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Abstract 

Background  Coronary artery disease (CAD) is a major global cardiovascular health threat and the leading cause 
of death in many countries. The disease has a significant impact in China, where it has become the leading cause 
of death. There is an urgent need to develop non-invasive, rapid, cost-effective, and reliable techniques for the early 
detection of CAD using machine learning (ML).

Methods  Six hundred eight participants were divided into three groups: healthy, hypertensive, and CAD. The raw 
data of pulse wave from those participants was collected. The data were de-noised, normalized, and analyzed using 
several applications. Seven ML classifiers were used to model the processed data, including Decision Tree (DT), Ran-
dom Forest (RF), Gradient Boosting Decision Tree (GBDT), Extra Trees (ET), Extreme Gradient Boosting (XGBoost), Light 
Gradient Boosting (LightGBM), and Unbiased Boosting with Categorical Features (CatBoost).

Results  The Extra Trees classifier demonstrated the best classification performance. After tunning, the results perfor-
mance evaluation on test set are: 0.8579 accuracy, 0.9361 AUC, 0.8561 recall, 0.8581 precision, 0.8571 F1 score, 0.7859 
kappa coefficient, and 0.7867 MCC. The top 10 feature importances of ET model are w/t1, t3/tmax, tmax, t3/t1, As, hf/3, 
tf/3/tmax, tf/5, w and tf/3/t1.

Conclusion  Radial artery pulse wave can be used to identify healthy, hypertensive and CAD participants by using 
Extra Trees Classifier. This method provides a potential pathway to recognize CAD patients by using a simple, non-
invasive, and cost-effective technique.
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Introduction
Coronary artery disease (CAD) is a kind of cardiovascu-
lar disease which has affected human population in both 
developed and developing countries [1], which is also the 
main cause of death around the world [2]. CAD is the 
most prevalent form of cardiovascular disease, charac-
terized by the accumulation of lipids and immune cells 
[3] in the subendothelial space of the coronary arteries, 
leading to atherosclerosis. An inflammatory response in 
the vascular endothelium is elicited in the process [4, 5]. 
Genome-wide association studies (GWAS) have identi-
fied several genetic variants that are robustly associated 
with CAD [6]. It is important to emphasize cardiovascu-
lar health at an early stage and adopt strategies that focus 
on prevention of hypertension, dyslipidemia, diabetes, 
obesity and smoking [7–13].

Radial artery pulse represents a complex interplay of 
circulatory functions. The condition of the pulse varies 
with the status of the circulatory system. The pulse can 
indicate whether the aortic valve is functioning properly, 
whether the heart beats rhythmically, and the elasticity of 
the arteries. Furthermore, since the circulatory system is 
closely linked to the body’s internal organs, any changes 
in tissue metabolism can significantly impact blood cir-
culation, while notable alterations in bodily diseases can 
affect the function of the circulatory system to varying 
degrees. Therefore, the pulse reflects not only changes in 
the circulatory system but also alterations in other organs 
and systems, which is also associated with the basic 
theory of Traditional Chinese Medicine (TCM). TCM 
practitioners sense the radial artery pulse waveforms in 
patients’ wrists to make diagnoses based on their subjec-
tive personal experience. Research on pulse acquisition 
platforms and computerized analysis methods can facili-
tate objective studies in pulse diagnosis, many studies 
have demonstrated a specific application in diagnosis of 
diseases, assessment of disease progression and progno-
sis [14–18], thereby enabling TCM to align with advance-
ments in modern medicine [19].

Over the past decades, artificial intelligence (AI) has 
been used for a wide range of tasks, such as painting, 
driving, conversation and healthcare, which includes lots 
of machine learning (ML) algorithms [20]. Traditional 
methods for diagnosing and managing CAD encompass 
the evaluation of medical history, physical examinations, 
and various imaging techniques, including angiography. 
However, these methods often have limitations in terms 
of accuracy, invasiveness, and cost. In recent years, ML 
has emerged as a powerful tool that can enhance the 
diagnosis, prediction, and treatment of CAD. Those 
methods explore how machine learning approaches are 
being utilized in the field of coronary artery disease, high-
lighting their benefits and potential challenges. Several 

machine learning techniques are commonly employed in 
the context of CAD, each offering unique strengths and 
capabilities. These techniques include Supervised Learn-
ing which approach is particularly useful for classification 
and regression tasks in CAD; Classification Algorithms 
which can be used to classify patients into different risk 
categories based on clinical data; Clustering Techniques 
which can be useful for tailoring treatment plans. Deep 
Learning which capable of learning complex patterns in 
large datasets; Convolutional Neural Networks (CNNs) 
which Particularly useful in image analysis, such as inter-
preting medical imaging for CAD diagnosis. Recurrent 
Neural Networks (RNNs) which Suitable for analyzing 
time-series data, such as monitoring heart rate and other 
vital signs over time. Machine learning techniques have 
been applied in various aspects of CAD management, 
including diagnosis, risk prediction, treatment plan-
ning and management. The future of ML in CAD looks 
promising, with ongoing research and advancements 
expected to address current limitations and unlock new 
possibilities.

Methods
The study protocol was approved by the IRB of Shanghai 
University of Traditional Chinese Medicine (Approval 
Number:2023–3-10–08-08) and the study complied with 
the Declaration of Helsinki.

Study subjects
This case–control study involved three groups. The CAD 
group included 226 patients with CAD, the healthy group 
included 196 normal participants and the hypertension 
group included 186 patients with only hypertension. All 
participants were recruited from the Shanghai Munici-
pal Hospital of Traditional Chinese Medicine, Shuguang 
Hospital, Yueyang Hospital, and Longhua Hospital, all 
affiliated with the Shanghai University of Traditional 
Medicine, between September 2019 and December 2021.

