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Genome-wide transcriptome and functional
analysis of two contrasting genotypes reveals key
genes for cadmium tolerance in barley
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Abstract

Background: Cadmium (Cd) is a severe detrimental environmental pollutant. To adapt to Cd-induced deleterious
effects, plants have evolved sophisticated defence mechanisms. In this study, a genome-wide transcriptome analysis
was performed to identify the mechanisms of Cd tolerance using two barley genotypes with distinct Cd tolerance.

Results: Microarray expression profiling revealed that 91 genes were up-regulated by Cd in Cd-tolerant genotype
Weisuobuzhi and simultaneously down-regulated or non-changed in Cd-sensitive Dong17, and 692 genes showed
no change in Weisuobuzhi but down-regulated in Dong17. Novel genes that may play significant roles in Cd
tolerance were mainly via generating protectants such as catalase against reactive oxygen species, Cd
compartmentalization (e.g. phytochelatin-synthase and vacuolar ATPase), and defence response and DNA replication
(e.g. chitinase and histones). Other 156 up-regulated genes in both genotypes also included those encoding
proteins related to stress and defence responses, and metabolism-related genes involved in detoxification pathways.
Meanwhile, biochemical and physiological analysis of enzyme (ATPase and chitinase), phytohormone (ethylene), ion

more pronounced in Dong17 than that in Weisuobuzhi.

other cereal crops for elevating tolerance to Cd stress.

molecular mechanism

distribution and transport (Cd, Na™, K, Ca’", ABC transporter) demonstrated that significantly larger Cd-induced
increases of those components in Weisuobuzhi than those in Dong17. In addition, Cd-induced DNA damage was

Conclusions: Our findings suggest that combining microarray, physiological and biochemical analysis has provided
valuable insights towards a novel integrated molecular mechanism of Cd tolerance in barley. The higher expression
genes in Cd tolerant genotype could be used for transgenic overexpression in sensitive genotypes of barley or
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Background

Cadmium (Cd) in soil represents a direct contact risk to
both humans and ecological recipients due to its high
toxicity and ready uptake by plants [1,2]. At present, Cd
has become one of the most harmful and widespread
pollutants in agricultural soils. This situation has re-
sulted primarily from industrial emissions, application of
Cd containing phosphate fertilisers and municipal waste
disposal [1,3]. Once released into the soils, moderate Cd
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pollution could result in considerable Cd accumulation
in edible parts of crops. Such levels of Cd not only affect
the quality and yield of crops, but pose a great threat to
human health [2]. Accordingly, these developments raise
serious concerns for both the environment and human
health. Therefore, there is an urgent need to elucidate
the mechanisms of Cd tolerance in plants and to develop
crop varieties with high Cd tolerance and yield.

Cd affects many important physiological processes and
inhibits plant growth and development [4,5]. To minim-
ise the detrimental effects of Cd toxicity, plants have
evolved a range of detoxification mechanisms, including
Cd exclusion, chelation and compartmentalisation in
vacuoles [6]. For example, phytochelatins (PCs) and Cd
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have been found to form PC-Cd complexes in cytosol,
which are subsequently transported into vacuoles. Thereby,
it can protect plants from the deleterious effects of Cd
[7]. The elevated expression of heavy metal transporting
ATPases4 (HMA4) Pp-type ATPase furnishes an efficient
mechanism for increasing Cd tolerance in plants under
Cd toxicity via the maintenance of low cellular Cd in the
cytoplasm [8]. However, regulatory mechanisms in Cd-
tolerance, which is still a focal point in plant research, is a
complex process that contains many genes regulated by a
variety of physiological pathways [2].

Identification of stress-induced genes and proteins are
fundamental in understanding the molecular mechanisms
of stress responses and in developing transgenic plants
with enhanced tolerance [9]. Studies have been conducted
to identify plant defences against Cd toxicity and investi-
gate Cd-specific genes. For example, the up-regulation of
well-known Cd-detoxifying proteins, such as phytochela-
tin synthase (PCS), antioxidative enzymes and glutathione
S-transferases (GST), were observed in the response of
plants to Cd stress using proteomic and metabolomic
approaches [10]. Uraguchi and Fujiwara [2] summarised
several Cd transport-related genes, such as OsLCTI,
OsHMA, OsNrampl and OsIRT1, involved in Cd trans-
port and tolerance in rice. Despite the identification of
those genes, the underlying knowledge of molecular
mechanisms for plant Cd tolerance is still fragmental.

Knowledge about networks of global gene expression
is imperative for further understanding the molecular
mechanisms in plant Cd tolerance. Microarray analysis
is a powerful technique for analysing the profiles of gene
expression related to abiotic stress in plants [11,12].
Concerning Cd toxicity and detoxification in plants, the
genome-wide transcriptome profiling has been explored
mostly in herbaceous plants such as Arabidopsis thaliana,
Arabidopsis halleri, and Thlaspi caerulescen [13-16]. How-
ever, the regulatory system for genes conferring Cd toler-
ance in many cereal crops is largely unknown and remains
an essential issue to be addressed.

