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ABSTRACT: We investigate, by means of Monte Carlo simulations, the role of ring
architecture and topology on the relative sizes of two interacting polymers as a function of
the distance between their centers-of-mass. As a general rule, polymers swell as they
approach each other, irrespectively of their topologies. For each mutual separation, two
identical linear polymers adopt the same average size. However, unknotted rings at close
separations adopt different sizes, with the small one being “nested” within the large one
over long time intervals, exchanging their roles in the course of the simulation. For two
rings of different architectures and identical polymerization degree, the knotted one is
always smaller, penetrating the unknotted one. On the basis of these observations, we
propose a phenomenological theory for the effective interactions between rings, modeling
them as unequal-sized penetrable spheres. This simple approximation provides a good
description of the simulation results. In particular, it rationalizes the non-Gaussian shape
and the short-distance plateau observed in the effective potential between unknotted ring polymers and pairs of unequal-sized
unknotted/knotted ones. Our results demonstrate the crucial role of the architecture on both the effective interactions and the
molecular size for strongly interpenetrating polymers.

1. INTRODUCTION

Molecular architecture and topology have a deep impact in the
physical properties of polymer solutions and melts. An
archetypical example is that of ring polymers. The simple
operation of joining permanently the two ends of a linear chain
strongly affects its thermodynamic and dynamic properties. To
cite a few, some striking differences between rings and their
linear counterparts with identical chemical composition and
degree of polymerization are (a) rings polymers in solution
exhibit a different θ-point than their linear counterparts,1,2 (b)
the stress relaxation modulus of melts of entangled rings does
not exhibit the usual plateau regime characteristic of their linear
counterparts, but a broad power-law decay,3 and (c) the
effective potential Veff(R) between rings in solution is non-
Gaussian,4,5 in contrast to the effective Gaussian interaction
between linear chains.5−16

Coarse-graining is a powerful methodology to investigate the
physical properties of polymer solutions. By removing most of
the internal degrees of freedom and retaining a few ones
(usually the three coordinates of the center-of-mass), the
macromolecular solution is reduced to an effective fluid of
ultrasoft particles. The investigation of the effective fluid
provides an efficient and economical route toward the
structural and thermodynamic properties of the real sol-
ution.17,18 Since macromolecular centers-of-mass are allowed to
coincide without violating excluded-volume interactions
between monomers, the effective ultrasoft potential is bounded;
i.e., it does not diverge at any separation between the centers-

of-mass. The first investigation on effective potentials for
polymers in solution was focused in linear chains. Computer
simulations confirmed the Gaussian functional form of the
potential5−16 put forward by early theoretical approaches8,19

and by renormalization-group arguments.9

During the past years, a series of computational works have
investigated the effective potentials Veff(R) between ring
polymers in good solvent conditions, where R stands for the
distance between their centers-of-mass. As mentioned above,
the effective potential carries the signature of the ring
architecture and exhibits a non-Gaussian profile,4,5 unlike the
Gaussian potential found for their chemically identical linear
counterparts. The qualitative features of the effective potential
in good solvent are independent of the specific microscopic
interactions between monomers. Very recently, the same
features have also been observed for semiflexible rings,
confirming the universality of the intrinsically non-Gaussian
character of the interaction.20 This includes a “plateau” at short
separation between centers-of-mass and, for small molecular
weights, a minimum at zero separation. A consequence of the
latter is the formation of cluster crystals in the effective fluid at
high densities.21,22 However, these phases are predicted for
densities far beyond the overlap concentration, where
intervening many-body effects alter the effective interaction
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derived in the limit of high dilution. Indeed, flexible ring
polymers progressively shrink in the concentrated regime, a
feature that prevents the formation of clusters in the real
solution,5 and the shrinking of their size with concentration
above the overlap density has been found to follow a stronger
power law than that of their linear counterparts.23,24 In the case
of semiflexible rings, shrinking involves a strong energetic
penalty. Thus, they are weakly deformed and even swell by
increasing concentration, which favors interpenetration and
clustering. However, the clusters in the real solution have a
strongly elongated, anisotropic character, different from the
isotropic structure predicted by the effective potential.20 This
suggests that the mutual orientation between semiflexible rings
plays a crucial role in the effective interaction, and a
formulation only in terms of the centers-of-mass is incomplete.
Having noted this, the effective potentials for both flexible and
semiflexible rings still provide an accurate description of the
correlations between centers-of-mass from high dilution up to
the overlap concentration ρ*. Even a semiquantitative
description is achieved at densities somewhat higher than
ρ*.5,20