Inclusion criteria
The inclusion criteria were as follows:

① CAD patients should fit the "Nomenclature and 
criteria for diagnosis of ischemic heart disease" [21].
② Patients in the hypertension group should be 
hypertensive and without any organic lesions of the 
heart.
③ Participants in the healthy group were required to 
be free from any cardiovascular disease or hyperten-
sion.
④ All participants required to finish the collection of 
pulse wave and sign the informed consent form.



Page 3 of 21Lyu et al. BMC Medical Informatics and Decision Making          (2024) 24:256 	

Exclusion criteria
The exclusion criteria were as follows:

① Participants with arrhythmia, valvular heart dis-
ease, or severe heart failure.
② Participants with severe endocrine, blood, meta-
bolic system diseases, severe gastrointestinal dis-
ease or kidney diseases.
③ Participants with malignant tumors.
④ Participants who refused to participate.
⑤ Severe incomplete clinical data.

Sensors of pulse wave collection
Pulse wave collection primarily utilizes sensors to 
gather the human body’s pulse, which then converted 
into electrical signals to display the pulse graph on a 
computer. Therefore, the selection of sensor is a crucial 
aspect of pulse wave collection.

Piezoelectric pressure transducer
A piezoelectric sensor converts pulse pressure signals 
into electrical signals using piezoelectric materials with 
specific piezo characteristics. When pressure is applied 
to the piezoelectric material, a charge proportional to 
the pressure is generated on its surface [22–25]. By 
measuring this charge, the pulse wave information can 
be collected.

Piezoresistive pressure transducer
A piezoresistive pressure transducer is made of single-
crystal silicon exhibiting piezoresistive effects. Its prin-
ciple involves using a single-crystal silicon wafer as an 
elastic element and employing circuit technology to dif-
fuse a set of equivalent resistors in specific directions 
on the silicon diaphragm. These resistors are combined 
into a bridge circuit, enabling the silicon to be used in 
standard pressure transducer applications. As exter-
nal pressure changes, the silicon wafer also deforms, 
causing the strain resistors on the diaphragm to vary 
accordingly. This variation is proportional to the meas-
ured pressure, allowing the bridge circuit to produce a 
corresponding voltage output signal [26–29].

Photoelectric sensors
Photoelectric sensors are among the most common 
types of sensors. Their working principle is based on 
the photoelectric effect, which involves converting light 
signals into electrical signals. The photoelectric effect 
refers to the phenomenon where electrons in certain 
materials absorb the energy of photons when exposed 
to light, resulting in a corresponding electrical effect. 

The working principle of photoelectric sensors in 
measuring pulse wave signals is that the heart’s pulsa-
tion causes blood to flow in a fluctuating manner, lead-
ing to corresponding changes in blood volume within 
the blood vessels. The amount of light absorbed by the 
blood is related to the blood volume within the vessels. 
Therefore, when light of a constant wavelength illumi-
nates the skin tissue, the energy of the light penetrating 
the tissue changes correspondingly with the fluctua-
tions in blood volume, thus enabling the measurement 
of the body’s pulse wave signals [30–34].

Doppler ultrasound
The working principle of Doppler ultrasound primarily 
involves three-dimensional reconstruction and imag-
ing. Utilizing these techniques, it tracks and analyzes 
blood flow velocity, vascular lumen volume, and the 
three-dimensional movement of blood vessels, thereby 
depicting pulse pulsation to obtain pulse signals. The 
application of this technology is beneficial the mecha-
nism of pulse formation. Consequently, in recent years, 
Doppler ultrasound has gained widespread application 
and attention [35–38].

Collection of pulse wave
The pulse signals were collected from the pulsation of the 
radial artery on the palmar side of the left wrist by using 
the SmartTCM-1 pulse wave digital acquisition analyzer 
(Shanghai Asia & Pacific Computer Information System 
Co., Ltd. Shanghai, China). The sensor consists of a piezo-
electric pressure transducer. Each collection cycle lasted 
60  s, and additional cycles were performed if the initial 
collection was unsatisfactory. The optimal pulse graph 
was selected for extracting and analyzing pulse graph 
parameters. Participants were required to keep calm and 
fast at least 30 min before the collection. Throughout the 
collection process, participants had to breathe calmly, 
sit upright, and keep their left arm relaxed and naturally 
stretched forward, with the wrist placed on a pulse cush-
ion facing up and fingers slightly bent. All participants 
were also required to avoid violent mood swings during 
the whole test.

PulseSystem software (jointly developed by our 
research group and East China University of Science and 
Technology (Shanghai)) was used to de-noise pulse sig-
nals and extract the raw data of pulse wave. After that 
PulseAnalyseGraphic v1.1 software was used to pro-
cess and calibrate the raw data, then export the data for 
analyzing.

To ensure the prevention of bias, a consistent pulse 
wave digital acquisition analyzer was utilized for data col-
lection. The data collection process was conducted by the 
same set of thoroughly trained personnel. Data entry was 
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performed using a double-entry and verification method, 
with re-entry conducted by the same trained personnel.

Time‑domain parameters of the radial pulse wave signal
Figure  1 shows the classical time-domain parameters 
used in pulse wave analysis, including the amplitude, 
duration, area under the curve, and their ratio of each 
feature point. Table 1 shows the definition and meaning 
of classical time-domain characteristics of pulse wave.