Barley, the fourth most important cereal in the world,
is as an ideal model for genetic and physiological study
[17]. Our previous studies have demonstrated distinctive
genotypic difference between Cd-tolerant (Weisuobuzhi)
and Cd-sensitive (Dongl7) genotypes in response to Cd
stress including plant growth, photosynthesis, antioxidant
enzyme activities [1,18,19]. We, therefore, hypothesised
that there were large differences between the two geno-
types in their genome-wide response to Cd stress. Can-
didate genes associated with Cd tolerance in the
tolerant genotype were identified using the Affymertix
barley GeneChip whole genome arrays, and the expres-
sion and enzyme activity of many key genes were fur-
ther validated by quantitative real-time PCR (qRT-PCR)
and physiological and biochemical analysis. We also
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proposed an integrated schematic diagram of the mech-
anisms involved in Cd tolerance and adaptation. These
results are very important to provide novel clues for un-
derstanding the mechanisms in Cd tolerance of barley
and open prospective for excavating novel genes and for
the genetic improvement of plant tolerance to Cd stress.

Methods

Plant material, growth conditions and Cd treatments

A greenhouse hydroponic experiment was carried out at
Huajiachi Campus of Zhejiang University, Hangzhou,
China. Two barley genotypes, Cd-tolerant Weisuobuzhi
and Cd-sensitive Dongl7 [1], were used throughout the
experiments.

Barley seeds were surface sterilised by soaking in 2%
H,0, for 30 min and fully rinsed with deionised water.
After soaking in deionised water at room temperature
for 4 h, seeds were germinated in sterilised moist sand in
an incubator at 22 + 1°C. Ten-day-old healthy and uniform
plants were selected and transplanted to 5-L containers
filled with 4.5 L basal nutrient solution. The composition
of nutrient solution was described by Chen et al. [18,19].
A week after transplanting, Cd (as CdCl,) was added to
the corresponding containers to form 4 treatments: basal
nutrient solution (control, without Cd) and 5, 50 and
500 pM Cd. The experiment was laid in a split-plot design
with Cd-treatment as main-plot with six replicates. The
nutrient solution was continuously aerated with pumps
and renewed every 5 d.

Plant samples were harvested 15 d after Cd treatment,
and root tips were used for fluorescence imaging of Cd.
The second fully expanded leaves of control and 5 pM
Cd treatment were collected for microarray, physiological
and biochemical analysis.

Fluorescence imaging

Fresh root tips were immersed in 20 mM disodium ethyl-
enediamine tetra-acetic acid (Na,-EDTA) for 15 min and
then gently rinsed for three times with deionised water.
The specimen sections were then immediately immersed
in the Cd probe Leadmium™ Green AM solution (Molecu-
lar Probes, Life Technologies, California, USA) for 45 min
in the dark and then washed three times (5 min each time)
with deionised water. A stock solution of Leadmium™
Green AM was made by adding 50 pL of dimethyl sulfox-
ide (DMSO) to one vial of the dye. This stock solution
was then diluted 1:10 with 0.85% NaCl. Roots were
immersed in this solution for 90 min in the dark. The sec-
tions were examined with a laser confocal scanning micro-
scope (Leica TCS SP5; Berlin, Germany) with excitation
and emission wavelengths at 488 and 515 nm, respectively.
The fluorescence density of Cd was calculated by selecting
the root sections and measuring the total Integrated
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Density using “Analyse and Measure” function of the
Image ] software (NIH, Bethesda, MD, USA).

RNA isolation, probe preparation and microarray
hybridisation

Total RNA was initially extracted from leaf tissue of
Weisuobuzhi and Dongl7 under control and 5 pM Cd
treatment using Trizol reagent protocol (P/N 15596—018,
Life Technologies, Carlsbad, CA, USA). RNA was purified
on RNeasy spin columns (RNeasy MinElute Cleanup
Kit, Qiagen, Dusseldorf, Germany) and with on-column
DNasel treatment. The eluted total RNAs were quanti-
fied on an Agilent 2100 bioanalyser (Palo Alto, CA,
USA) and adjusted to a final concentration of 1 pg uL ™.
Sample processing, cDNA synthesis, biotin-labelled cRNA
synthesis, hybridisation, washing, staining and scanning of
Affymetrix Barley 1 GeneChip were performed following
the standard protocol (Affymetrix Inc., Santa Clara, CA,
USA). The Barley 1.0 Affymetrix microarray GeneChip
array consists of 22,795 probe sets designed from an exem-
plar set of barley sequences derived from 350,000 high-
quality expressed sequence tag (EST) contigs. Total RNA
was used to prepare double strand cDNA. Labelled cRNA
preparation and hybridisation on GeneChip and scanning
was done following the standard Affymetrix procedures
(http://media.affymetrix.com/support/downloads/manuals/
3_ivt_express_kit_manual.pdf). Three replications of each
sample were conducted to test the quality and reproduci-
bility of the chip hybridisation. Each treatment had three
replications.

