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Background. Accumulating evidence has revealed the important role of long noncoding RNAs (lncRNA) in tumorigenesis and
progression of hepatocellular carcinoma (HCC). 0is study aimed to identify potential lncRNAs that can serve as diagnostic and
prognostic signatures for HCC.Methods. Expression profiling analysis was performed to identify differentially expressed lncRNAs
(DElncRNA) between HCC and matched normal samples by integrating two independent microarray datasets. Functional Gene
Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were explored by Gene Set Variation
Analysis. 0e prognostic and diagnostic models were developed based on two DElncRNAs. Real-time PCR was used to quantify
the relative expressions of candidate lncRNAs. Results. Two robust DElncRNAs were identified and verified by quantitative PCR
between HCC and matched normal samples. Function enrichment analysis revealed that they were associated with the wound
healing process. 0e two lncRNAs were subsequently used to construct a prognostic risk model for HCC. Patients with high-risk
scores estimated by the model showed a shorter survival time than low-risk patients (P< 0.001). Besides, the two lncRNA-based
HCC diagnostic models exhibited good performance in discriminating HCC from normal samples on both training and test sets.
0e values of area under the curve (AUC) for early (I–II) and late (III–IV) HCC detection were 0.88 and 0.93, respectively.
Conclusions. 0e two wound healing-related DElncRNAs showed robust performance for HCC prognostic prediction and
detection, implying their potential role as diagnostic and prognostic markers for HCC.

1. Introduction

Hepatocellular carcinoma (HCC) is one of the major human
malignancies and ranks as the second leading cause of
cancer-related deaths worldwide [1]. Over the past few
decades, although progress in surgical techniques and sys-
temic treatments have improved the overall prognosis of
patients with liver cancer, the incidence rate continues to
increase and clinical outcome is extremely dismal [2]. It is
estimated that half of the worldwide new liver cancer cases
and deaths occurred in China every year [3, 4]. Multiple
factors including hepatitis C (HCV) and B virus (HBV)
infection, toxins (aflatoxin B1), chronic alcohol abuse, and
nonalcoholic fatty liver disease have been identified as risk

causes of HCC [5, 6]. 0e classic prognostic model, tumor-
node-metastasis (TNM) staging, as well as molecular bio-
markers such as serum alpha-fetoprotein (AFP) levels, have
been utilized for the diagnosis of HCC and for predicting its
prognostic outcome to therapy [7]. However, due to its high
heterogeneity, the prognosis and response to chemotherapy
differ largely among patients with a similar stage [8].
0erefore, the search for effective biomarkers for early di-
agnosis and prognosis is indispensable.

lncRNAs are a class of noncoding RNAs with a length
longer than 200 nucleotides (nt) that show little or no
protein-coding capacity [9, 10]. In recent years, emerging
studies have indicated the crucial roles of lncRNAs in
pathological processes or tumorigenesis and metastasis of
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various cancers [11–13]. Some dysregulated lncRNAs can
activate key oncogenic networks, such as the activation of
epithelial-to-mesenchymal transition, Wnt, and TGF-β
signaling pathways, promoting cancer metastasis [14]. For
example, silencing of MALAT-1 by siRNA decreases cell
proliferation and inhibits HCC migration and invasion [15].
Increased expression of GAS5 downregulates the vimentin
and upregulates the E-cadherin level in HCC cells [16].
Given their important function in tumor development,
lncRNAs as prognostic signatures in multiple cancers in-
cluding renal cancer, glioblastoma, colorectal cancer, lym-
phoma, and others have been explored in previous studies
[17–21]. To date, a variety of lncRNAs or lncRNA groups for
HCC prognosis prediction have been uncovered by multiple
studies [21–26]. While to the best of our knowledge, many
lncRNA signatures were developed only from a single source
of the dataset and few of them were both for HCC prediction
of diagnosis and prognosis. So it is necessary to identify new
lncRNA signatures for the early diagnosis and prognosis of
HCC.

0e public databases of 0e Cancer Genome Atlas
(TCGA) and Gene Expression Omnibus (GEO) containing
abundant cancer data allow researchers to exploit the po-
tential tumorigenesis mechanisms, novel molecular sub-
types, and prognostic biomarkers for various cancers
[27–31]. In the current study, two novel lncRNAs were
identified from two independent datasets based on our re-
annotation method. 0en prognostic risk models, as well as
prediction diagnostic models were constructed with the two
lncRNAs expression profile. We further assessed the rela-
tionship of 2-lncRNAs signature with clinicopathological
parameters of the stage, grade, age, and molecular subtypes.
In addition, functional enrichment analysis revealed the
potential roles of 2 lncRANs in biological processes and
pathways. 0ese results indicated better performance of our
2-lncRNA signature for both the diagnostic and prognostic
prediction of HCC.