Newly introduced pulse time domain parameters
The triple-peaked wave is the typical morphology of a 
normal cycle of pulse, and it is on the basis of the triple-
peaked wave that the traditional time-domain parameters 
of the pulse are defined. However, in CAD patients, due 
to changes in vascular elasticity and cardiac function, the 
typical triple-peaked wave morphology is uncommon, and 
bimodal and unimodal waves are predominant (Fig.  2), 
which makes the localization of the repetitive pre-pulsation 
wave more difficult. For this kind of pulse wave, the rules 
based on the classification of pulse wave morphology are 
mostly used for localization (Fig. 3). However, on the one 
hand, such localization methods are sensitive to the pulse 
wave morphology, and the probability of localization error 
is higher when the pulse wave morphology differs greatly 
from the typical morphology; on the other hand, the physi-
ological significance of the characteristic points obtained 
by such methods has not been adequately studied, and it 
is not possible to determine whether they have the same 
physiological significance as the peaks and valleys of the 
three-peak wave. Therefore, it is difficult to adequately 
characterize pulse wave morphology in patients with 

coronary artery disease by conventional pulse time-domain 
parameters alone.

The mathematic formula and definition of sampling fre-
quency of pulse wave collection are as follows:

fs is the sampling frequency in hertz, Ts is the sampling 
period in seconds.

(1)fs = 1

Ts

Fig. 1  The classical time-domain parameters

Table 1  The definition and meaning of classical time-domain 
characteristics of pulse wave

Pulse time-
domain 
characteristics

Definition and meaning

h1 Main wave amplitude

h3 Tidal wave amplitude

h4 Dicrotic notch amplitude

h5 Dicrotic wave amplitude

t1 Time between starting point to crest of main wave

t3 Time between starting point to crest of tidal wave

t4 Time between the starting point to the dicrotic notch

t5 Time between the dicrotic notch to the ending point

t Time for a complete pulse cycle

w Width of the main wave at its 1/3 height

As Area under the curve during systolic phase

Ad Area under the curve during diastolic phase

h3/h1 Vascular wall compliance and peripheral resistance

h4/h1 Level of peripheral resistance

h5/h1 Aortic compliance and aortic valve function

w/t Duration of elevated aortic pressure
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The preliminary research of the our research group 
[39] believes that based on the study of aortic systolic 
pressure, namely the moving average method—setting 
a moving window according to the sampling frequency 
(represented by f) to calculate the moving average of the 
radial pulse wave, and taking the maximum value of the 
moving average as the estimated value of aortic systolic 
pressure can accurately calculate aortic systolic pressure 
from the radial artery waveform. When using the mov-
ing average method to calculate aortic systolic pressure, 
there is no consensus on the selection method for the 
width of the moving window. However, it is generally 
believed that the optimal width is between 1/3 and 1/6 of 
the sampling frequency [40–42]. Therefore, in this study, 
the moving average was calculated based on the moving 
window widths of 1/3, 1/4, 1/5, and 1/6 of the sampling 
frequency, with the maximum values represented by hf/3, 
hf/4, hf/5, and hf/6, respectively. The values at which the 
pulse wave pressure first reaches this maximum value 
after the main wave peak are represented by tf/3, tf/4, tf/5, 
and tf/6 (Fig. 4) [43].

This study also included the time when the maximum 
value of the waveform appeared (represented by tmax) to 
observe its difference from the t1 and t3 extracted by tra-
ditional methods in patients with coronary heart disease, 
and included the time when the waveform rose to 80% 
and 90% of the maximum value respectively (represented 
by t0.8 and t0.9), (Fig. 5), in order to more accurately reflect 
the duration of the rapid ejection period of the heart, and 
to supplement more information when the main wave 
and the pre beat wave are fused.

According to the previous research results of our 
research group, the Euclidean distance (De) between 
the ascending branch data of the two main waves in the 
average pulse chart can effectively reflect the variabil-
ity of the participant’s heart rate, and this indicator has 
a good effect on identifying atrial fibrillation. Consider-
ing that De is not only related to heart rate variability, but 
also influenced by the duration of the main wave. There-
fore, we divided the data points of the rising branch of 
the main wave based on De (represented by n1, n1 = t1·f) 
to offset the influence of the time value of the main wave. 

Fig. 2  Examples of bimodal wave (left) and monomodal wave (right)

Fig. 3  Schematic diagram of bimodal wave (left) and unimodal wave (right) feature point localization methods
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The metrics included in this study to measure heart rate 
variability were De/n1.

Machine learning classification
ML covers various knowledge and technologies such as 
probability theory, statistics, and complex algorithms 
[44–46]. This discipline uses computers as its main tool, 
aiming to simulate human learning methods in real 
and real-time, and further improve learning efficiency 
by dividing existing content into knowledge structures 
[47]. This enables computers to continuously improve 
the performance of specific algorithms in experiential 
learning, achieving infinite proximity to (partial) human 
intelligence [48]. In the era of big data, with the great 
improvement of software and hardware devices and data 

storage capabilities, using machine learning technology 
to deeply analyze complex and diverse, large and even 
massive data, and more efficiently utilizing information 
has become an important direction of research in the 
field of machine learning [49]. Machine learning is gradu-
ally developing towards intelligent data analysis, and it 
will become an important foundation for intelligent data 
analysis technology.

ML classification is used to predict categories, in this 
study, which are the CAD group, hypertensive group and 
the healthy group. Figure  6 shows the flowchart of the 
ML classification process.