Several theoretical works have separated the effective
interaction between ring polymers into a topological and a
self-avoidance contribution. This was first proposed by Frank-
Kamenetskii et al.25 Later, Tanaka26 and Iwata27 reproduced
the plateau feature of Veff(R) by analytical calculations,
combining Gaussian statistics of the intramolecular conforma-
tions with the Gaussian linking number. Bohn and Heermann4

and Hirayama,28 by using on-lattice and off-lattice simulations,
respectively, demonstrated the relatively low influence that the
topological contribution has on Veff(R) at overlapping
configurations. In particular, Hirayama28 showed that actually
the topological contribution was strongly coupled to the self-
avoidance parameter.
Little attention has been paid to a feature that may play a

crucial role in the qualitative differences between the effective
potentials of rings and linear chains. This is the effect of
architecture on the polymer conformations at overlapping
configurations. Indeed, the typical conformations should
determine the number of contacts between monomers, and
consequently the value of the effective potential, at each
separation between centers-of-mass. In this article we
investigate this feature in detail. We find that polymers swell
as they approach each other. However, whereas two identical
linear polymers adopt roughly the same average size, identical
unknotted rings at close separations adopt different sizes, with
the small one being “nested” within the large one over long
time intervals, exchanging their roles in the course of the
simulation. For two rings of different topologies and identical
polymerization degree, the knotted one is always smaller,
penetrating the unknotted one. On the basis of these results, we
propose a simple yet accurate theory for the effective
interaction between rings, modeling them as unequal
penetrable spheres. This picture provides a good description
of the simulation results, and it rationalizes the non-Gaussian
shape and the short-distance plateau observed in the effective
potential for ring polymers.
The article is organized as follows: In section 2 we give

simulation details and define size parameters characterizing
polymer conformations. In section 3 we present results for
effective potentials and size parameters, for various lengths and
topologies of the two polymers. In section 4 we introduce the
theoretical approach for the effective interaction and compare

theoretical predictions with the simulation results. Conclusions
are given in section 5.

2. SIMULATION MODEL AND SIZE PARAMETERS
We have computed the effective potential Veff(R) for the
interaction between two polymers A and B as a function of the
distance between their centers-of-mass, R. The choice of the
latter as effective coordinates to describe the whole polymer is
despite its appeal due to symmetry, an arbitrary one. Indeed,
linear polymers can be coarse-grained in a number of ways, and
although the center-of-mass choice is the most common
one,6−12,14−16 the end monomer or the central monomers have
also been employed as effective coordinates in the past.13

Similarly, in a recent work the monomers of closest approach
between two rings have been used to coarse-grain the
polymers,29 a choice that results in a logarithmically diverging,
entropic repulsion between the ringsa feature common also
to linear and star polymers.17

Each of the two polymers in this work has linear or ring
topologies, and in the latter case they can be knotted or
unknotted. By denoting their topology and polymerization
degree as τi and Ni, respectively, with i ∈ {A, B}, the effective
potential is a function of all the former parameters, i.e., Veff =
Veff(R,τA,NA,τB,NB). The topological index assumes, in this
work, values τ ∈ {L, 01, 31}, where L stands for the linear chain
topology, 01 for the unknotted rings (trivial knots), and 31 for
the trefoil knot.
We employed for all polymers examined in this work a hard-

sphere-tether model to describe intermonomer interactions and
connectivity. Monomers are modeled as hard spheres of
diameter σ and the connections among them are implemented
as threads of maximal surface-to-surface extension δσ (δ > 1),
as in ref 5. Accordingly, the monomer−monomer interaction
Vmm(r) and the bonding interaction Vbond(r), where r is the
distance between the monomer centers, read as
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for connected ones. We prevent crossing of the bonds of the
rings, and thus conservation of all the intra- and intermolecular
topological constraints (no modification of the knotedness and
no accidental catenations), by setting δ = 0.2 and choosing the
Monte Carlo displacement step to be less than or equal to δ.
We have explicitly checked the avoidance of spurious
catenations by creating a pair of catenated rings, pulling each
of them with opposite forces and verifying that they never
disentangle, no matter how strong the applied force is.
The moves employed in our Monte Carlo simulations were

mostly simple attempts to move single monomers of the
polymers. We define as a Monte Carlo cycle a set of N single-
monomer attempted moves, where N denotes the degree of
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polymerization of the molecule. To make sure that config-
urations on which measurements have been taken are fully
decorrelated from one another, we make, for the rings, one
measurement in every Nmeas = 5000 MC cycles and we denote
Nmeas as one MC measurement cycle. Typical simulation runs
for the rings were Nrun = 5 × 107 MC cycles long, both for
isolated polymers and for interacting ones. For linear chains,
the extension of the measurement cycles was shorter, Nmeas =
1000 MC cycles, since in this case bond crossing is allowed, and
thus we can apply bigger monomer displacements, resulting
into faster decorrelation of the configurations. The quantities
measured were the gyration radii for different interpolymer
separations as well as the effective interaction potential Veff(R)
as a function of the separation R between the polymers’
centers-of-mass.
The effective potentials were determined from Monte Carlo

simulations by using the umbrella-sampling technique, as
explained in ref 5, to measure the probability P(R) of finding
the centers-of-mass of the rings at separation R, deriving then
the effective pair potential as

β = −
→ ∞

⎡
⎣⎢

⎤
⎦⎥V R

P R
P R

( ) ln
( )

( )eff
(3)

To ensure proper sampling throughout the range of separations
R/Rg

0 ∈ [0, 12], the whole R interval was split into 20−30
windows of width w ≅ 0.3Rg

0 each, where Rg
0 is defined in eq 6.