Microarray data analysis
Data analysis was conducted using Refiner and Analyst,
two analytical tools in Affymetrix GeneChip Operating
Software Version 1.4. The Refiner tool condenses and nor-
malises the raw signal. The Analyst tool provides statistical
analysis and data visualisation capability. Detection, signal
condensation and normalisation were conducted using
Robust Multichip Analysis (RMA) of the Refiner tool [20].
Further analysis of transcript abundance was conducted
using the Analyst tool. The correlation of expression sig-
nals between replications for each genotype was 0-0.99
across all probe sets tested on the GeneChip. Each
Barleyl.0 GeneChip probe set was first tested for barley
transcript specificity on the basis of quantitative and quali-
tative transcript abundance differences between barley
genotype Betzes and wheat cultivar Chinese Spring (CS).
To detect barley transcripts in the two lines (Weisuobuzhi
and Dongl7), differences in the abundance of barley
transcript signals in the two lines were tested against
the background signal in CS with a ¢-test (P-value < 0.001).
Only those showing significantly higher transcript levels
both in Betzes and in the two lines compared to those in
CS were subjected to qualitative analysis to detect barley-
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specific transcripts in the two lines (presence/absence test,
P <0.001 using MAS 5.0). All data from the Affymetrix
scanner have been deposited at BarleyBase (http://www.
barleybase.org) in the form of DAT, CEL, EXP, and CHP
files. We considered a change of at least two folds as an
indication of a significant change in gene expression
for up- and down-regulation. To perform hierarchical
clustering, the differentially regulated genes were clus-
tered according to similarities in expression profiles. The
following nine groups were used: Weisuobuzhi (W)
up-regulated and Dongl7 (D) down-regulated (Group I)
or no change (Group II), W no change and D down-
regulated (Group III), both up-regulated (Group IV), W
down-regulated and D up-regulated (Group V), both
down-regulated (Group VI), W down-regulated and D
no change (Group VII), W no change and D up-regulated
(Group VIII), and both no change (Group IX).

qRT-PCR

The hydroponic experiment was carried once again using
Weisuobuzhi and Dongl7 under control and 5 pM Cd
treatment with four replicates. Total RNA was isolated
from leaves after 15 days of Cd treatment using the TRIzol
reagent (Invitrogen, Karlsruhe, Germany). Residual DNA
was removed using purifying columns. One microgram of
each RNA sample was subsequently employed for cDNA
synthesis with 0.5 pg of oligo (dT) 12—18 and 200 units of
Superscript II (Invitrogen, Karlsruhe, Germany). cDNA
samples used for GeneChip analysis and this experiment
were assayed by quantitative real time PCR (qRT-PCR) in
an iCycler iQ™ Real-time PCR Detection System (Bio-Rad,
Hercules, CA, USA) using the SYBR Green PCR Master
Mix (Applied Biosystems, Life Technologies, CA, USA).
The PCR conditions consisted of denaturation at 95°C for
3 min, followed by 40 cycles of denaturation at 94°C for
1 min, annealing at 58°C for 30 s and extension at 72°C
for 30 s, and continued extension at 72°C for 5 min. The
barley ACTIN (accession no. AY145451) was used as a ref-
erence gene, which were selected from a number of candi-
dates by Chen et al. [18,19]. The primers are listed in
Additional file 1: Table S1. Two independent experiments
and six biological replications in total were conducted.

Enzyme activity measurements

For the determination of GST (EC 2.5.1.18) and ATPase
(EC 3.6.1.3) activities, plant tissue was homogenised in
8 ml 50 mM sodium phosphate buffer (PBS, pH 7.8,)
using a pre-chilled mortar and pestle, then centrifuged
at 10000 x g for 20 min at 4°C. The supernatant was
used for enzyme assay. GST and ATPase activities
were determined with an enzyme assay kit according
to the manufacturers’ protocol (Jiancheng Bio Co.,
Nanjing, China). Chitinase (EC 3.2.1.14) were extracted
and determined with an ELISA kit according to the
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manufacturers’ protocol (Becton, Dickinson and Company,
FranklinLakes, NJ, USA).

Determination of DNA damage

DNA damage was assayed according to Menke et al. [21]
with minor modification. The experiment was performed
in a darkroom with dim red light. About 150 mg leaf sam-
ples were sliced in 1 mL PBS buffer (160 mM NaCl, 8 mM
Na,HPO,4, 4 mM NaH,PO,4 pH 7) containing 50 mM
EDTA on ice with a fresh razor blade. The 30 pL suspen-
sion was then taken on regularly used microscopic slides
(pre-coated with 1% of agarose in double distilled H,O
and dried over night at room temperature) followed by
addition of 30 pL 1% agarose solution (42°C). DNA dam-
age was analysed by the comet assay according to the
alkali-alkali (A/A) method as described by Menke et al.
[21]. For comet assay, unwinding was done in high alkali
for 5 min, and then electrophoresis for 10 min with 21 V,
300 mA in a chamber cooled on ice, followed by a short
neutralisation of 3 min in 100 mM Tris—HCI (pH 7.5). To
remove the starch grains, the slides were kept for 10 min
in 1% Triton prior to dehydration in 70% (2 min) and 96%
(5 min) ethanol and air-drying. The gels were then stained
with 15 uL ethidium bromide (5 pg ml™) and immediately
used for evaluation. Images were taken using a fluores-
cence microscope (BX50W1I, Olympus, Japan) equipped
with a digital CCD camera (Olympus, Japan).