This study used common ML libraries and frameworks 
[50] such as Decision Tree Classifier、Random Forest 
Classifier、Gradient Boosting Classifier、Extra Trees 

Fig. 5  Schematic diagram of the new main wave correlation time value indicator

Fig. 4  Moving average of the radial pulse wave
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Classifier、Extreme Gradient Boosting、Light Gradient 
Boosting Machine、CatBoost Classifier, etc. After the 
identification models were built, the top learner under 
the default hyperparameters was selected to conduct 
randomized grid search (RandomizedSearchCV), auto-
matically adjusted the hyperparameters of the model to 
reduce the time needed for searching and improve effi-
ciency. The entire procedure used ten-fold cross-valida-
tion, and the samples were split into train set and test set 
in the ratio of 7:3. The final evaluation was based on the 
results of the test set.

The Decision Tree (DT) [51] algorithm uses a tree 
structure and uses layers of reasoning to achieve the 
final classification. Decision tree mainly consists of root 
nodes containing the full set of samples, internal nodes 
corresponding to the feature attributes tested, and leaf 
nodes representing the results of the decisions. It is a 
supervised learning algorithm based on if–then-else 
rules, where the prediction is made with a certain attrib-
ute value at the internal node of the tree, and the deci-
sion of which branch node to enter is made based on 
the result of the judgment until it reaches the leaf node, 

where the classification result is obtained. DT is the sim-
plest machine learning algorithm, it is easy to implement, 
interpretable, fully consistent with human intuitive think-
ing. Therefore, the DT algorithm is used by us to classify 
CAD patients.

DT, although simple and powerful, may face the prob-
lem of excessive variance, i.e., even a small difference in 
the input data can cause the prediction results to differ 
significantly from the previous ones, there may be the 
problem that the results are better for a particular train-
ing data, and may not have a better generalization abil-
ity. Therefore, Random Forest (RF) [52], which possesses 
higher robustness, is included in this study. RF belongs to 
the Bootstrap Aggregation method in integrated learning, 
which consists of multiple decision trees with no associa-
tion between different decision trees. When performing 
a classification task, given a weak learning algorithm and 
a training set, the algorithm is learned several times, and 
the prediction is decided based on the number of votes 
cast on the sequence of prediction functions. Such an 
approach improves performance by training multiple 
models and taking the mean of their predictions, usually 

Fig. 6  Flowchart of the collection and analysis of pulse wave and the process of ML
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achieving better results than a single model. We choose 
RF because it can come out with very high dimensional 
data and without dimensionality reduction and without 
having to do feature selection, at the same time, it’s not 
easily overfitted.

Gradient Boosting Decision Tree (GBDT) is an itera-
tive decision tree algorithm that accumulates the conclu-
sions of multiple decision trees to obtain the final result, 
which has strong generalization ability. GBDT mainly 
includes the concepts of Regression Decision Tree, Gra-
dient Boosting (GB) and shrinkage. The core of GBDT is 
to accumulate the results of all the regression trees as the 
result. The regression tree gets a prediction at each node 
(not necessarily a leaf node). The branching exhausts each 
threshold of each feature to find the best split, measured 
by minimizing the mean square deviation. GBDT is the 
accumulation of the conclusions of all the trees to arrive 
at the conclusion, which is centered on the fact that each 
tree learns the residuals of the sum of the conclusions 
of all the previous trees. We choose GBDT for its good 
interpretability and robustness and can automatically 
discover higher-order relationships between features.

Extreme Gradient Boosting (XGBoost) is a model ini-
tially proposed by Chen T and Guestrin C in 2011 and 
continuously optimized and improved with the efforts 
of many scientists [53], which is a learning framework 
based on GBDT but possesses strong extensibility, and 
is currently widely used in data mining related tasks 
and achieved more satisfactory results. The optimiza-
tion of XGBoost is mainly reflected in: (1) the use of 
second-order Taylor’s formula expansion to optimize 
the loss function and improve the computational accu-
racy; (2) the use of regular terms in order to simplify the 
model and avoid or fitting; (3) the use of Blocks storage 
structure, which allows for parallel computation; (4) it 
can automatically deal with default values. GBDT only 
uses the first-order Taylor expansion, while XGBoost 
performs a second-order Taylor expansion on the loss 
function. The introduction of the second derivative in 
XGBoost serves to increase accuracy and also allows for 
the customization of the loss function, as the second-
order Taylor expansion can approximate a wide range of 
loss functions. We want to compare GBDT and XGBoost, 
to test which algorithm is more suitable for identifying 
CAD.

Light Gradient Boosting Machine (LightGBM) 
also utilizes weak classifiers (DT) to iteratively train 
in order to obtain the optimal model. XGBoost suf-
fers from the problem of traversing the entire dataset 
when iterating which results in a long training time and 
high memory consumption, and traverses the separa-
tion points when performing information gain calcu-
lations, resulting in lower efficiency. resulting in lower 

efficiency, and finally, XGBoost is not well compatible 
with cache optimization and causes large cache misses. 
In order to optimize the above problems, at the end of 
2016, Guolin Ke, Qi Meng, Thomas Finley et  al. pro-
posed LightGBM [54], which is about three times faster 
than XGBoost in terms of processing speed alone. The 
optimizations of LightGBM are mainly reflected in (1) 
Histogram-based decision tree algorithm. (2) Gradient-
based One-Side Sampling. (3) Exclusive Feature Bun-
dling. (4) Leaf-wise with depth constraints -wise leaf 
growth strategy. (5) Direct support for category fea-
tures. (6) Support for efficient parallelism. (7) Cache 
hit rate optimization. Using GOSS could reduce a large 
number of data instances with only small gradients, so 
that only the remaining data with high gradients can be 
utilized when calculating the information gain, saving a 
lot of time and space overhead compared to XGBoost 
traversing all the feature values. As (5) methods, Light-
GBM optimises the support for category features by 
allowing direct input of category features without addi-
tional 0/1 expansion. And decision rules for category 
features are added to the decision tree algorithm. That’s 
the reason we chose it for building models.