Results from successive windows were matched as described in
ref 5. Occasionally, small rigid rotations of the whole molecule
for large distances R were also employed in MC; however,
pivoting moves, such as crankshaf t, were not implemented for
the rings, given the small size of the molecules and, therefore,
the low probability of acceptance for small values of R.
As will be shown in the following, the specific architectures of

the two polymers have also a deep impact on their size at close
separation. Consider, for instance, the radius of gyration Rg,i of
the polymer i, while the center-of-mass of the other polymer, j
≠ i and i, j ∈ {A, B}, is kept at a distance R from the center-of-
mass of polymer i. Denoting with rk,i, k = 1, 2, ..., Ni, the
instantaneous positions of the monomers of polymer i, we have
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where the angular brackets ⟨···⟩ denote a statistical average over
all polymer conformations and the subscript (R, j) is a reminder
of the existence of a fluctuating polymer j at distance R from the
polymer i. Equation 4 serves also as the definition of the
instantaneous radius of gyration R̂g,i of the polymer.
It becomes evident that Rg,i depends not only on the

architecture and size of the polymer i itself but also on the same
characteristics of polymer j and on the separation between the
two: Rg,i = Rg,i(R; τA, NA, τB, NB). We further define the
unperturbed radius of gyration Rg,i

0 (τi, Ni) of the polymer i as its
value at infinite separation from polymer j:

τ τ τ≡ → ∞R N R R N N( , ) ( ; , , , )i i i ig,
0

g, A A B B (5)

In the following, results will be presented by normalizing the
separation R by the arithmetic mean, Rg

0, of the unperturbed
radii of gyration of the two polymers:
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Finally, we order the polymers at every separation into a smaller
and a larger one, according to the value of their gyration radius,
and we use the greek index γ ∈ {<,>} to denote the two,
respectively. A useful quantity that will be discussed is the
swelling ratio of the polymer γ, defined as
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i.e., as the ratio between the perturbed and the unperturbed size
of the polymer. As will be demonstrated, this quantity has also a
strong dependence on the specific topologies of the two
polymers. Having established the dependence of the former
quantities on τA,B and NA,B, in the following we simplify the
notation, leaving the distance R between centers-of-mass as the
only explicit parameter.

3. RESULTS
Results for the effective potentials from our simulations are
shown in Figure 1a. These are given for several topologies and
polymerization degrees of the two polymers. When both them
are linear chains, Veff(R) has a Gaussian shape (black line). This
result is related to the Gaussian character of the distribution of
monomers around their centers-of-mass.30 Renormalization-
group studies have shown that the shape is indeed of Gaussian
form,9 whereas its amplitude (i.e., the value it attains at zero

Figure 1. (a) Center-of-mass effective Veff(R) for different combinations of topologies and sizes (see legend). Here, β = (kBT)
−1, with kB the

Boltzmann constant and T the absolute temperature. (b) Effective potential between the centers-of-mass of two 01/01 rings resulting from two
microscopically different models (see text) as well as the topological potential between the same resulting from these models.
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separation) has been shown to be independent of the degree of
polymerization,8 in contrast to earlier, mean-field predictions of
Flory and Krigbaum,19 who were, nevertheless, the first to
propose such an interaction as early as in 1950. This potential
of mean force has been confirmed by a number of on- and off-
lattice simulations ever since.5−16 Its shape is universal, i.e.,
independent of the underlying microscopic model, when R is
scaled with the gyration radius, provided that the degree of
polymerization exceeds a threshold value NL* that depends on
the model; for off-lattice models, typically NL* ∼ 100. Its
amplitude in this scaling limit is Veff(R=0) ≅ 2kBT. Scaling
behavior of Veff(R) has also been found for rings at N > N01* ∼
100, though in this case the observed amplitude of the potential
is different, Veff(R=0) ≅ 6kBT.

5 Hence, for a same polymer-
ization degree, the effective potential between ring polymers is
much more repulsive than for their linear counterparts. Another
remarkable difference with the case of linear chains is that
Veff(R) for unknotted polymers does not have a Gaussian
shape.4,5,28 Instead, it features a plateau at small separations,
and even a minimum at R = 0 for small polymerization degrees
N < N01*. This feature is intimately connected to the typical
configurations of interpenetrated rings, in which one ring
adopts an open conformation allowing the other to stay in the
center of the former for long intervals (see below).
The plots in Figure 1a further demonstrate that the non-