Gas chromatography

Ethylene production in the leaves of barley seedling was
measured as described by Chen et al. [22] with minor
modification. In brief, leaf tissues (0.5 g fresh weight)
were collected, immediately weighed, and then placed in
sealed glass vials containing water-saturated filter paper.
Samples were incubated for 1 h under illumination. One
millilitre of gas was collected using a gas-tight syringe and
injected into a gas chromatography (Focus GC, Thermo
Fisher Scientific, MA, USA) equipped with a capillary
column (CP-carboPLOT P7, Varian, CA, USA) and flame-
ionisation detector for ethylene determination. Ethylene
production was calculated on the basis of known ethylene
standards and leaf fresh weight.

Leaf element analysis

Leaf samples were dried at 80°C, digested with HNO3/
HCIOy (4:1, v/v) for 3 h, and then diluted to 25 ml by add-
ing de-ionized water. Calcium (Ca**), sodium (Na*), and
potassium (K") concentrations were determined using an
Inductively Coupled Plasma Optical Emission Spectrom-
eter (ICP-OES, Optima 8000DV, PerkinElmer, USA).

Statistical analysis
All data are the averages of three to six biological rep-
licates in each experiment. Statistical analyses were
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performed with Data Processing System (DPS) statistical
software. An ANOVA followed by a Duncan’s multiple
range test (DMRT) were used to evaluate treatment
effects at significance level of P < 0.05.

Results

Cd is highly accumulated in root tips of a Cd-tolerant
genotype

Under Cd stress, the majority of Cd accumulated in root
cell wall. In root tips of Weisuobuzhi treated with 5 uM
Cd, preferential localisation of Cd was in root apex, and
this effect was more pronounced with increasing Cd levels
(Figure 1A and 1C). However, there were no noticeable
and only very low levels of green fluorescence in the
root tips of Dongl7 under 5 and 50 uM Cd, respectively
(Figure 1A and 1C). Higher fluorescence intensity was
observed in 500 uM Cd treatment in Dongl7, which
was similar to that of Weisuobuzhi. The cross section
fluorescence images revealed that after Cd stress, most
Cd accumulated in the inner epidermis and endodermis,
with only a small amount of Cd in the cortex. In response
to 500 uM Cd, an intense green fluorescence was observed
in the epidermal, cortical and stele cells of Weisuobuzhi
but not in Dong17 (Figure 1B and 1D).

Cd toxicity induces large scale changes in gene
expression
The distinct cellular Cd accumulation pattern (Figure 1)
and tolerance [18,19] of the two genotypes has led us to
explore the expression pattern of their Cd-induced genes.
The microarray data showed that, compared with control,
the gene expression profiles of the two genotypes changed
significantly after exposing to 5 uM Cd for 15 d. Based on
at least +2.0-fold changes (P < 0.05), a total of 1,750 genes
were differentially expressed between Cd-stressed and
control plants. Of these genes, only 247 and 103 genes
were up- and down-regulated in Weisuobuzhi, while
there were 3.6- (898) and 6.9-fold (710) more genes up-
regulated and down-regulated in Dongl7, respectively
(Additional file 2: Figure S1 and Additional file 3: Table S2).
Further comparing the transcriptome responses to Cd
stress between the two genotypes, these 1,750 differen-
tially regulated genes were classified into eight groups
(Additional file 3: Table S2). The genes in Group I and
Group II were highly induced by Cd only in Weisuobuzhi
(Figure 2, Additional file 4: Table S3 and Additional file
5: Table S4). Genes in Group III showed no change in
Weisuobuzhi and were down-regulated in Dongl7
(Additional file 6: Table S5). Group IV represented 156
genes that showed up-regulated expression patterns
in both genotypes (Additional file 7: Table S6). The
genes in Groups V, VI and VII were down-regulated in
Weisuobuzhi (Additional file 8: Table S7, Additional file 9:
Table S8 and Additional file 10: Table S9). The genes in
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Figure 1 Cellular localisation of Cd** in barley roots. Barley roots were exposed to 0, 5, 50 and 500 uM Cd for 15 days before staining with
Leadamium™ Green AM. Representative micrographs show the binding of Cd** to Leadamium™ Green AM dye at longitudinal (A) and cross (B)

section of root tips of barley genotypes Weisuobuzhi and Dong17. Scale bars =250 um. Line graphs show relative Cd”* fluorescence density from
longitudinal (C) and cross (D) section of root tips. Data are means + SD (n = 3).

Group VIII were un-regulated in Weisuobuzhi but up- related to stress and defence responses, there were also
regulated in Dong17 (Additional file 11: Table S10). functional genes encoding a number of carbohydrate

Here, we focused on the genes in Groups I, II and III, metabolism related proteins and several transcription
which are more likely to play crucial roles for Cd tolerance  factors, along with a diverse set of enzymes and trans-
in barley. Along with these differentially regulated genes porters (Figure 3; Additional file 12: Figure S2,
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(See figure on previous page.)