Extremely randomized trees (ET) algorithm [55] 
consists of randomizing strongly both attribute and 
cut-point choice while splitting a tree node. The Extra-
Trees algorithm builds an ensemble of unpruned 
decision or regression trees according to the classi-
cal top-down procedure. Its two main differences with 
other tree-based ensemble methods are that it splits 
nodes by choosing cut-points fully at random and that 
it uses the whole learning sample (rather than a boot-
strap replica) to grow the trees. The strength of the 
randomization can be tuned to problem specifics by 
the appropriate choice of a parameter. Besides accu-
racy, the main strength of the resulting algorithm is 
computational efficiency. In clinical, extreme samples 
will exist, especially in CAD patients, ET provides very 
strong additional randomness, and this randomness 
suppresses overfitting. At the same time, ET has faster 
training speeds compared to RF.

Unbiased Boosting with Categorical Features (Cat-
Boost) is a machine learning library open-sourced by 
Russian search giant Yandex [56, 57] and is a type of 
Boosting family of algorithms. CatBoost is also in the 
GBDT algorithm an improved implementation in the 
framework, claimed to be an algorithm that performs 
better than XGBoost and LightGBM in terms of algorith-
mic accuracy and other aspects. It automatically handles 
categorical features in a special way. First, it performs 
some statistics on the categorical features to calculate the 
frequency of a particular category. Then, it adds hyperpa-
rameters to generate new numerical features.
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After using EQ2 the processed label values can be used 
instead of the category features. To overcome the poor 
gradient, in CatBoost, the first stage uses a no-compared 
estimation of the gradient step size, and the second stage 
is executed using the traditional GBDT scheme. And to 
mitigate the poorer estimation of gradient and improve 
the generalization ability of the model, CatBoost uses sort 
boosting, but it greatly increases the memory consumption 
and time complexity, so it is optimized in the stage of tree 
building.

Data normalization
In this study, to avoid the effect of different feature units 
on model training, the raw data are min–max normal-
ized, which does not change the relative position of the 
data and maps the resultant values between [0, 1]. Min–
max processing has the following two benefits: first, for 
features with small fluctuations, it can be maintained to 
further accentuate this feature; and second, when the 
raw data are zero, it will not be converted to other values 
according to this function. Since there is a large amount 
of data that is zero in this study, min–max normalization 
is used.

Let xmin denote the minimum value of a specific value in 
a feature, and xmax denote the maximum value of a specific 
value in a feature, the conversion function is as follows:

Classification metrics
In this study, the main metrics used for model performance 
evaluation are Precision, Recall, Accuracy, AUC, F1, Kappa 
and MCC.

Confusion matrix
The confusion matrix (shown in Table 2) is used to sum-
marize the results of a classifier and is a standard format for 
accuracy evaluation.

TP(True Positive): Positive sample predicted by the 
model as the positive category. The larger the TP value, the 
better the model.

(2)x̂ik =

∑n
j=1 I

{
xji=xi

k

}·yj+ap

∑n
j=1 I

{
xji=xi

k

}+a

(3)x∗ = x−xmin
xmax−xmin

FN(False Negative): Positive sample predicted by the 
model as the negative category. The smaller the FN value, 
the better the model.

FP(False Positive): Negative sample predicted by the 
model as the positive category. The smaller the FP value, 
the better the model.

TN(True Negative): Negative sample predicted by the 
model as the negative category. The larger the TN value, 
the better the model.

Receiver operating characteristic curve
Area under the Receiver Operating Characteristic curve 
(ROC) is a useful metric to visualize and evaluate clas-
sification ability. ROC graph reveals the relationship 
between true positive rate (TPR) and false positive rate 
(FPR). AUC ranges from 0 to 1.0, 0.5 means random 
guessing, the larger the AUC the better the model is [58, 
59].

Kappa coefficient
The Kappa coefficient is an indicator used for consistency 
testing and can also be used to measure the effective-
ness of classification. Because for classification problems, 
consistency refers to whether the predicted results of the 
model are consistent with the actual classification results. 
The calculation of Kappa coefficient is based on the con-
fusion matrix, with values ranging from -1 to 1, usually 
greater than 0.

The formula for calculating the kappa coefficient based 
on the confusion matrix is as follows:

wherein:
po =

Sumofdiagonalelements
Sumoftheelementsoftheentirematrix

 , as the same as 
accuracy.
pe = iSumofelementsinthei−throw×Sumofelementsini−thcolumn

( Allelementsofthematrix)2
 , 

the sum of the "product of actual and predicted numbers" 
corresponding to all categories, divided by the "square of 
the total number of samples".

The most common evaluation index in classification 
problems is the accuracy rate, which can directly reflect 
the proportion of correct scores, and at the same time the 
calculation is very simple. However, in actual classifica-
tion problems, the number of samples in each category 

(4)Precision = TP
TP+FP × 100%

(5)Recall = TP
TP+FN × 100%

(6)Accuracy = TP+TN
P+N × 100%

(7)kappa = po−pe
1−pe

Table 2  Confusion matrix

P N

Y True Positives False Positives
N False Negatives True Negatives
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is often not balanced. In this unbalanced dataset, if not 
adjusted, the model is easy to be more oriented to the 
large categories and give up the small categories. At this 
time, the overall accuracy is quite high, but some catego-
ries cannot be recalled at all. At this point, a metric that 
can penalize the model’s "more directionality" is needed 
to replace the accuracy rate. According to the kappa for-
mula, the more unbalanced the confusion matrix, the 
higher the pe is, the lower the kappa value is, which is 
exactly able to give a low score to the model with strong 
"more directionality".