2. Materials and Methods

2.1. SampleCollectionandDataPreparation. We collected 14
HCC and adjacent normal FFPE samples from the De-
partment of Oncology I of Seventh People’s Hospital of
Shanghai University of Traditional Chinese Medicine. 0e
study was approved by the hospital ethics committee (No.
KY2020106) and patients have been informed of the purpose
of collected samples. All information regarding patient
privacy has been anonymized. 0e dataset consisted of 11
male and 3 female patients, with amedian age of 57 (Table 1).

0e expression values of lncRNA based on the Reads Per
Kilobases per Million (RPKM) mapped reads as well as the
phenotypes and prognostic data were downloaded from the
TCGA Liver Hepatocellular Carcinoma (LIHC) database
(https://portal.gdc.cancer.gHCC/). Two independent ex-
pression data, GSE70880 [32] and GSE101728 [33], were
downloaded from the GEO database (https://www.ncbi.nlm.
nih.gov/geo/), which included 7 and 16 normal and tumor
paired samples, respectively. We selected these two datasets
in our study because both of them were lncRNA+mRNA

microarray platforms. Additionally, the GSE144269 dataset
[34] was retrieved as an independent testing set, which
consisted of 140 RNA-seq samples from 70 HCC tumors and
matched normal tissues. 0e information on the platforms
and numbers of samples of each dataset were provided in
Supplemental Table 1.

2.2. Re-Annotation of lncRNAs. 0e pipeline for re-anno-
tation of lncRNA microarray probes relies on a custom Perl
script [35] and the sequence alignment program of BLAT
[36]. Probe sequences provided by Agilent (https://www.
agilent.com/) were BLATed against the latest noncoding
RNA sequences from Ensembl (https://asia.ensembl.org/
Homo_sapiens/Info/Index) database with the parameter
“-t�DNA -q�DNA -maxGap� 0 -out� blast8 -fastMap.”
0e noncoding gene alignment reports were then parsed and
only the best probe-lncRNA alignment entries were kept. In
order to check the consistency and detect misalignments of
probes, the re-annotated probes were then compared with
the probe annotation details obtained from GPL21047.

2.3. Differential Expression Analysis. Two independent
datasets of GSE70880 and GSE101728 downloaded from the
GEO database were used for the identification of differen-
tially expressed lncRNAs (DElncRNAs) between the tumor
and paired normal samples. To define the DElncRNAs, the |
log2 fold change|> 1 and P< 0.05 were set as the threshold
by using the limma R package [37]. 0e similarity between
tumor and normal samples was evaluated by using an affinity
propagation (AP) clustering algorithm [38].

2.4. Prognostic Risk Model Construction. Univariate Cox
analysis using R survival package (https://CRAN.R-project.
org/package�survival) was conducted for the identification
of prognosis-associated DElncRNAs with overall survival
(OS) in the TCGA HCC training set (Table 2). DElncRNAs
with log-rank test P< 0.05 was considered as seed lncRNAs
for Cox LASSO [39] regression with 10-fold cross-validation
(CV). By 1000 iterations of Cox LASSO regression with 10-
fold CV using the R package glmnet (with the default pa-
rameter), the shrunken lncRNAs with nonzero coefficients
were selected as potential prognostic lncRNAs. Multivariate
Cox regression with 1000 times bootstrapping was further
performed to calculate the contribution of the 2 DElncRNAs
in survival predictions. 0e risk score of each patient was
then evaluated based on the 2 DElncRNAs expression profile
which is described as follows:

Risk score � Expr(lncRNA)∗ β, (1)

where Expr and β are the expression value and multivariate
regression coefficient of 2 DElncRNAs, respectively. 0e
DElncRNAs with β> 0 were defined as high-risk signatures
while those with β< 0 were defined as protective genes. 0e
patients were divided into high (Risk-H) and low (Risk-L)
risk groups according to median risk score.
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2.5. Total RNAExtraction andQuantitative PCR. Total RNA
was extracted from paraffin-embedded tumor tissue and
adjacent normal tissue using the Invitrogen™ TRIzol® Re-
agent (catalog number: 15596026, 0ermo Fisher Scientific,
CN) according to the kit protocol. 0e RNA quality was
assessed using NanoDrop 2000 (0ermo, USA). Due to the
extensive degradation of nucleic acid in FFPE tissues,
samples with OD260/OD280 ratio between 1.5 and 2.3 were
considered validated. Reverse transcription of cDNA was
conducted using Promega M-MLV reverse transcriptase as
described in the instructions. Quantitative PCR (qPCR) was
performed on CFX96 Touch Real-Time PCR Detection
System with a 20 μL reaction system. Primers for GAPDH,
DYNLL1-AS1, and RP11-116D2.1 are shown in Table 3. 0e
PCR procedure consisted of pre-denaturing 95°C for 2min,
followed by 45 cycles of 95°C for 30 s, 58°C for 30 s, and 72°C
for 30 s. 0e qPCR assay was repeated three times for each

gene on each sample, and the corresponding Cq values were
obtained separately. 0e relative expression values (2−ΔΔCq)
of DYNLL1-AS1 and RP11-116D2.1 for each repeat were
calculated according to the Cq values of GAPDH. 0e av-
erage of the three 2−ΔΔCq values was used as the relative
expression values of these two genes.

Table 2: Clinical features of HCC patients in training and testing set.

Clinical features Training set Testing set P value
Event 0.23
Alive 111 124
Dead 70 60

Gender 0.37
Female 55 64
Male 126 120

Pathological stage 0.14
Stage I 97 73
Stage II 35 49
Stage III 2 1
Stage IIIA 28 35
Stage IIIB 3 5
Stage IIIC 3 6
Stage IV 1 3
Not available 12 2

Histological grade 0.44
G1 31 24
G2 79 96
G3 59 59
G4 7 5
Not available 5 0

P value was calculated by the Fisher-exact test.

Table 1: Clinicopathological features of 14 patients.

Patient ID Sample ID Age Sex Metastasis Grade Tumor location AJCC stage
H1 HCC1 57 Male No 2 Left-sided I
H2 HCC2 58 Female No 2 Right-sided II
H3 HCC3 67 Male No 2 Right-sided I
H4 HCC4 66 Female No 2 Right-sided I
H5 HCC5 56 Male No 2 Right-sided II
H6 HCC6 62 Male No 2 Right-sided II
H7 HCC7 51 Male No 2 Right-sided II
H8 HCC8 52 Male No 2 Left-sided II
H9 HCC9 55 Male No 2 Right-sided II
H10 HCC10 51 Male No 2 Right-sided II
H11 HCC11 70 Male No 2 Left-sided II
H12 HCC12 NA Male No 3 Left-sided II
H13 HCC13 72 Male No 3 Right-sided I
H14 HCC14 44 Female No 3 Left-sided IV

Table 3: Primers of DYNLL1-AS1 and RP11-116D2.1 used for
quantitative PCR.

Primer Sequence (5′->3′)
GAPDH F GGACTCATGACCACAGTCCA
GAPDH R TCAGCTCAGGGATGACCTTG
DYNLL1-AS1 F CCAGCTGTCTGGAGAGATGAA
DYNLL1-AS1 R TCGGAGGCATCAACTCCTTT
RP11-116D2.1 F ATGGGTGGGTGAGCGAATAA
RP11-116D2.1 R TCCAGGCCTCCTTTCAGTTT
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Figure 1: Continued.
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2.6. Functional Analysis of DElncRNAs. 0e co-expressed
mRNA with DElncRNAs was identified by performing
Pearson’s correlation analyses between the expression of
lncRNAs and protein-coding genes based on the RNA-seq
data from the TCGA HCC cohort. Protein-coding genes
with a correlation coefficient >0.5 and a false positive rate
<0.05 were considered as the lncRNA-related genes.
Functional annotation of the lncRNA-related genes in-
cluding Gene Ontology (GO) analysis and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway enrichment
were conducted by the GeneCodis3 website tool [40]
(https://genecodis.cnb.csic.es/). Significantly enriched cate-
gories were identified with the threshold of Hyp_c< 0.05 and
limited to GO terms in the “Biological Process” (GOTERM-
BP-DIRECT) and KEGG pathway categories.