Gaussian character observed for the effective potential between
rings is not limited to the simplest case of two unknotted
circular polymers but is also found for combinations of different
topologies. This is illustrated there for pairs of rings with the
same N, but distinct topologies 01 and 31. As observed for the
case of two unknotted rings, the potential can exhibit a
minimum at R = 0. Interestingly, for sufficiently large rings (N
= 100) we find essentially the same interaction for distinct
rings, τA = 01 and τB = 31, as for identical unknotted rings τA =
τB = 01 (compare red and blue lines). Although N = 100 is
already sufficiently large for the effective interaction between 01
rings to be in the scaling regime, the close resemblance with the
01/31 interaction is at this point a matter of coincidence: for a
knotted ring, the degree of polymerization is too small for the
knot to be irrelevant. At the limit N → ∞, knots become
weakly localized in three spatial dimensions:31 there, we can
surmise that the effects of (simple) knots on the rings will
renormalize away, since their typical size Rk scales as Rk ∼ N0.75

and therefore Rk/Rg → 0 as N → ∞.
The insensitivity of the 01/01 effective potential Veff(R) to the

underlying microscopic model for a degree of polymerization N
= 100 is demonstrated in Figure 1b. In addition to the HS-
tethered model described above, we have also considered 01-
ring polymers consisting of N = 100 soft blobs and
renormalized elastic spring interactions, which result from a
coarse-graining of a large number of underlying monomers.32

We have repeated the calculation with the soft model, for which
catenations are not excluded a priori, and thus every
configuration has to be checked for its topological legitimacy.
Following ref 4, we apply the Gaussian linking number W as a
diagnostic tool for catenations, and all configurations of
catenated rings are thus rejected. Similarly, the topological
potential Vtopo(R) shown in Figure 1b is also insensitive to the
microscopic model details, confirming that N = 100 is a
sufficiently large degree of polymerization for 01 rings, leading
to universal results for the effective interactions.

Insight into the microscopic mechanism leading to the
features observed in the effective potential can be gained by
monitoring the evolution of the size of both rings at full
overlap. Figure 2 shows results, plotted against the number of

MC measurement cycles, for the instantaneous radii of gyration
of the two polymers at mutual distance R = 0. All results
correspond to identical degree of polymerization, N = 100, for
both rings. The three panels present results for different
combinations of topologies: τA = τB = L in Figure 2a; τA = τB =
01 in Figure 2b; and τA = 01, τB = 31 in Figure 2c. As can be seen
in the latter case, the knotted rings are systematically smaller
than their unknotted counterparts. This is not surprising, since
this is indeed also the case when both polymers are isolated (R
→ ∞). As expected, polymers with same N and τ (Figure 2a,b)
may adopt different instantaneous sizes, but for long enough
times they show the same average size. However, size
fluctuations behave rather differently for linear and ring
polymers. In the case of two identical fully interpenetrated
rings, one is systematically smaller than the other over relatively
long time intervals (Figure 2b). This effect can be better
visualized by smoothing the curves of the instantaneous values
of R̂g,i’s (black and red) over intervals of 100 MC measurement
cycles, leading to the yellow and blue curves in Figure 2a,b.
This feature reflects the fact that for relatively long time
intervals one of the unknotted rings adopts an open
configuration, leaving free space for penetration by the other
ring. The exchange of the roles of the two rings takes place at
intervals of the order of the Rouse time for rings of N = 100.
In Figure 3, we show the swelling ratio αγ(R) as a function of

the distance between centers-of-mass R, for several combina-
tions of architectures (linear/ring) and topologies (knotedness
of rings). In all cases represented in the figure, the two
polymers have identical N. Dashed lines with empty symbols
correspond to the “small” polymer, whereas solid lines with
filled symbols correspond to the “large” one. In the case of

Figure 2. Instantaneous value of the radius of gyration R̂g,i, i = A, B, for
two selected polymers A and B at full interpenetration (R = 0), against
the number of MC measurement cycles for already equilibrated
configurations. In all cases the degree of polymerization is NA = NB =
100 for both polymers. The topologies of the two polymers are (L, L),
(01, 01), and (01, 31) for (a), (b), and (c), respectively. The
instantaneous values R̂g,i for each polymer are represented in black and
red colors. In the case of the topologically different rings in (c), black
and red lines correspond to the 01 and 31 ring, respectively. The
smooth yellow and blue lines in (a) and (b) are averages, over intervals
of 100 consecutive points, of the black and red lines, respectively.
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distinct topologies (01 and 31 rings, see caption), the “large”
and “small” polymers are the unknotted and knotted ring,
respectively. Indeed, for identical N, 31 rings are on average
smaller than 01 rings. In the case of identical architectures,
“small” and “large” refer to the instantaneously smaller and
larger polymer, respectively, and the averages in eq 7 are
calculated according to this criterion instead of averaging over
the same polymer. Indeed, as illustrated in panels a and b of
Figure 2, the identities of the large and small polymer alternate
during the simulation because of intramolecular fluctuations.
As expected, the swelling parameter is equal to unity at long

separations, R ≫Rg
0, when there is no overlap between the two

polymers. However, by increasing interpenetration (decreasing
R), the swelling ratios of the large and small polymer become
rather different. In the case of the mixed topologies, the size of
the small polymer (31 knot) is essentially unperturbed by
interpenetration with the large polymer (unknotted 01 ring).
However, the large polymer strongly swells, up to about a 25%
at full overlap (R = 0). This effect seems to be weakly
dependent on the degree of polymerizationnote the close
agreement between the data sets for 20 ≤ N < 100. These