MCC coefficient
When the categories are unbalanced, the assessment 
index of accuracy cannot focus on a few categories, to 
solve this problem, the predicted results and the real 
results can be seen as two 0–1 distributions, and then 
the similarity of the two distributions can be measured 
by Matthews Correlation Coefficient (MCC) [60], and the 
MCC coefficient is calculated by the following formula:

When FP = FN = 0, the full prediction is correct and 
MCC = 1, when the full prediction is incorrect and 
MCC = -1, at which point label reversal is sufficient. 
When MCC = 0, it indicates that the model is no better 
than a random prediction.

Feature importance
Feature importance is a metric that assesses the relative 
significance of each input feature in a machine learning 
model’s prediction. It quantifies how much each feature 
contributes to the model’s ability to make accurate pre-
dictions. The higher the value the more important the 
feature.

(8)Matthews − score(MCC) = TP∗TN−FP∗FN√
(TP+FP)(FN+TP)(FN+TN )(FP+TN )

In our study, we use Gini impurity for DT. The formula 
is:

fi is the frequency of label i at a node and C is the number 
of unique labels.

RF construct many individual decision trees at training. 
Predictions from all trees are pooled to make the final 
prediction. As they use a collection of results to make 
a final decision, they are referred to as Ensemble tech-
niques (such as GBDT, LightGBM, XGBoost, ET, etc.). 
Feature importance is calculated as the decrease in node 
impurity weighted by the probability of reaching that 
node. The node probability can be calculated by the num-
ber of samples that reach the node, divided by the total 
number of samples. The formula is:

RFfii = the importance of feature i calculated from all 
trees in the RF model.
normfiij = the normalized feature importance for i in 

tree j.
T = total number of trees.

Results
Seven ML algorithms above were used for diagnostic 
model construction. Table 3 shows the performance of 
seven ML models with default hyperparameters. ten-
fold cross-validation was applied to the training data, 
the data were further split into train/test sets for 10 
folds, the folds are made by preserving the percentage 
of subjects for each class. The final evaluation aimed to 
check the general ability of models to predict unseen 
data. Extra Trees Classifier has the best performance 
with the highest accuracy, AUC, recall, precision, F1, 
kappa and MCC value. Considering the total time (TT) 

(9)
∑C

i=1
fi
(
1− fi

)

(10)RFfii =
∑

j∈alltreesnormfiij

T

Table 3  The performance comparison of different ML models (mean ± std)

Model Accuracy AUC​ Recall Prec F1 Kappa MCC TT(sec)

Extra Trees Classifier 0.8519 ± 0.0251 0.9151 ± 0.0279 0.8424 ± 0.0271 0.8598 ± 0.0265 0.8510 ± 0.0251 0.7770 ± 0.0378 0.7814 ± 0.0382 0.0480

CatBoost Classifier 0.8496 ± 0.0253 0.9137 ± 0.0282 0.8400 ± 0.0299 0.8571 ± 0.0267 0.8483 ± 0.0255 0.7732 ± 0.0382 0.7777 ± 0.0381 6.9440

Random Forest 
Classifier

0.8447 ± 0.0185 0.9136 ± 0.0311 0.8373 ± 0.0174 0.8507 ± 0.0211 0.8439 ± 0.0182 0.7663 ± 0.0277 0.7698 ± 0.0292 0.0390

Light Gradient 
Boosting Machine

0.8190 ± 0.0304 0.9066 ± 0.0316 0.8079 ± 0.0361 0.8281 ± 0.0250 0.8178 ± 0.0286 0.7274 ± 0.0457 0.7324 ± 0.0442 0.1870

Gradient Boosting 
Classifier

0.8143 ± 0.0290 0.9092 ± 0.0231 0.8062 ± 0.0283 0.8194 ± 0.0301 0.8127 ± 0.0280 0.7202 ± 0.0438 0.7239 ± 0.0452 0.2930

Extreme Gradient 
Boosting

0.8120 ± 0.0336 0.9098 ± 0.0293 0.8007 ± 0.0372 0.8214 ± 0.0289 0.8108 ± 0.0324 0.7169 ± 0.0507 0.7222 ± 0.0491 0.0940

Decision Tree Clas-
sifier

0.6893 ± 0.0654 0.7677 ± 0.0500 0.6770 ± 0.0739 0.7000 ± 0.0615 0.6882 ± 0.0654 0.5326 ± 0.0983 0.5373 ± 0.0974 0.0090
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Table 4  Nonparametric test for classification metrics of 7 ML models (Kruskal–Wallis test, M (QL, QU))

Compared with ET model, * significant at p < 0.05; Compared with Catboost model, # significant at p < 0.05; Compared with RF model, △ significant at p < 0.05; 
Compared with LightGBM model, □ significant at p < 0.05; Compared with GBC model, ◇ significant at p < 0.05; Compared with XGBoost model, ※ significant at 
p < 0.05

ET Catboost RF LightGBM GBC XGBoost DT

Accuracy 0.8571(0.8285,0.8605) 0.8571(0.8285,0.8605) 0.8372(0.8333,0.8605) 0.8140(0.8048,0.8393) 0.8237(0.7849,0.8343) 0.8237(0.7811,0.8343) 0.7093(0.6154,0.7486)*#△

AUC​ 0.9110(0.8950,0.9315) 0.9010(0.8936,0.9278) 0.9039(0.8955,0.9289) 0.9022(0.8915,0.9273) 0.9063(0.8938,0.9187) 0.9085(0.8908,0.9305) 0.7821(0.7070,0.8149)*#△□◇※