2.7. Construction of HCC Diagnostic Model. Binomial lo-
gistic regression was used to develop a diagnostic model for
the detection of HCC patients based on the expression
profile of 2 DElncRNAs. First, all samples from the TCGA
HCC cohort were randomly separated into training and
validation sets, and no significant differences were found in
baseline characteristics between the two groups. 0e diag-
nostic accuracy was quantified by the area under the receiver
operating characteristic (ROC) curve (AUC) [41]. Finally,
the Younden index identified the optimal sensitivity and
specificity. To avoid the bias of randomly grouping in a
single time, the bootstrapping method with 100 times
resampling was used to further evaluate the accuracy of the
training set and validation set.

2.8. Statistical Analysis. All statistical analyses were con-
ducted using R software (version 3.6.1). Paired Student’s t-
test was used for the comparison of lncRNAs between tumor

and paired normal samples. Comparisons for two groups
and multiple groups were performed for continuous vari-
ables using the Wilcox rank test and Kruskal–Wallis rank
test, respectively. Categorical variable independence was
established using a χ2 test. 0e false discovery rate was
calculated using BH method.

3. Results

3.1. Identification of Differentially Expressed lncRNAs.
Our re-annotation method for the noncoding gene expres-
sion probes in GPL21047 generated 23111 best-matched
lncRNAs of which 79.8% were confirmed by comparing to
Agilent official data (https://www.agilent.com/) indicating
high reliable expression of lncRNAs (Figure 1(a)). APClus-
tering analysis showed systematic variations in the expression
of lncRNAs and mRNAs between paired HCC and normal
samples from GSE70880 and GSE101728 datasets. Samples of
the two datasets were self-segregated into the HCC and
normal clusters (Figures 1(b) and 1(c)). 0ese normalized
microarray expression data were used for the identification of
differentially expressed lncRNAs (DElncRNAs). A total of
2713 (up/down: 1468/1245) and 4389 (up/down: 1622/2767)
DElncRNAs were identified in GSE70880 and GSE101728
datasets, respectively. As for both datasets, 412 DElncRNAs
(Supplementary Table 2) were shared accounting for 15.3%
and 9.38% of their total DElncRNAs (Figure 1(d)). Further
analysis of 412 overlapped DElncRNAs revealed that 186
DElncRNAs were significantly upregulated in HCC tissues
and 226 DElncRNAs were significantly downregulated in
HCC tissues (Figures 1(e) and 1(f)), indicating that the ac-
tivation as well as suppression of certain biological processes
regulated by these DElncRNAs potentially involved in the
developing of HCC.
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Figure 1: Identification of differentially expressed lncRNA. (a) Re-annotation of noncoding RNAs; (b and c) heatmap showed the distance
matrix for GSE70880 (b) and GSE101728 (c); (d) comparison of differentially expressed lncRNAs between GSE70880 and GSE101728; (e and
f) heatmap showed the expression of overlapped up and downregulated DElncRNAs in GSE70880 (e) and GSE101728 (f).
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3.2. Development of HCC Prognostic Risk Model. 0e 363
TCGA HCC patients were randomly separated into training
set (n� 181) and testing set (n� 182) (Table 2). Among 412
DElncRNAs identified in both in GSE70880 and GSE101728
datasets, 45 of them were detected to be also expressed in the
TCGA HCC dataset. 0en LASSO Cox regression method
with 10-fold cross-validation was used to construct a
multivariate prognosis risk model among the 45 DElncRNAs
(Figures 2(a) and 2(b)). As a result, two lncRNAs (DYNLL1-
AS1 and RP11-116D2.1) remained for constructing a
prognostic signature based on their expression levels and
their multivariate Cox coefficients (Table 4). 0e perfor-
mance of the 2-lncRNA signature was evaluated by a time-
dependent ROC curve with the area under the curve (AUC)
of 0.72, 0.71, and 0.58 for 1-, 3-, and 5-year overall survival
prediction (Figure 2(c)). In the training set, HCC patients
were divided into a high-risk group (Risk-H, n� 91) and a
low-risk group (Risk-L, n� 90) according to the median risk
score. Kaplan–Meier analysis revealed that the Risk-H group
had a significantly poorer prognosis than the Risk-L group
(P< 0.001, HR� 3.46) (Figure 2(d)). For the testing set,
patients were also divided into a Risk-H (n� 92) and Risk-L
group (n� 92) by using the same risk score model and cutoff
value in the training set. 0e AUC for predicting 3-year
overall survival reached 0.715 and Kaplan–Meier analysis
also revealed a differential prognosis between the two groups
(P � 0.0012 and HR� 3.03) (Figures 2(e) and 2(f )), which
suggested that the 2-lncRNA signature had a good perfor-
mance in the prediction of 3-year overall survival. Gene set
variation analysis (GSVA) for Risk-H and Risk-L groups
showed that cancer-related pathways such as cell cycle, P53
signaling pathway, and pathways in cancer had a signifi-
cantly positive correlation with risk score (Figure 2(g)).
While in contrast, metabolic pathways such as histidine
metabolism, beta-alanine metabolism, and primary bile acid
biosynthesis had significant negative correlations with risk
scores (Figure 2(g)).