Figure 2 Cd-induced differential gene expression in leaves of two barley genotypes. Heat map visualises the expression of genes up-regulated
in Weisuobuzhi and down-regulated and not changed in Dong17 (Cd vs control) after Cd exposure for 15 d. The contig IDs and annotations are listed
on the right. Red, green and black indicate genes that increased, decreased and showed equal levels of expression, respectively, as compared to the
control. The contig ID and annotation of each gene are listed on the right of the figure. The identity and accession numbers of genes are listed in

Additional file 4: Table S3 and Additional file 5: Table S4.
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Figure 3 Functional categorisation and differential expression
of Cd stress-regulated genes in barley leaves. Functional
categorisation was performed according to the agriGO methods.
Pie charts show the distribution of different functional genes after
exposing the plants to 5 uM Cd for 15 days. (A) up-regulated in
Weisuobuzhi and down-regulated and not changed in Dong17
(Groups I and II); (B) not changed in Weisuobuzhi and up-regulated
in Dong17 (Group Ill); (C) up-regulated in both genotypes (Group IV).

Additional file 3: Table S2, Additional file 4: Table S3,
Additional file 5: Table S4, Additional file 6: Table S5,
Additional file 7: Table S6, Additional file 8: Table S7,
Additional file 9: Table S8, Additional file 10: Table S9 and
Additional file 11: Table S10). Therefore, functional cat-
egorisation of these genes may provide clues to the un-
derstanding of physiological and molecular mechanisms
involved in Cd stress response. The data pertinent to
Cd tolerance were presented in the following sections
(Additional file 4: Table S3, Additional file 5: Table S4
and Additional file 6: Table S5).

Key genes for Cd tolerance are highly expressed only in
the Cd-tolerant genotype

These genes were up-regulated in Cd-tolerant genotype
Weisuobuzhi (W-up) and down- (D-down) or un-regulated
(D-none) in Cd sensitive genotype Dongl7 (Additional file
4: Table S3 to Additional file 5: Table S4, Figure 3A).
Group I included 7 genes encoding key enzymes for nitro-
gen catabolism such as asparaginase and C13 endopeptid-
ase NP1 precursor. The 84 genes in Group II were up-
regulated after Cd treatment in Weisuobuzhi but showed
no change in Dongl7 (Additional file 5: Table S4). Of
these, there were 6 signal transduction related genes (e.g.
the gene encoding 23 KD jasmonate-induced protein 1),
11 stress and defence response related genes (such as
the genes encoding catalase isozyme 2, peroxidase, and
chitinase 2), 10 carbohydrate and fat metabolism related
genes (e.g. the gene encoding acetyl-CoA synthetase).
Additionally, the expression of 10 transporter genes (e.
g. the genes encoding vacuolar ATP synthase, 16 kDa
proteolipid subunit and putative lipid transfer protein)
under Cd stress was up-regulated in Weisuobuzhi but
showed no change in Dongl7.

Key genes for Cd-tolerance are down-regulated only in
the Cd-sensitive genotype

The majority of the 692 genes in Group III were respon-
sible for stress and defence response, transport, transcrip-
tion and signal transduction (Additional file 6: Table S5,
Figure 3B). For instance, the salicylic acid (SA), jasmonate
(JA), ethylene (ET) and Ca" induced genes were all signifi-
cantly down-regulated in Cd-sensitive genotype Dongl7,
but were not affected in Weisuobuzhi after 15 d of Cd ex-
posure, with the exception of a 23 kDa JA-induced protein
that was up-regulated in Weisuobuzhi (Additional file 5:
Table S4 and Additional file 6: Table S5). There were 2
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isoforms of GST showing differential expression in both
genotypes (Additional file 6: Table S5). Genes encoding ni-
trate (NRaT) and nitrite (NRiT) transporters, as well as a
gene encoding dehydrins (late embryogenesis abundant,
LEA) were down-regulated in Dongl7 but remained un-
changed in Weisuobuzhi. Heat shock proteins (HSPs)
were highly down-regulated under Cd stress in Dongl7.

gRT-PCR confirms expression pattern of the microarray
The expression data obtained from microarray analysis
was further confirmed using qRT-PCR. The expression
profile of eleven differentially expressed genes that were
related to Cd tolerance in the two genotypes is shown in
Figure 4. The expression patterns were similar, although
the qRT-PCR-based relative expression of those genes
did not exactly match the fold changes found in the
microarray analysis.

Biochemical and physiological validation of the roles of
key genes in Cd tolerance

To test whether the higher levels of transcripts in
Weisuobuzhi are linked to Cd tolerance in barley, we
conducted a series of assays on enzyme activity (Figure 5,
Table 1), DNA damage (Figure 6), ethylene emission
(Table 1) and essential nutrients (Table 2). Overall, the
microarray and qRT-PCR data were in good agreement
with these biochemical and physiological results.