results show that in entropic terms it is more favorable to swell
the unknotted ring, leaving free space to accommodate the
unperturbed knotted ring, than to swell the knotted ring, which
would involve localization of the knot. In the case of the 01/01
pair, both polymers show a significant swelling at strong
interpenetration. However, the swelling ratio is smaller than for
the unknotted rings in the 01/31 pairs. In the case of identical
linear chains, the “large” and “small” polymers are affected
almost identically by interpenetration and show very similar
swelling factors, whereas in the case of 01 rings, it is clear that
there is a significant size discrepancy between the two, in line
with the results presented in Figure 2b. Here, it is worth
pointing out that Bohn and Heermann4 also calculated a
swelling ratio for two interacting rings, albeit without splitting
them into a smaller and a larger one but rather by averaging
over the two sizes. Our results are in full agreement with those
in ref 4: a gradual swelling of the rings for distances R/Rg

0 ≲ 1.5,
reaching a maximum value of ⟨α⟩ ≅ 1.12 at R = 0, has been
found there, which compares very well with our own results in
Figure 3. Furthermore, the analysis of relative orientation
between the 01 rings in ref 4 confirms our assertion that two
interpenetrating rings assume a threading conformation with
nearly perpendicular mutual orientation.
We have also calculated the local density of monomers, ρ(r),

where r is the distance to the center-of-mass of the polymer.
Figure 4 shows results for ρ(r) when two identical polymers of
N = 100 monomers are fully interpenetrated (R = 0, solid lines)
or isolated (R → ∞, dashed lines). Panels a and b show results
for linear chains and unknotted rings, respectively. As in the
case of the swelling ratio for identical polymers (see above), we
present results by performing averages over the instantaneously
“large” (black lines) and “small” polymer (red lines). Full
interpenetration affects the monomer densities of linear chains
and rings in a very different way. A moderate distortion of the
unperturbed density profile (R → ∞) is found for the linear
chains, increasing the intensity at long r. A similar effect is
found for the small ring in the case of fully interpenetrated
rings. However, a strong distortion is found for the large ring.
The monomer density of the large ring at full overlap does not
show the monotonous decay observed for all the isolated
polymers (R → ∞) and for the rest of the cases at R = 0 that
are shown in Figure 4. Instead, it shows a maximum at a finite
distance from the center-of-mass. This feature is consistent with

Figure 3. Swelling ratios of the two polymers as a function of the
normalized distance between their centers-of-mass. Data are shown for
different combinations of the topologies and polymerization degrees
(see legend). Full symbols joined by solid lines are data for the large
polymer. Empty symbols joined by dashed lines are data for the small
polymer. See text for the definitions of “large” and “small” polymer.

Figure 4. Monomer distributions (density profiles) of the two polymers. Solid and dashed lines are data for full interpenetration (R = 0) and for
infinite separation (R →∞), respectively, with R the distance between the centers-of-mass of the polymers. Black and red color codes correspond to
the large and small polymer, respectively. In all cases the polymerization degree is N = 100. Panel a shows data for two linear chains, (L, L). Panel b
shows data for two unknotted rings, (01, 01).
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the observations for the swelling ratio (see Figure 3) and
reflects the open conformations adopted by the large ring,
leaving free space for accommodating the small ring. Although
we do not deal in this work with knots of higher complexity, it
is worth mentioning that for an interacting 51/51 pair of N =
100 monomers each, the density profiles at R → ∞ and those
at R = 0 are very different, an effect of the fact that this degree
of polymerization is too low. Consequently, about one-third of
the monomers are within the knot, and they cause large
deviations from the universal behavior expected for N → ∞.
The same holds to a lesser degree for 31/31 pairs with N = 100
monomers each as well. The theoretical model in section 4
does not, therefore, apply to these cases.
All the results presented in this section reveal an interesting

phenomenon for all polymer architectures: the swelling of at
least one of the two polymers at full interpenetration, adapting
its size and shape to accommodate the other polymer. This
feature, which may lead to a minimum at R = 0 for Veff(R), can
be seen as a “soft depletion effect” of the monomers from the
centers of mass of the ring to which they belong. In the case of
the ring polymers, the depletion is induced by the monomers of
the small polymer on those of the large one. Instead, soft
depletion is a mutual effect for linear chains (both chains swell,
see Figure 3).

4. THEORETICAL MODEL OF THE RING POLYMER
EFFECTIVE POTENTIAL

Following the ideas of Grosberg et al.,8 we put forward in this
section a simple theoretical approach that is able to describe,

even semiquantitatively, the simulation results for the effective
interaction Veff(R) between ring polymers. Consider two
identical polymers, each with monomer density profiles ρ(r)
around their respective centers-of-mass. The case of dissimilar
polymers can be treated in a similar fashion (see below). We
introduce a corresponding dimensionless shape function f(x),
where x is the distance from the polymer center-of-mass scaled

by its unperturbed radius of gyration, Rg
0. For simplicity we

adopt the notation Rg
0 = Rg in the following, and thus x = r/Rg.