3.3. Functional Analysis of the Two lncRNAs. 0e expression
profile of the two lncRNAs was then evaluated in tumor and
paired normal tissues from TCGA HCC and our inner HCC
datasets. 0e results indicated that DYNLL1-AS1 was sig-
nificantly upregulated and RP11-116D2.1 was significantly
downregulated in the TCGA dataset (Figure 3(a)). We
observed similar expression trends for these two genes
between 14 HCC and adjacent normal samples, although no
significant difference was found in DYNLL1-AS1
(Figure 3(b), Supplementary Table 3). Co-expression anal-
ysis identified 881 DYNLL1-AS1-related genes and 458
RP11-116D2.1-related genes, of which 174 protein-coding
genes were overlapped (Figure 3(c)). KEGG pathway en-
richment analysis suggested that DYNLL1-AS1-related
genes are significantly enriched in pathways in cancer, focal
adhesion, and the Wnt signaling pathway (Figure 3(d)). For
RP11-116D2.1-related genes, they were also involved in
pathways in cancer, as well as spliceosome, and RNA
transport (Figure 3(e)). 0e overlapped significantly
enriched pathways between them were spliceosome, cell

cycle, oocyte meiosis, and lysine degradation (Figure 3(f ))
which indicated potential interactions among the two
lncRNAs.

3.4. Correlation of 2-lncRNA Prognostic Risk Model with
Clinical Characteristics. Further analyses were performed to
determine the association of the 2-lncRNA-based risk score
with clinical-pathological factors in the TCGA dataset, in-
cluding pathologic stage, histological grade, and age.
Kaplan–Meier analysis showed a significantly different
prognosis between Risk-H and Risk-L groups classified by
AJCC stage I and Grade 1 and 3–4 (P< 0.05), indicating that
the 2-lncRNA-based risk model was an independent
prognostic factor of an early stage and grade (Figures 4(a)
and 4(b)). Patient age also showed no significant correlation
with risk scores either in Risk-H or Risk-L group
(Figure 4(c)). Multivariate Cox regression analysis con-
firmed that the 2-lncRNA prognostic risk score was the most
important hazard factor for HCC (HR� 2.25, 95%
CI� 1.23–4.12, P< 0.001) (Figure 4(d)). Considering the
infection of the virus has a great impact on HCC, we further
compared the patient risk scores in HBV-infected, HCV-
infected, and non-infected groups and found that the risk
scores of HBV-infected samples were significantly much
higher than HCV-infected and non-infected groups
(Figure 4(e)). Based on the molecular level survival analysis,
the LIHC cohort of the TCGA project was clustered into
three molecular subtypes [42], we found that the patients in
iCluster (iC) 2 with the best prognosis showed significantly
lower risk scores than the patients in other two subtypes,
meanwhile, the patients in iCluster 1 with the worst prog-
nosis had the highest risk scores (Figure 4(f)). Similar results
were observed among the patients from different immune
subtypes. Patients in immune subtype C1 with the worst
prognosis had the highest risk scores than other immune
subtype patients (Figure 4(g)). 0e immune subtype C1 was
characterized by the immune module of wound healing [43].
Given that high-risk score was mostly distributed in C1, we
examined the relation between C1 signatures (wound
healing-related signatures including 01 cells, 02 cells,
proliferation, and wound healing) and risk score. Besides
01 cells, the other three signatures were all positively
correlated with risk scores (P< 0.01, Figure 5).