In comparison to the control, Cd stress resulted in sig-
nificant increases in the activity of H*-, Na*K*-, Ca®>*Mg**-
and total-ATPase of 217%, 140%, 104%, and 143% in
Weisuobuzhi, but those numbers were only 80%, 74%,
69% and 72% for Dongl7, respectively (Figure 5).
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Moreover, Cd stress caused a 110% increase in GST ac-
tivity in Weisuobuzhi but no statistically significant
change was observed in Dongl7 (Table 1). The signifi-
cant increase of chitinase activity under Cd stress was 1.7-
fold higher in Weisuobuzhi than that in Dong17 (Table 1).

DNA appeared as densely condensed structured re-
sembling a bead and no DNA damage was observed in
both genotypes in the control (Figure 6). However, Cd
stress induced a marked increase in DNA damage in
the Cd-sensitive genotype Dongl7. Moreover, Cd stress
led to a significant increase in ethylene emission in
both genotypes. However, the rate of ethylene emission
was significant higher in Weisuobuzhi than that in
Dongl7 (Table 1).

Cd treatment resulted in a significant decrease of leaf
Ca®* concentration, which was 2.0-fold higher for Dong17
in contrast to Weisuobuzhi. Cd stress caused an 11.0%
decrease of K* content in Dongl7, but no significant
difference was observed in Weisuobuzhi. Surprisingly,
Na' content was also markedly reduced under Cd stress
in both genotypes (Table 2).

Discussion

Comparative transcriptome analysis reveals key genes
associated with Cd tolerance

In barley, no molecular evaluation of Cd tolerance
mechanisms has been fully explored so far. This study
used large-scale transcript profiling to examine cellular
processes affected by Cd stress in leaves of Cd-tolerant
Weisuobuzhi and Cd-sensitive Dongl7. A number of
key genes have been shown to be induced or repressed
differently in the two contrasting barley genotypes under
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Cd stress. Based on these identified Cd-responsive genes,
we propose an integrated schematic diagram of the mech-
anisms involved in Cd tolerance and adaptation (Figure 7)
and a specific model for compartmentalization (Additional
file 13: Figure S3), which may provide novel clues towards
the characterisation of molecular mechanisms underlying
Cd tolerance in barley.

Detoxification genes are largely responsible for Cd
tolerance in barley

One aspect of Cd tolerance and adaptation is the ability
to scavenge Cd-induced reactive oxygen species (ROS)
in order to protect membranes and other macromolecules
[3]. Antioxidant enzymes, such as catalase (CAT) and

Table 1 Effects of 15 d of Cd treatment on ethylene
emission and the activities of glutathione S-transferases
(GST) and chitinase in leaves of two barley genotypes

Treatment Ethylene emission GST Chitinase
(nLg' FW h™) (unit g™ FW)  (unit g~' FW)

Weisuobuzhi

Control 0.042c 95.2b 172.1¢

5 uM Cd 1.136a 200.1a 218.1a

(+35.6%)* (+4.2%) (+16.1)

Dong17

Control 0.019¢ 210.8a 162.3¢

5 uM Cd 0.838b 192.0a 187.8b

FW, fresh weight; Different lowercase letters indicate significant difference
at P <0.05 level (n=4). ¥, relative increase (+) percentage calculated by 100
*(Weisuobuzhi-Dong17)/Dong17 under Cd stress.

CuZn-superoxide dismutase (SOD), play key roles in
scavenging ROS under heavy metal stress [23]. GST in-
cludes a family of potent detoxification enzymes, and is
thought to contribute to the primary cellular defence
against oxidative stress [24]. In this study, the ex-
pression levels of the genes encoding CAT2 and CuZn-

‘Weisuobuzhi
y O

Control Cd

o

Dong17

Figure 6 Visualisation of DNA damage in leaves of two barley
genotypes. Representative images are shown for samples in the
control and after 15 d of 5 uM Cd treatment (n = 3). Scale bars =
50 pm.




Cao et al. BMC Genomics 2014, 15:611
http://www.biomedcentral.com/1471-2164/15/611

Page 10 of 14

Table 2 Effects of 15 d of Cd treatment on Ca®*, Na*, and K* content in leaves of two barley genotypes

Treatment Ca** (g kg™’ DW) Na* (g kg™' DW) K* (g kg™' DW) Na*/K* (%)
Weisuobuzhi

Control 6.30a 1.76b 89.4ab 1.97b

5uM Cd 5.55b 1.23d 86.8b 142¢

(+18.3%)* (—18.0%) (+7.2%) (—23.6%)

Dong17

Control 6.16ab 2.08a 91.0a 229

5 uM Cd 4.69¢ 1.50c 81.0c 1.86b

DW, dry weight; Different lowercase letters in each column indicate significant difference at P < 0.05 level (n =4). *, relative increase (+)/reduction (-) percentage

calculated by 100 *(Weisuobuzhi-Dong17)/Dong17 under Cd stress.