The density profile ρ(r) and the shape function f(x) are related
as

ρ ≡r
N

R
f x( ) ( )

g
3

(8)

Evidently, 4π∫ 0
∞x2f(x) dx = 1. We assume an interaction

between any two given monomers, at positions r1 and r2, of the
excluded volume, contact type: vmm(r1 − r2) = v0kBTδ(r1 − r2).
The excluded-volume parameter is v0 ∝ σ3, where σ is the
monomer size. Thus, this interaction corresponds to the case of
polymers in athermal solvents, as those investigated here. The
simplest approach to the calculation of the effective interaction
between the two polymers, with their centers-of-mass held at
separation R, is a mean-field approximation (MFA). This
expresses the effective potential as an overlap integral of the
two density profiles, weighted by the excluded-volume
interaction:

∫ ∫ δ ρ ρ∝ − | | | − |V R k Tv r r r r r r R( ) d d ( ) ( ) ( )eff
MFA

B 0
3

1
3

2 1 2 1 2

(9)

with some adimensional prefactor of order unity. Using eq 8,
we readily obtain

σ
σ∝ ∗⎜ ⎟⎛

⎝
⎞
⎠V D k T

v
Nn f f D( ) ( )( )eff

MFA
B

0
3

3

(10)

where D ≡ R/Rg is the normalized distance between the
centers-of-mass of the two polymers. The quantity n = N/Rg

3 is
the average monomer density within a polymer of volume Vp ∝
Rg

3, and f∗f denotes the convolution of the two shape functions.
Because of the assumed scaling behavior of f (see eq 8), this
convolution is independent of the polymer size and also of
order unity at full interpenetration (D = 0).
Equations 9 and 10 were first put forward by Flory and

Krigbaum19 for the derivation of the effective interaction
between linear chains. By assuming a Gaussian distribution of
the monomers around the centers-of-mass of two identical
linear chains, the former scheme gave rise to a Gaussian
effective interactionthe celebrated Flory−Krigbaum poten-
tial. However, the obtained prefactor of the potential was
erroneous: as it is clear from eq 10 in association with the
relation n = N/Rg

−3 ∝ N1−3v and the well-known scaling Rg ∝
Nν for self-avoiding chains (with ν ≅ 3/5 the Flory exponent),
the so-obtained amplitude of the potential, Veff(D = 0), scales as
∼N2−3v ≅ N1/5. If this result were correct, two linear chains
would become more impenetrable by increasing their degree of

Figure 5. Scheme of the proposed model for the effective interaction
between ring polymers. These are represented as two fully penetrable
spheres of different radii, R> (light gray) and R< (dark gray). The
accompanying plot shows the dependence of their overlap volume,
assumed to be proportional to their effective interaction βVeff(D), on
the separation D between their centers-of-mass. The effective potential
is given by eq 19. For distances D smaller than R−, there is full overlap
between both spheres (see dotted circle representing the small ring at
D = R−). For distances larger than D = R+, the overlap volume
vanishes.

Table 1. Ring Topologies and Lengths Considered in the
Simulations and the Theory of the Effective Interaction;
Sizes of the Rings at Full Overlap (D = 0), As Obtained from
the Simulations; Parameters of the Theoretical Model for
the Effective Interaction, Obtained by Fitting the Simulation
Results of Veff(D) to eq 19

polymer topologies and
lengths

polymer sizes
(simulation) model parameters (theory)

τA/τB NA = NB = N R> R< R> R< U0

01/01 100 1.22 1.02 1.419 1.000 1.434
01/31 100 1.38 0.90 1.363 0.871 2.101
01/31 80 1.39 0.89 1.339 0.833 2.804
01/31 20 1.46 0.85 1.373 0.905 3.216
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polymerization (becoming fully impenetrable for N → ∞).
However, a series of theoretical and simulation studies have
demonstrated that although the shape of the effective potential
does fulfill the predicted Gaussian function, its amplitude is
independent of N for sufficiently long chains (N > NL*).

5−16

Rather than a ∼N1/5 dependence of the potential amplitude, it
is found that Veff(D=0) ≅ 2kBT.
The reasons lying behind the Veff(D=0) ∼ N1/5 erroneous

prediction were clarified by Grosberg et al.8 In eq 10, the mean-
field approximation assigns a probability pc

MFA to each of the N
monomers of a given polymer to have contacts with the
monomers of the other, this probability being proportional to
the packing fraction of the second one, Thereafter, a free
energy cost proportional to kBT times the number of contacts,
N(nσ3), arises. The convolution ( f∗f)(D) simply corrects for
the overlap volume. This approach is, however, flawed in one
very important way: in reality, monomer connectivity effects
reduce the contact probability to8

σ σ∝ ≪ν−p n n( )c
3 1/(3 1) 3

(11)

and thus the correct expression for the effective potential reads

σ
σ∝ ∗ν−⎜ ⎟⎛

⎝
⎞
⎠V D k T

v
N n f f D( ) ( ) ( )( )eff B

0
3

3 1/(3 1)