3.5. Development of HCC Diagnostic Model Based on the 2-
lncRNA Signature. 0e logistic regression method was
performed to establish a diagnostic risk score (dRS) model
with the 2 lncRNAs. 0e expression profile of 2 lncRNAs
showed that the expression of DYNLL1-AS1 was much
lower than RP11-116D2.1 and their expression represented a
significantly negative correlation (Figure 6(a)) suggesting a
complemental expression pattern of the 2 lncRNAs. 0e
violin plot (Figure 6(b)) showed that the dRS value was
significantly upregulated in HCC tissues in the entire patient
cohort. We further evaluated the performance of dRS model
in discriminating HCC patients from normal controls. 0e
ROC curve for training set and validation set was plotted
(Figures 6(c) and 6(d)) with AUC of 0.889 (95%CI:
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Figure 2: Performance of 2-lncRNA-based prognostic risk model in training and testing set. (a) 10-fold cross-validation for DElncRNAs
selection in the LASSO model for OS; (b) LASSO coefficient profiles of 45 DElncRNAs for OS; (c) Time-dependent ROC analysis of 2-
lncRNA risk model for predicting the overall survival of training set. 0e AUC was calculated for 1st, 3rd, and 5th year ROC curves;
(d) Kaplan–Meier analysis for overall survival in the risk-H (n� 91) and risk-L (n� 90) groups of the training set; (e) Time-dependent ROC
analysis of 2-lncRNA risk model for predicting the overall survival of testing set; (f ) Kaplan–Meier analysis for overall survival in the risk-H
(n� 92) and risk-L (n� 92) groups of the testing set. (g) GSVA analysis of differentially expressed genes between risk-H and risk-L group.
PCorr and NCorr represent positive and negative correlations between the GSVA score and sample risk score. Heatmap showed the top 15
positive and negative correlation pathways.

Table 4: Details of the two lncRNA signatures.

hg38 name Ensembl_ID TransID FC (T/N) Regulation P Value Coefficient HR
DYNLL1-AS1 ENSG00000248008.2 ENST00000500741.2 1.246 Up 0.019 0.1514 1.18
RP11-116D2.1 ENSG00000261012.2 ENST00000567376.2 0.901 Down 0.0066 -0.0078 0.98
FC: fold change; T/N: tumor/normal; HR: hazard ratio.
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0.819–0.931) and 0.913 (95%CI: 0.867–0.949), respectively.
For samples of different stages, the sensitivities were 77.19%,
80.23%, 82.35%, and 100.00% for I, II, III, and IV, respec-
tively (Table 5).

3.6. Validation of theDiagnosticModel in Independent Testing
Set. 0e GSE144269 dataset containing 70 HCC tumor
tissues and paired normal samples was used as a testing set to
evaluate the performance of dRS model. 0e expression of
DYNLL1-AS1 was upregulated in cancer samples, while
RP11-116D2.1 showed an opposite trend (Figure 7(a)).
Correlation analysis indicated that they were negatively
correlated with each other (Figure 7(b)), which was con-
sistent with the results of the TCGA dataset. 0e risk scores
of cancer samples estimated by the model were significantly
higher than that of normal samples (Figure 7(c)). ROC curve
analysis showed that the model achieved an AUC of 0.87

(95% CI: 0.81–0.93) with the optimal sensitivity and spec-
ificity of 77.1% and 84.3%, respectively, as determined by the
maximized Youden index (Figure 7(d)).

4. Discussion

Over the past decades, great efforts have been made in
developing signatures for the prognostic prediction of HCC.
However, no biomarkers have been shown to effectively
predict the survival of HCC patients to date, partly due to its
high heterogeneity causes such as virus infection, alcohol
consumption, as well as immune disorders [44, 45]. Given
the high morbidity and mortality of HCC, it is crucial and
urgently needed to develop effective biomarkers for the
prognosis prediction of HCC. Several studies have shown
important implications of molecular biomarkers such as
aberrantly expressed genes and abnormal methylation
events for outcome prediction and therapy decisions
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Figure 3: Function analysis of the 2 lncRNAs related genes. (a–c) Expression profile of DYNLL1-AS1 and RP11-116D2.1 in TCGA HCC
dataset (a), GSE70880 (b), and GSE101728 (c); (d) comparison of DYNLL1-AS1- and RP11-116D2.1-related genes; (e–g) KEGG pathway
enrichment of DYNLL1-AS1-related genes (e), RP11-116D2.1-related genes (f ), and the overlapped-related genes (g).
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Figure 4: Stratification analyses of the prognostic value of the 2-lncRNA risk score for all HCC patients in the entire set. (a) Kaplan–Meier
survival curve analysis of the overall survival of patients in different pathological stages; (b) Kaplan–Meier survival curve analysis of the
overall survival of patients in different histological grades; (c) Scatter plot showing the correlation of age with risk scores; (d) Forest plot
displaying multivariate Cox analysis of AJCC stage, age, histological grade, virus status, and risk score in the entire data set. CI, confidence
interval; HR, hazard ratio; virus status, status of non-infected patients and HBV- or HCV-infected patients were assigned 0 and 1, re-
spectively. (e–g) Boxplots illustrating the risk score of patients with different virus infections (e), different TCGA subtypes (f ), and immune
subtypes (g). In the boxplot, the upper and lower hinge and the inner line indicate the first and third quartile and the median value of the risk
score, respectively.
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[17, 20, 46, 47]. Recently, lncRNAs were reported as critical
regulators in various diseases including cancers [12, 13].
Moreover, their potential utility as prognostic biomarkers
for HCC was also demonstrated in a few studies [18, 21].