SOD confirmed the higher enzyme activity in Weisuo-
buzhi in our previous publication [19]. Also, higher
transcripts of GST found in both microarray and qRT-
PCR were matched by a significantly elevated GST activ-
ity in Weisuobuzhi as compared to a small decrease in
Dongl7 (Table 1; Figure 4; Additional file 5: Table S4 and
Additional file 6: Table S5). As a result, Dongl7 accumu-
lated more O,’, H,O, and MDA than Weisuobuzhi [19].
Membrane bound enzyme ATPases provide energy
and an H" gradient for the co-transport of copper, cobalt,
lead, and Cd with protons for the detoxification of these

metal ions in plants [25,26]. Cation antiporter activity
driven by vacuolar ATPase-dependent proton motive force
contributes significantly to the detoxification of Cd via
vacuolar compartmentalisation in plants [27]. In this
study, transcripts of V-ATPase were significantly ele-
vated in Weisuobuzhi but showed no change in Dongl7
(Additional file 5: Table S4). In addition, we validated
the microarray data using biochemical analysis with sig-
nificantly higher Cd-induced H*-, and Ca**Mg>*-ATPase
and much larger Cd-induced increase in Na'K"- and
total-ATPase activities in Weisuobuzhi (Figure 5).
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DNA methylation is an important modification of
DNA that plays a key role in gene regulation, DNA rep-
lication and repair, and chromatin determination [28].
In the present study, Cd significantly inhibited DNA
methyltransferase in Dongl7 but showed no change in
Weisuobuzhi, which represented a 2.6-fold higher rela-
tive expression of this gene in Weisuobuzhi (Additional
file 6: Table S5). In addition, Cd stress induced a marked
increase in DNA damage to the Cd-sensitive genotype
Dongl7 (Figure 6). Phytochelatins are widely accepted
as a major agent of plant detoxification and tolerance to
Cd stress [7] and a lack of PC synthase activity resulted
in an increased sensitivity to Cd [29]. Our previous research
has shown that genotypic differences in Cd tolerance were
positively linked to the elevation of PCs in rice [30]. In this
study, transcripts of PC synthase were significantly inhib-
ited in Dong17, while no change was found in Weisuobuzhi
(Additional file 6: Table S5). In summary, the results dem-
onstrated that Cd-tolerant Weisuobuzhi is more capable to
scavenge Cd-induced ROS by increasing the activity of anti-
oxidant enzymes, to maintain DNA structural stability and
protect the normal DNA methylation, and to sequester
more Cd** to vacuole to reduce Cd toxicity.

Membrane transport genes modulate ion homeostasis for
Cd tolerance

Cd affects the distribution of nitrogen, but nitrogen
could be recycled and be translocated as a Cd protection
and storage strategy [31]. Li et al. [32] reported that nitrate
transporter NRT1.8-regulated nitrate distribution plays an
important role in Cd tolerance. In addition, inwardly recti-
fying K" channels (IRK) contributes to cellular K" homeo-
stasis in higher plants [33]. In the present study, the genes
encoding transporters for nitrogen (NRaT and NRiT) and
potassium (IRK) were significantly decreased in Dongl?
but remained unchanged in Weisuobuzhi (Additional
file 6: Table S5). Cd stress also induced a significant
decrease of K* content in Dongl7 but no change in
Weisuobuzhi (Table 2), indicating a role for IRK in the
reduced K* uptake in Dongl17. Moreover, ABC transporters
are involved in the homeostasis of organic anions, heavy
metals, xenobiotics and lipids [34], including vacuolar
compartmentalisation of Cd [35]. The ABC transporters
of Arabidopsis, ACMRP3 and AtATM3, have been shown
to confer Cd resistance [35,36]. AtPDRS is a Cd extrusion
pump conferring Cd and Pb resistance [34]. However,
the genes encoding ABC transporters, in this study,
were significantly inhibited in Dongl7 while not af-
fected in Weisuobuzhi (Additional file 6: Table S5).
Therefore, a higher Cd accumulation in Weisuobuzhi
(Figure 1) did not affect its overall Cd tolerance, but ra-
ther supported the hypothesis that more Cd is trans-
ported into the vacuoles of Weisuobuzhi, alleviating Cd
toxicity to the cytoplasm.
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As a result, these data enable us to generate a specific
model on key components of vacuolar compartmentalisation
for Cd tolerance (Additional file 13: Figure S3). Interest-
ingly, ten key genes found to be down-regulated in the
Cd-sensitive Dongl7, were unchanged in Weisuobuzhi.
All these highlighted that the high Cd accumulation in
Weisuobuzhi (Figure 1; Chen et al. [1]) is linked with
expression patterns of those specific genes involved in
vacuolar compartmentalization, which is one of the
most crucial strategies for Cd tolerance in plants.