Recall 0.8428(0.8207,0.8550) 0.8428(0.8117,0.8565) 0.8338(0.8281,0.8468) 0.8039(0.7935,0.8274) 0.8120(0.7836,0.8301) 0.8079(0.7742,0.8292) 0.7033(0.5938,0.7434)*#△

Prec 0.8618(0.8383,0.8780) 0.8606(0.8312,0.8742) 0.8397(0.8349,0.8721) 0.8212(0.8104,0.8402) 0.8321(0.7899,0.8422) 0.8307(0.7944,0.8422) 0.7095(0.6361,0.7518)*#△

F1 0.8559(0.8294,0.8602) 0.8539(0.8281,0.8596) 0.8354(0.8319,0.8603) 0.8121(0.8039,0.8337) 0.8223(0.7855,0.8344) 0.8202(0.7822,0.8348) 0.7073(0.6142,0.7484)*#△

Kappa 0.7844(0.7482,0.7905) 0.7843(0.7422,0.7900) 0.7543(0.7489,0.7903) 0.7194(0.7048,0.7576) 0.7346(0.6762,0.7510) 0.7348(0.6705,0.7505) 0.5614(0.4170,0.6221)*#△

MCC 0.7910(0.7466,0.7992) 0.7870(0.7438,0.7947) 0.7568(0.7505,0.7956) 0.7239(0.7065,0.7631) 0.7391(0.6777,0.7571) 0.7392(0.6737,0.7571) 0.5630(0.4237,0.6242)*#△

Fig. 7  ROC Curves and confusion matrix for ExtraTreesClissifier on test set

Fig. 8  Feature importance of ExtraTreesClissifier on test set
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Fig. 9  ROC Curves and confusion matrix for CatBoostClassifier on test set

Fig. 10  Feature importance of CatBoostClassifier on test set

Fig. 11  ROC Curves and confusion matrix for RandomFoerstClassifier on test set
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comprehensively, ET was chosen as the most suitable 
ML model classifier for future work.

Table  4 shows the nonparametric test for classifica-
tion metrics of 7 ML models, although ET model gets 
all 7 highest metrics, but it doesn’t reach statistical sig-
nificance among top 3 models.

From Figs. 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 
and 20, the ROC Curves, confusion matrix, and fea-
ture importance for all 7 ML models on test set are 
shown.

To create better model, we tuned the hyperparam-
eters with GridSearchCV. The cross-validation result 
is shown in Table  5. The average results were 86.6% 
accuracy, 91.36% AUC, 86.6% recall, 87.27% precision, 

86.58% F1 score, 0.7984 kappa coefficient and 0.8018 
MCC.

The ROC curves and confusion matrix for tuned 
ExtraTreesClassifier on test set are plotted in Fig. 21.

The feature importance of tuned ET model is plot-
ted in Fig. 22. The top 10 features are w/t1, t3/tmax, tmax, 
t3/t1, As, hf/3, tf/3/tmax, tf/5, w and tf/3/t1.

The performance evaluation results of tuned Extra 
Trees Classifier on test set are shown in Table 6.

Conclusion and discussion
In this study, we have employed modern machine learn-
ing techniques to explore the relationship of pulse 
among healthy, hypertensive and CAD participants. 7 

Fig. 12  Feature importance of RandomFoerstClassifier on test set

Fig. 13  ROC Curves and confusion matrix for LightGBMClassifier on test set
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computational models have been developed and Table 3 
has shown that Extra Trees Classifier had the best clas-
sification performance with 0.8519 accuracy, 0.9151 
AUC, 0.8424 recall, 0.8598 precision, 0.851 F1-score, 
0.777 kappa, and 0.7814 MCC. Among them, ET model 
achieves all 7 best performances. After tuning the hyper-
parameters of ET model with GridSearchCV, as Table 6 
shows, the performance evaluation of tuned Extra Trees 
Classifier is 0.8579 accuracy, 0.9361 AUC, 0.8561 recall, 
0.8581 precision, 0.8571 F1-score, 0.7859 kappa, and 
0.7867 MCC. Almost all performance evaluation of tuned 
ET model has slightly raised. Considering the computa-
tional efficiency and accuracy, we believe that ET might 
be the preferred option for model selection.

From the feature importance analysis of tuned ET, 
we noted that the top 10 features are w/t1, t3/tmax, tmax, 
t3/t1, As, hf/3, tf/3/tmax, tf/5, w and tf/3/t1. These features 
are related to left ventricular function and aortic pres-
sure directly or indirectly. This result revealed that the 
left ventricle function and aortic pressure are the promi-
nent factors to distinguish CAD patients and patient 
with hypertension from healthy participants, which are 
already identified by previous studies [61–66].

There are fewer existing studies on machine learn-
ing classification of CAD based on radial artery pulse 
wave analysis recently. In 2021, Zhang et al. [67] utilized 
K-Nearest Neighbors (KNN), DT, and RF algorithms to 
develop classification models using baseline dataset, 