0e current study identified a series of differentially
expressed lncRNAs by integrating two independent gene
expression microarray datasets, among which 412
DElncRNAs were shared by the two datasets. Two lncRNAs
were subsequently selected by performing LASSO regression
with 10-fold cross-validation (CV). Results of multiple
datasets indicated that expressions of DYNLL1-AS1 were
significantly upregulated in cancer cells, while it was the
opposite for RP11-116D2.1. We also observed a similar

tendency in our custom dataset. Notably, no significant
difference in RP11-116D2.1 expression was found in our
dataset (P � 0.094), which we supposed might be related to
several reasons. Firstly, the small sample size could lead to
errors when using a two-sample t-test, as only 14 samples
were quantified in this study, and the power was only 0.93
for paired t-test, which is slightly lower than 0.95 (n� 14).
According to our clinical data (Table 1), most of the samples
were stage II, which leads to a more unbalanced distribution
of clinical stages compared with the TCGA dataset. Sec-
ondly, the degradation, fragmentation, and chemical
modification of nucleic acid frequently occur in FFPE tis-
sues, which will affect the quantification of gene expression

Th1 Cells

−2000

−1000

0

Sc
or

e

−0.5 0.0 0.5 1.0 1.5−1.0
RiskScore

R = −0.03
P = 0.58

(a)

Th2 Cells

−0.5 0.0 0.5 1.0 1.5−1.0
RiskScore

−2000

−1000

0

1000

Sc
or

e

R = 0.36
P < 0.001

(b)

−2

−1

0

1

Sc
or

e

−0.5 0.0 0.5 1.0 1.5−1.0
RiskScore

Proliferation

R = 0.53
P < 0.001

(c)

Wound Healing

−0.25

0.00

0.25

0.50

Sc
or

e

−0.5 0.0 0.5 1.0 1.5−1.0
RiskScore

R = 0.47
P < 0.001

(d)

Figure 5: Scatterplot shows the correlation of 2-lncRNA risk scores with immune subtype scores: 01 cells (a), 0e2 cells (b), proliferation
(c), wound healing (d). 0e correlation coefficient was computed with Pearson’s method.
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Figure 6:0e performance of the lncRNA-based diagnostic model for HCC detection in TCGA dataset. (a)0e correlation of the expression
profiles of DYNLL1-AS1 and RP11-116D2.1; (b) the predicted risk scores of normal and tumor samples; (c and d) ROC curve of the dRS
model in training (c) and validation (d) sets.

Table 5: Performance of 2-lncRNA signature for the detection of HCC patients with different stages.

Stage I Stage II Stage III Stage IV Other Total
AUC 0.86 0.91 0.93 0.96 0.93 0.89
Sensitivity 77.19% 80.23% 82.35% 100.00% 91.67% 76.55%
Specificity 86.00% 92.00% 92.00% 80.00% 86.00% 92.00%
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[48]. Nevertheless, our results showed a similar trend of
upregulated DYNLL1-AS1 in HCC samples, and the effects
caused by FFPE samples can be eliminated by the relative
quantification base on the internal reference gene, making
this result reliable to some extent.

