ofN nodes is constructed.
The network thus formed exhibits a power-law degree distri-
bution with an exponential generalized-degree distribution
[28]. A fraction ρ∈ [0, 1] of random triangles in the network
are chosen to characterize actual three-body (2-simplex) inter-
actions whereas the remaining fraction (1− ρ) of triangles
represents three two-body (1-simplex) interactions. A strategy
matrix ~S ¼ fsijg is also defined that takes different values based
on whether ith and jth nodes cooperate, defect or do not inter-
act. The accumulated pay-off Pi of the ith node is then
calculated as Pi ¼ ð1=kiÞ

P
j[Ni

Pi,ðijÞ, where Ni, ~ki and Pi,ðijÞ
are respectively the neighbourhood, degree and the total
pay-off obtained along the link (i, j ) of the ith node. Further,
Pi,ðijÞ ¼ ð1=kijÞ

P
t[D Pi,ðijÞ,t,where the setΔ comprises the kij tri-

angles constituted by the link (i, j ). Now, if τ is simply a sum of
three 1-simplices, thenPi,ðijÞ,t is obtained from game 1, the pay-
off values of which are S = S1, T = T1 with R = 1, P = 0. On the
other hand, if τ characterizes a 2-simplex, then assuming the
other node to be the kth node that completes this simplex,
Pi,ðijÞ,t will be calculated from game 2 (S = S2, T = T2 with R =
1, P = 0) if ski = skj. Similarly, the pay-off will be obtained from
game 3 (S = S3, T = T3 with R = 1, P = 0) if ski≠ skj. This way
each ith node obtains its pay-off Pi and subsequently updates
(synchronously with others) its strategy with probability
Pr ¼ 1=ð1þ e½ðPi�P~jÞ=K�Þ, in which P~j is the accumulated
pay-off of the ~jth node.

The frequency of cooperation in the ρ− T2 parameter
plane is shown in figure 5 while considering game 1 and
game 3 to be the same (i.e. with the same S and T values).
Games 1,3 are identified, respectively, by the Harmony (H),
Stag Hunt (SH), Snowdrift (SD) and Prisoner’s Dilemma
(PD) games from the left to the right columns of the figure.
Moreover, for the upper (lower) row S2 = 0.5 (S2 =−0.5) is
assumed so that game 2 represents the H (SH) dilemma
whenever T2≤ 1 and the SD (PD) game for T2≥ 1. For
the left-most Harmony dilemma (figure 5a,b), mutual
cooperation being the Nash equilibrium, for small values of
ρ cooperation is favoured irrespective of the specifics of
game 2. With increasing ρ, the number of three-body inter-
actions increases and the game 2 dynamics starts to matter,
which can be any of the considered four game dynamics.
For T2≤ 1, game 2 is either H or SH, which supports
cooperation and hence ρ values do not matter much. How-
ever, whenever T2≥ 1, game 2 is SD or PD and hence the
fraction of cooperators decreases. Interesting results start
appearing when game 1 and game 3 correspond to SH, SD
and PD (figure 5c–h). In the absence of simplicial interactions
(i.e. ρ = 0), defection is the dominant strategy but a transition
to cooperation takes place with increasing ρ (implying
increasing higher-order interactions) whenever T2 < 1 (i.e.
game 2 is either H or SH). More than the transition scenario
for game 2 playing the Harmony game (for which CC is the
Nash equilibrium), the transition to cooperation (even when
game 1 and game 3 represent PD) for the instance of
game 2 playing the SH game is noteworthy as CC and DD
are the two pure Nash equilibria for the SH game.
5. Random walk and diffusion
With the aim of exploring the dynamics of random walks on
networks beyond pairwise interactions, a family of random
walks on top of simplicial complexes is defined by
a Markov chain [118]. A relationship between the chain’s
stationary distribution and the harmonics of the Hodge
Laplacian is further established. In this context, from the
higher-order homology groups and the role of orientation
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of the simplices to the concept of neighbours of the higher-
order simplices are discussed in detail. Also in Parzanchevski
& Rosenthal [119], the authors have gone through the concept
of random walks on simplicial complexes. Diffusive processes
in the form of a family of random walks on heterogeneous
higher-order networks (hypernetworks) is brought forward
while giving an analytical treatmentwith a general proposition
for the stationary distribution of the walk [120]. A comparison
analysis of this distribution with that corresponding to the tra-
ditional randomwalk over the associated projected network is
also provided. Both model and real-world hypernetworks are
treated in order to explore the proposed random walk
dynamics. Specifically, from the applications in node ranking
and centrality measure to classification tasks are explained.
The process of diffusion on simplicial complexes is studied in
Schaub et al. [121], who propose a normalized Hodge Lapla-
cian matrix and demonstrate how it is associated with
random walk dynamics on simplicial complexes, specifically
on edges. The approach is further utilized in developing
embeddings of edge flows and trajectory data and also the
generalization of personalized PageRank for edges.