Hormonal and Ca?* signal transduction related genes are
important for Cd tolerance

Phytohormones such as SA, JA and ET play fundamental
roles via signalling crosstalk in abiotic stresses in plants
[37]. For instance, Cd stress triggered an accumulation
of ET in bean [38]. It has also been suggested that ET
signalling pathways affect the early phase of Cd stress
response, and l-aminocyclopropane-1-carboxylic acid
oxidase (ACO) catalyses the last step of ET biosynthesis
in Arabidopsis [14]. Transcripts of ACO was markedly
increased in Weisuobuzhi but was no change in Dongl7
(Additional file 5: Table S4). ET activates stress-responsive
genes in the hormonal signalling cascade against Cd
toxicity. However, transcripts of ET-induced proteins
were all significantly decreased in Dongl7 (Additional
file 6: Table S5). Cd-induced ET emission was also lower
in Dongl7 compared to that in Weisuobuzhi, which
was consistent with the transcripts of ACO (Table 1;
Additional file 5: Table S4). These results may suggest
that Weisuobuzhi is more likely to defend itself against
Cd stress through ET signalling. Meanwhile, Ca®*-binding
protein calmodulin (CAM) transduces second messenger
signals into a wide range of cellular responses [39].
Accumulation of Cd** may compete with cellular Ca**
for CAM binding sites [40]. Under Cd stress, there
was significantly less leaf Ca®* in Dongl7 than that in
Weisuobuzhi (Table 2). Our results showed that Cd in-
duces more signal molecules and activate Cd responsive
genes more rapidly in Cd-tolerant Weisuobuzhi than
those in Dongl7. This difference again contributes to the
high Cd-tolerance of Weisuobuzhi.

Carbohydrate metabolism related genes regulate cell wall
structure for Cd tolerance

Cell wall, consisting of cellulose, hemicelluloses and pec-
tin, which contain carboxyl, hydroxyl and aldehyde, can
sequester a substantial amount of Cd under Cd stress [5].
For instance, Cosio et al. [41] found Cd binding in leaf cell
wall could play a major role in Cd tolerance and hyper-
accumulation in Thlaspi caerulescens and Arabidopsis
halleri. Xiong et al. [42] found that 200 uM Cd mark-
edly decreased the pectin and hemicellulose content in
rice root cell wall. Glycosyl hydrolases (GH) are also
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essential for the modification of cell wall polysaccha-
rides [43]. In the present study, GH and GT were found
to be down-regulated in Dong17, but showed no change
in Weisuobuzhi. Hence, Weisuobuzhi could maintain
normal cell wall synthesis, remodelling and modifica-
tion, and consequently have the capacity to accumulate
much higher Cd at the cell wall (Figure 1), therefore re-
ducing Cd toxicity to the cytoplasm.

Defence and DNA replication related genes are critical for
Cd tolerance

Chitinases are components of plant defences against high
concentrations of heavy metals such as Cd and As [44].
Chitinase 2 genes showed significant up-regulation under
Cd stress in Weisuobuzhi (Additional file 5: Table S4),
which was confirmed by the elevated chitinase activity
(Table 1). Moreover, Cd affects cell cycle progression,
differentiation, DNA replication and repair [45]. Histones
such as H2B may be able to repair heavy metal-induced
DNA damage in plant cells [46,47]. In the current study,
transcripts of H2A, H2B, H3 and H4 were all significantly
down-regulated in Dongl7 but were not modified in
Weisuobuzhi (Additional file 6: Table S5). Also, genes
encoding DNA replication related proteins (e.g. DNA
binding protein, polymerase and origin recognition
complex subunit 4) were all significantly inhibited in
Dongl7 under Cd stress, while no change was found in
Weisuobuzhi (Additional file 6: Table S5). Considering
the significant Cd-induced DNA damage found in Dong
17 (Figure 6), we thus suggest that defence and DNA
replication related proteins like Chitinases and histones
could be key determinants for Cd tolerance in barley.

Cd-responsive miRNAs showed a negative link to the
expression of key genes in this study

miRNAs are a large family of small non-coding RNAs that
negatively regulate mRNA at the post-transcriptional level
[48]. Establishing a link between published miRNAs in the
literature and our microarray data could provide a better
understanding and validation to further investigate the key
genes in Cd tolerance in plants. We identified 13 genes,
showed significant negative correlation (r*=0.441;
P <0.001) between the microarray data (Additional
file 14: Table S11) and different miRNA families [48-51].
The results demonstrated combination of microarray and
miRNA analysis could narrow down the number of candi-
date genes conferring Cd tolerance from thousands to
tens, providing a promising outlook for future functional
analysis of these genes.

Conclusions

The use of genome-wide transcriptome analysis highlights
novel integrated molecular mechanisms associated with
Cd-tolerance. Our results are potentially important for the
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characterisation of molecular mechanisms underlying Cd
tolerance in barley. We demonstrated that Cd-tolerant
Weisuobuzhi (1) is more capable to scavenge Cd-induced
ROS; (2) is able to maintain ion homeostasis and sequester
more Cd into the vacuoles via the ABC transporters and
ATPase; (3) has higher efficiency in ET and Ca** signal
transduction; (4) maintains normal cell wall function; and
(5) expresses defence and DNA replication related pro-
teins for Cd tolerance in barley. These distinct differences
in gene expression profiles, biochemical and physiological
functions between Cd-tolerant and -sensitive genotypes
will provide critical information for extending our
knowledge and guiding our future investigations into
the candidate genes and proteins underlying Cd toler-
ance in barley.
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