Survival analysis indicated that patients with higher
expressions of DYNLL1-AS1 were found to correlate with
shorter survival time, while the elevated expressions of
RP11-116D2.1 were associated with longer survival time.
0e two lncRNAs were then used to construct a prog-
nostic prediction model for HCC. ROC curve analysis
suggested that the model was robust for HCC survival
prediction. 0e 2-lncRNA signature showed a higher
AUC value than the 5-lncRNA signature [49] and nearly

the same AUC as 7-lncRNA signature [50]. Obviously, it
is more feasible for researchers to carry out further in-
vestigations of less lncRNAs. 0ese results revealed that
the two lncRNAs could serve as promising prognostic
factors for HCC.

Previous studies have revealed that HBV infection was a
risk factor for HCC prognosis [51]. A significantly higher
risk score estimated by this model was also observed in the
HBV-infected group than in the non-infected group. Be-
sides, the prognostic model based on lncRNAs developed by
Xiwen Liao et al. showed a good performance in HBV-re-
lated HCC [52], which was comparable with our model in
terms of AUC values. Our findings implied their potential
association with HBV infection.
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Figure 7: 0e performance of the lncRNA-based diagnostic model for HCC detection in GSE144269 independent dataset. (a) Boxplot
showed the expression profiles of DYNLL1-AS1 and RP11-116D2.1 in normal and tumor samples of GSE144269; (b) the correlation of the
expression profiles of DYNLL1-AS1 and RP11-116D2.1; (c) the predicted risk scores of normal and tumor samples; (d) ROC curve of the
dRS model in the independent testing set.
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Functional enrichment analysis indicated that genes
correlated with DYNLL1-AS1 and RP11-116D2.1 signifi-
cantly enriched in the Wnt signaling pathway, chemokine
signaling pathway, and VEGF signaling pathway. Interest-
ingly, we observed a significant correlation between the 2-
lncRNA signature and wound healing subtype (C1) of HCC.
0e wound healing response involves several phases, in-
cluding the formation of a fibrin clot at the wound site and
the infiltration of neutrophils in the early stage, where these
immune cells can release a plethora of cytokines and che-
mokines [53]. Another critical phase is epithelial regener-
ation, which relates to the migration and proliferation of
fibroblasts [54]. Additionally, ECM remodeling is another
important event in wound healing [55]. In this study, the risk
score estimated by the 2-lncRNA signature showed a strong
correlation with the enriched score of the ECM receptor
pathway. 0ese findings suggested critical roles of the two
lncRNAs in inflammatory pathways, however, more robust
experiments are needed to investigate their potential rela-
tionship with the inflammatory response.

0e testing and abdominal ultrasound of serum bio-
marker alpha-fetoprotein (AFP) were widely recommended
for routine surveillance of HCC in high-risk patients (US)
according to many HCC guidelines [56], however, it has been
excluded from the surveillance and diagnosis criteria in the
guidelines published in 2014 [57]. Other serum biomarkers
such as AFP-L3, DCP, interleukin-6, interleukin-10, and
squamous cell carcinoma antigen were also investigated,
while these serum-based tests lack adequate sensitivity and
specificity for effective surveillance [58–60]. In this study, we
further developed a model for HCC detection based on the
two lncRNA expression profiles. 0e performance of the 2-
lncRNA diagnostic model achieved AUC values of 0.889 and
0.913 in the training and validation sets, respectively, which
was better than the efficiency of serum biomarkers. Moreover,
we also obtained an AUC of 0.87 (95%CI: 0.81–0.93) in the
independent testing set of GSE144269. For early stage (I–II)
HCC, the diagnostic model achieved an AUC of 0.88. Pre-
vious studies have demonstrated the favorable efficiency of
lncRNAs for HCC detection. Our results showed a compa-
rable performance relative to other promising biomarkers
such as DANCR [61], HULC [62], and Linc00152 [63],
suggesting that two lncRNAs could be promising candidates
in diagnosing ontogenesis of HCC.

5. Conclusions

In this study, we identified two differentially expressed
lncRNAs frommultiple datasets verified their expressions in
our custom HCC samples. 0e 2-lncRNA signature showed
robust performance for HCC detection and prognosis
prediction. However, some limitations of the study need to
be considered. For example, further experiments should be
carried out to demonstrate their potential roles in HBV
infection as well as their relationship with wound healing.
0eir performance for HCC detection and prognosis pre-
diction needs to be evaluated in more clinical samples.
Besides, the exact mechanisms of the two lncRNAs in HCC
tumorigenesis and progression are still not well-studied

although this study has comprehensively revealed their
aberrant expressions between normal and cancer samples.
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