(12)

Since n ∝ N1−3ν (see above), and for large N the scaling
function f(x) only depends on the polymer architecture, it
follows from eq 12 that in that limit Veff(D) scales as ∼ N0; i.e.,
it becomes independent of N. In particular, for linear chains
f(x) is a Gaussian function, and from eq 12 the well-known
Gaussian interaction potential between self-avoiding chains
comes out, with an amplitude Veff(D=0) of order kBT. It is

worth mentioning, however, that eq 10 has been shown to be
quantitatively accurate for the case of interacting den-
drimers.33,34 In such systems the dense, regularly branched
architecture of the molecules serves to restore the validity of the
expression pc

MFA ∝ nσ3. Thus, the effective potential between
the centers-of-mass of dendrimers does depend on N, becoming
steeper as the generation number grows.
In the following, we make use of eq 12 to obtain effective

interactions for ring polymers, with the appropriate mod-
ifications of the shape functions f(x) to take into account the
effect of the polymer architecture on its size and shape. Before
introducing the details of the model, we anticipate that eq 12
itself can rationalize the difference between the amplitudes
Veff(D=0) of the effective potential for linear chains (≅2kBT)
and for unknotted rings (≅6kBT). Thus, by using the
relationship

τ λ σ= τ
νR N N( , )g (13)

with some topology-dependent coefficient λτ, in conjunction
with eq 12 and n = NRg

−3, we find

∫β λ= ∝ τ
ν− −V D xf x( 0) d ( )eff

3/(3 1) 3 2
(14)

We assume that the major difference in the amplitude of the
effective potential for different polymer architectures arises
from the factor λτ

−3/(3v−1) and not from the convolution of the
different shape functions at full interpenetration. With this
approximation, the ratio Δ between the amplitudes of the
effective potentials at D = 0 of the 01 rings and linear chains is
given by

Figure 6. Effective potentials between ring polymers for various topologies and lengths (see legends). Black lines: simulation results. Red lines:
theoretical descriptions by fitting to eq 19. The obtained fit parameters can be read off from the last three columns of Table 1.
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λ
λ

Δ =
ν−⎛

⎝
⎜⎜

⎞
⎠
⎟⎟L

0

3/(3 1)

1 (15)

For the tethered model at hand, extensive simulations (results
not shown) yield the values λL = 0.533 and λ01 = 0.406. By
inserting these in eq 15 together with the precise value ν =
0.588 for self-avoiding chains, we find Δ = 2.9. This is indeed
very close to the simulation result (Δ ≈ 3).
Consider now the application of eq 12 for the case of two

different rings of sizes R1 and R2 < R1. As discussed in section 3,
this difference in size can arise in two different ways: first, if the
two polymers have different architectures and/or degrees of
polymerization (one is on average smaller than the other even
at infinite separation), and second, if the two polymers are
identical in N and τ, but one swells to facilitate penetration by
the other. In either case, we denote D ≡ R/Rg

0 and define R> ≡
R1/Rg

0 and R< ≡ R2/Rg
0. It is also useful to define the sum and

the difference between the sizes as R± ≡ R> ± R< as well as the
corresponding shape functions f>(x) and f<(x) of the large and
small polymers, respectively. Although the sizes R> and R< do
depend on the separation D, this dependence is weak for strong
overlaps (D ≪ 1). To simplify things, we thus keep them fixed
for all distances at the values they have at D = 0 and generalize
eq 12 to

∝ ∗> <V D k T f f D( ) ( )( )eff B (16)

where we have now omitted the term (v0/σ
3)N(nσ3)1/(3v−1),

which scales as N0 (see above) and thus provides simply a
constant factor of order unity.
The next approximation is inspired by the results of Figure

4b. There, it can be seen that for ring polymers the monomer
distribution ρ(r) strongly deviates from the Gaussian shape
observed for linear chains (Figure 4a). Instead, by increasing r
from zero it shows a roughly flat, or even increasing profile,
until a pronounced decay is found for longer distances. Thus,
we make a rather crude approximation for the shape functions
of the rings, by modeling them as step functions:

π
= Θ −γ

γ

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟f x

x
R

( )
3

4
1

(17)

where again x ≡ r/Rg
0, γ stands for > or < (large and small ring,

respectively), and Θ(z) is the Heaviside step function. The
shape functions defined in eq 17 fulfill the normalization
condition

∫ =γ γxf x Rd ( )3 3
(18)

According to the definition of R>,< (see above), the right-hand
side of eq 18 is identical to unity only if the two rings have
equal sizes that do not change with separation. Obviously this is
not the case, as has been shown in Figure 3. From eqs 16 and
17 we obtain the effective interaction as the overlap volume of
spheres of unequal size, i.e.