Fig. 14  Feature importance of LightGBMClassifier on test set

Fig. 15  ROC Curves and confusion matrix for GBCClassifier on test set
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time-domain features, and Multiscale entropy (MSE) fea-
tures. The results demonstrated that the RF-based model 
achieved the highest average precision of 80.98%, sur-
passing both KNN and DT. In 2023, Wu et al. [68] utilized 
DT and RF algorithms to develop classification models 
using time-domain features, MSE features, and general 
information. The average precision, recall and F1-score 
of BNP Level 3 group RF model were 91.048%, 90.897% 
and 90.797%, outperforming the DT model. In 2023, Yan 
et  al. [69] utilized RF, Support Vector Machine (SVM), 
KNN and DT algorithms to develop classification mod-
els using microcirculatory characteristic parameter set. 
The results showed that RF showed good classification 

performance, the identification accuracy of the model 
built on the microcirculatory characteristic parameter set 
and RF algorithm all reached more than 88%. The highest 
recognition accuracy was 95.51% for coronary heart dis-
ease samples, 92.11% for healthy samples, and 88.55% for 
hypertensive samples. In 2004, Ma et al. utilized RF algo-
rithm to develop classification model using wrist pres-
sure pulse waves and fingertip photoplethysmography 
(FPPG) to assess the severity of coronary artery lesions. 
The results showed that RF model achieved an accuracy, 
precision, recall, and F1-score of 78.79%, 78.69%, 78.79%, 
and 78.70%, respectively. All studies provide invaluable 
insights into the novel development of diagnostic devices 

Fig. 16  Feature importance of GBCClassifier on test set

Fig. 17  ROC Curves and confusion matrix for XGBoostClassifier on test set
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imbued with TCM principles and their potential in man-
aging CADs.

In comparison to previous studies, this study intro-
duces features of moving averages and the time when 
the waveform rose to 80% and 90% of the maximum 
value. These approaches aim to provide a more com-
prehensive description of radial artery pulse wave 
morphology in patients with CAD, accurately reflect 
the duration of the rapid ejection phase of the heart, 
and enhance more information when the main wave 
and the pre beat wave are fused. These improvements 
contribute to the study’s depth and increase its appli-
cability to clinical research. While most previous stud-
ies utilized DT and RF algorithms for modeling, this 

study not only utilizes DT and RF algorithms but also 
incorporates several integrated methods based on deci-
sion trees. These approaches ensure high accuracy and 
AUC, mitigate overfitting, and enhance robustness 
and operational efficiency as the data size increases. 
Finally, the feature importance of model is extracted 
and ranked, providing a degree of interpretability that 
aids in guiding data collection efforts and enhancing 
the interpretation of clinical predictions. This level of 
interpretability facilitates acceptance and understand-
ing among researchers.

The correlation between pulse diagnosis and CAD 
was clarified in this study. Given the high prevalence 
of CAD and its serious consequences, this approach, 

Fig. 18  Feature importance of XGBoostClassifier on test set

Fig. 19  ROC Curves and confusion matrix for DecisionTreeClassifier on test set
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based on ML, provides a systematic way to "learn" the 
correlation among the pulse wave data, hypertension 
and CAD. Although this "learning" approach may not 
be able to understand the underlying biological mecha-
nisms, this approach may be very helpful for the early 
diagnosis of CAD in clinical practice, which could be 
easy, non-invasive and cheap for patients.

In recent decades, wearable devices that monitor physi-
ological signals have been increasingly utilized in diag-
nostics and treatment, significantly contributing to the 
fields of medicine and health care. This study may serve 
as a reference for the development of wearable devices 

capable of detecting cardiovascular lesions. It can also be 
expanded to more diagnostic applications in the future.

To achieve this long-term goal, we have several poten-
tial obstacles to occur: (1) Dataset size, right now, there 
are only about 1,500 samples of CAD and hypertensive 
patients, which are not enough to train some deep learn-
ing models with high accuracy and validate models we 
have now. We will collect more patient data to enrich 
our database in the following work, in order to be able 
to further improve our model. (2) De-noise of raw data. 
In this study, the raw data in the acquisition process may 
exist some interference data, such as the acquisition 

Fig. 20  Feature importance of DecisionTreeClassifier on test set

Table 5  Tenfold cross-validation result of tuned Extra Trees Classifier

Fold Accuracy AUC​ Recall Prec F1 Kappa MCC

0 0.8605 0.8903 0.8513 0.8711 0.8611 0.7899 0.7944

1 0.8605 0.9101 0.8453 0.8752 0.8600 0.7913 0.7990

2 0.8372 0.9256 0.8320 0.8463 0.8391 0.7561 0.7585

3 0.8605 0.9159 0.8558 0.8636 0.8597 0.7892 0.7912

4 0.8605 0.9180 0.8548 0.8620 0.8584 0.7902 0.7928

5 0.8571 0.8951 0.8402 0.8687 0.8542 0.7844 0.7933

6 0.9048 0.9657 0.9032 0.9058 0.9045 0.8567 0.8574

7 0.8571 0.8945 0.8476 0.8691 0.8582 0.7852 0.7899

8 0.8333 0.8668 0.8317 0.8365 0.8341 0.7487 0.7494

9 0.9286 0.9541 0.9286 0.9286 0.9286 0.8923 0.8923

Mean 0.8660 0.9136 0.8591 0.8727 0.8658 0.7984 0.8018

Std 0.0276 0.0282 0.0317 0.0254 0.0274 0.0414 0.0405
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of patients by the external influence of the existence of 
emotional fluctuations, etc., we will further optimise the 
collection environment, try to isolate the external inter-
ference, and at the same time, the application of a variety 
of noise reduction algorithms to further reduce the noise 

interference during the follow-up work, in order to get 
more high-quality data. (3) The acquisition accuracy of 
device. The SmartTCM-1 pulse wave digital acquisition 
analyzer will be updated in the future for more sensitive 
pressure sensing and data pre-denoise.

Fig. 21  ROC Curves and confusion matrix for tuned ExtraTreesClassifier on test set

Fig. 22  Feature importance of tuned ExtraTreesClassifier on test set

Table 6  Performance evaluation of tuned Extra Trees Classifier on test set

Accuracy AUC​ Recall Prec F1 Kappa MCC

0.8579 0.9361 0.8561 0.8581 0.8571 0.7859 0.7867
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