A class of random walks on hypernetworks is defined in
such a way that the random walk process shows propensity
towards hyperlinks of high or low size based upon the vari-
ation of a single size bias parameter [122]. The resulting
dynamics is, in fact, capable of describing diverse hypernet-
work projections on networks for different values of this
bias parameter. These projections can further vary depending
on this parameter and this dissimilation is examined via its
effect on community structure while developing the formu-
lation of Markov stability on hypernetworks. Let us assume
a hypernetwork H(V, E) with V = {V1, V2,…, VN} and
E = {E1, E2,…, EM} being the sets of N nodes and M hyper-
links, respectively. The incidence matrix associated with the
hypernetwork is the following:

eia ¼ 1, if Vi [ Ea,
0, otherwise:

�

TheM ×M hyperlink matrix is defined as B = e te in which e t is
the transpose of e and the elements Bαβ account for the number
of nodes in Ea > Eb. The agents are then placed on the nodes
that hop at discrete times, and the weighted adjacency matrix
is described as Kij

½s� ¼ P
a ðBaa � 1Þseiae ja, s [ R, 8 i = j

and Kii
½s� ¼ 0, from which the transition probabilities are com-

puted as Tij
½s� ¼ Kij

½s�=ðPm=i Kim
½s�Þ, 8 i = j and Tii

½s� ¼ 0.
This implies how the hyperlinks of large (small) size govern
the random walk dynamics for large (negative) values of the
size bias parameter σ. A continuous random walk on top of
the hypernetwork is then delineated as

_pi ¼
X
j

p jT ji
½s� �

X
j

piTij
½s�, i ¼ 1, 2, . . . , N, ð5:1Þ

in which pi (pi(t)) is the probability of the agent being on the ith
node at time t.

A generalization of the formulation of Markov stability
[123] is further adopted in order to find the communities in
the hypernetwork, by assuming a partition of the nodes into
c non-overlapping communities, captured by the indicator
matrix CN×c where Cij takes up the value 1 when the ith node
belongs to the jth community, and 0 otherwise. The Markov
stability r(t; C) then measures the goodness of C as a function
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of the time horizon of the randomwalk (see Carletti et al. [122]
for detailed definitions of Markov stability).

We then consider a typical hierarchical hypernetwork
model comprising 16 nodes and 15 hyperlinks (figure 6a),
the projection of which is a complete network with 16
nodes. As can be seen, there exist eight hyperlinks each of
size 2, four hyperlinks containing four nodes, two hyperlinks
with eight nodes and lastly the hyperlink containing all
16 nodes. In order to find the communities, Markov
stability is optimized with respect to the Markov time t for
different values of σ in figure 6b. The plots demonstrate the
hierarchical structure efficiently while determining all
the communities of decreasing size as the Markov time
increases. Then having a look at the entries of K [σ] one can
calculate lims!þ1 Tij

½s� ¼ 1=15, 8i, j [ f1, 2, . . . , 16g, with
lims!�1 T12

½s� ¼ 1 and lims!�1 T1j
½s� ¼ 0 for all other j. The

other values follow from the symmetry in the structure of
the hypernetwork. Figure 6c depicts the number of commu-
nities as a function of Markov time and σ. The algorithm
yields the partition of 16 communities whenever σ is positive
and large, and the two communities of size 8 for smaller posi-
tive σ. The intermediate communities are realized mainly for
the negative values of σ, and the algorithm finally identifies
the communities of size 2. Furthermore, the Simpson diver-
sity index Y is computed in order to get the size of the
communities, where Y ¼ PQ