β

π

π=

≤ <

+ − − ≤ <

≤

< −

+ − + − +

+

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

V D U

R D R

D
D R D R R D R D R

R D

( )

4
3

if 0

12
( 2 3 )( ) if

0 if

eff 0

3

2 2 2

(19)

where U0 is a constant of order unity and the values of the
parameters R− and R+ are determined as it will be specified
below. The scheme of Figure 5 illustrates the relation between
the shape of the effective interaction and the degree of overlap
of the two spheres. As the separation D diminishes below R+,
the overlap increases. Full overlap is obtained at D = R−, and
this overlap remains invariant for all separations D < R−, leading
to a constant value of Veff(D) in that range. We can thus
rationalize the plateau region observed in the effective potential
as a direct consequence of the disparity in the sizes of the two
rings at strong interpenetration. Even if the two rings have the
same architecture and the same N, they adopt the (exchanging)
roles of a large and a small one when their centers of mass are
sufficiently close. The polymer architecture forces one of the
two rings to strongly swell, accommodating the other. The
flatness of Veff(D) at small D is then a direct consequence of
this property, and it is absent for linear chains, which swell
together at strong center-of-mass overlaps. Indeed, the latter
feature a Gaussian effective potential, with a negative curvature
at D = 0.
Now we test the analytical expression of eq 19 by comparing

with the simulation results for the effective potentials of rings.
The equation contains three free parameters: R<, R>, and U0.
However, there are strong constrains for their possible values.
First, R> and R< should be consistent with the normalized radii
of gyration of the large and small rings at full overlap (D = 0),
which are independently obtained from the simulations.
Second, in a scaling theory any missing coefficients (the
constant U0 in our case) should be numbers of order unity.
Thus, we have fitted the simulation results for Veff(D) to eq 19,
employing the Levenberg−Marquardt algorithm,35 and con-
straining R< and R> to lie within small domains around the
simulation values for the normalized radii of gyration. The
obtained fit parameters are shown at the last three columns of
Table 1, whereas the simulation values of the sizes are shown at
the third and fourth columns.
The theoretical results for the effective interaction between

rings are shown in Figure 6, where they are also compared with
the simulation results. Semiquantitative agreement is found in
all cases, and this is better for the case of mixed topologies (τA
= 01,τB = 31) than for identical unknotted rings (τA = τB = 01).
The main feature of the effective interaction between 01/01 and
01/31 ring polymer pairs, i.e., the plateau region for 0 ≤ D ≲
0.5, is nicely reproduced. For the case of mixed topologies a
very good description is also achieved up to separations D ≲
1.7. Moreover, the obtained values for the fit parameters R< and
R> are in very good agreement with the normalized radii
directly provided by the simulations (see Table 1), especially
for the 01/31 combinations. Consistently, the prefactor U0 in eq
19 is of order unity in all cases. The main quantitative
differences between the theoretical and simulation results of Veff
are observed at distance D ≳ 1.7. The model overestimates the
late decay of the actual potential, which exhibits a longer tail.
This discrepancy is a consequence of the oversimplification of
the theoretical density profile, which has been modeled by a
penetrable sphere with a sharp boundary, i.e., the step function
in eq 17. Of course, the description of the actual effective
potentialse.g., accounting also for the local minimum at D =
0might be improved by relaxing some of the rough
approximations introduced in our model. More than to provide
an accurate description, the purpose of our simple approach is
to provide a direct connection between the particular shape of
the effective potential and the architecture of ring polymers
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which force the large ring to swell in order to accommodate the
small one at full interpenetration.

5. CONCLUSIONS
We have pointed out the differences in the effective potential
between linear chains and ring polymers and investigated their
microscopic origin. Swelling behavior is found for one or both
polymers at strong interpenetration, i.e., at small separation
between their centers-of-mass. However, the combination of
polymer architecture and topological constraints have a very
different effect on the swelling of linear and ring polymers. Two
interpenetrating linear chains have the same average size,
whereas in the case of ring polymers a depletion effect of the
monomers of one ring from its own center of mass is found.
One of the rings adopts an open conformation, leaving free
space for accommodating the other one, which also swells with
respect to its undistorted conformation but much less than the
former. Thus, at full interpenetration the average sizes of the
two rings are different, even if both rings have the same
topology and degree of polymerization. We have modeled this
depletion of monomers from the centers-of-mass of the rings
by treating both rings as overlapping spheres of different size
and considering connectivity and self-avoidance effects for the
probability of monomer contacts. This simple approach
provides a semiquantitative description of the effective potential
for ring polymers and rationalizes the qualitative differences
between the latter and the Gaussian potential for linear chains.
Future work should focus on the possibilities to extend these
considerations to knotted rings of complicated knotedness and
to (semiflexible) rings carrying intramolecular stiffness.
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Werner, N.; Vögtle, F. J. Chem. Phys. 2002, 117, 1869.
(34) Götze, I. O.; Harreis, H. M.; Likos, C. N. J. Chem. Phys. 2004,
120, 7761.
(35) Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P.
Numerical Recipes; Cambridge University Press: New York, 1992.

Macromolecules Article

dx.doi.org/10.1021/ma4016483 | Macromolecules 2013, 46, 9437−94459445

mailto:arturo.narros@univie.ac.at