i¼1 Si
2=N2, in which Si is the

number of nodes present in the ith group. Y varies from 1
(when all the nodes are in a single group) to 1/N (if there
exist Q =N groups, each comprising a single node), whereas
Y∼ 1/Q whenever the nodes are uniformly distributed
among the Q groups. In figure 6d, the value of 1/Y is pre-
sented for simultaneous variations in Markov time and σ. It
is discernible that 1/Y = 2 is associated with the Q = 2 com-
munities of size 8 as here Y = 2 × (8/16)2 = 1/2. Similarly,
1/Y = 4 corresponds to the Q = 4 communities of size 4, and
1/Y = 8 represents Q = 8 communities of size 2.

The spectral properties of a higher-order Laplacian associ-
ated with the simplicial complex model known as ‘network
geometry with flavour’ (as mentioned above) are studied in
Torres & Bianconi [124]. It is demonstrated that these
higher-order up- and down-Laplacians can have a finite spec-
tral dimension that depends on the order of the Laplacian.
Moreover, this higher-order structure affects the diffusion
dynamics taking place on this, with the spectral dimensions
having meaningful influence on the return-time probabi-
lity of the concerned diffusion process. Furthermore,
the relation between the geometry of a network and diffusion
dynamics is unravelled [125] based on the investigation of
two families of models, namely NGF and ‘short-range triadic
closure (STC)’. Thus far, many generalizations of different
random walk models for higher-order interactions have
been put forward, as discussed above. In order to explore
which combination of model and network representation is
best for resolving different research issues associated with
diverse hypernetwork data, Eriksson et al. [126] derive uni-
partite, bipartite and multilayer network representations
of hypernetwork flows with identical node-visit rates for
the same random walk model. The information-theoretic
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and flow-based community detection algorithm Infomap is
used to investigate how different hypernetwork models and
network representations alter the number, size and overlap
of the detected communities.
ietypublishing.org/journal/rsif
J.R.Soc.Interface
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6. Summary and future prospects
The variants of interactions in networked systems essentially
regulate the dynamical processes taking place on them. It has
been demonstrated in many ways that, from synchronization
to spreading dynamics, the complex interaction structure
strongly decides the destiny of the concerned complex sys-
tems. However, the existing literature predominantly has
dealt with pairwise networked systems, even though the
underlying processes are better represented on top of
higher-order structures. Only in recent times have the struc-
tural and dynamical properties of higher-order networks
become a rapidly developing research field owing to
their potential efficacy in describing numerous complex
instances from social processes to neuroscience. In this
review article, we have furnished a review of recent research
endeavours that study various dynamical processes on net-
works beyond dyadic interactions. Our investigation
clarifies how diverse the impact on different phenomena
can be while higher-order connections are taken into account.
The fundamental concepts of higher-order networks are
briefly discussed in §2. In §3, we started by explaining how
the phenomenon of synchronization gets affected by the pres-
ence of higher-order connections in the system. Social
processes staring from contagion dynamics, consensus for-
mation to evolution of cooperation are examined in §4.1,
§4.2 and §4.3, respectively. The influence of higher-order
interactions on random walk and diffusion dynamics
is studied in §5.

Even though a number of significant developments have
been made in view of analysing the role of higher-order
interactions on dynamical processes, we would still like to
bring forward some of the noteworthy routes of further
research. For instance, there is enough variation to contribute
to the understanding of temporal higher-order networks.
From its structural intricacies to the analysis of different
dynamics on time-varying higher-order structures is highly
worth of attention. The same applies to the interdependent
network frameworks, specifically the multilayer/multiplex
structures along with higher-order interactions, inspection
of which should be envisaged as a promising research direc-
tion. Although there exist important attempts concerning
synchronization in networks beyond pairwise connectivity,
the detailed analysis of cluster synchrony is missing. The
specific aspect of the chimera state is mostly untouched so
far, whereas these patterns have a high resemblance to several
neuronal developments [127]. So, the study of chimera states
in simplicial networks would be an excellent candidate for
future research. Also, the study of collective behaviours of
swarmalator systems with higher-order interactions could
be quite interesting. Moreover, the dynamical scenarios aris-
ing from the increased complexity due to adaptivity [128]
in higher-order systems require much more attentive study.
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