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Abstract: Over the past decades, the development of nano-scale electronic devices and high-density
memory storage media has raised the demand for low-cost fabrication methods of two-dimensional
(2D) arrays of magnetic nanostructures. Here, we present a chemical solution deposition methodology
to produce 2D arrays of cobalt ferrite (CFO) nanodots on Si substrates. Using thin films of four
different self-assembled block copolymers as templates, ordered arrays of nanodots with four different
characteristic dimensions were fabricated. The dot sizes and their long-range arrangement were
studied with scanning electron microscopy (SEM) and grazing incident small-angle X-ray scattering
(GISAXS). The structural evolution during UV/ozone treatment and the following thermal annealing
was investigated through monitoring the atomic arrangement with X-ray absorption fine structure
spectroscopy (EXAFS) and checking the morphology at each preparation step. The preparation
method presented here obtains array types that exhibit thicknesses less than 10 nm and blocking
temperatures above room temperature (e.g., 312 K for 20 nm diameter dots). Control over the average
dot size allows observing an increase of the blocking temperature with increasing dot diameter.
The nanodots present promising properties for room temperature data storage, especially if a better
control over their size distribution will be achieved in the future.

Keywords: chemical solution deposition; block copolymer; 2D arrays; cobalt ferrite; nanodot;
ferrimagnetic

1. Introduction

High-density ordered arrays of magnetic nanodots have attracted much interest due to their
potential applications in areas such as nano-scale electronic devices, high-density data storage media
and biochips [1–5]. Due to its good chemical and thermal stability, large magnetocrystalline anisotropy
and large magnetostriction [6–8], the inverse spinel cobalt ferrite (CFO) has been recognized as a
promising candidate for such arrays. Although widely fabricated in nanocrystal forms, ordered CFO
nanodot arrays supported by substrates were not extensively studied. The reported fabrication methods
for CFO nanodot arrays include thin-film patterning [9], nanoparticle self-assembly [2,10,11] and
templated deposition [12–14]. Thin-film patterning involves a combination of lithography and etching
steps, which typically require expensive lithography equipment and/or multiple processing steps.
In nanoparticle self-assembly, nano arrays are directly formed from pre-synthesized nanoparticles. This
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approach faces challenges in mechanical stability and large-area single layer formation. In the templated
deposition, the pattern is generated during the material deposition. The previously reported templated
deposition approaches for CFO nanodots either require expensive deposition techniques such as pulsed
laser deposition (PLD) [12,14], or costly templating techniques such as electron beam lithography [13].
A low-cost fabrication method which does not suffer from the aforementioned drawbacks is highly
demanded. Block copolymer thin films have been widely used as templates for nanostructure
deposition [15,16] and can be combined with low-cost solution deposition methods. One example is
polystyrene-block-poly(ethylene oxide) (PS-b-PEO) templated chemical solution deposition, which has
been used to fabricate a variety of oxide nanodots [17–22]. It does not suffer from the aforementioned
drawbacks and is low-cost, straight forward and versatile. It exploits the fact that metal ions can
selectively form a complex with PEO and hence be localized in the PEO phase [23,24]. Ordered
arrays of PEO cylinders either standing up or laying on the substrate can be induced by solvent
vapor annealing (SVA) [25–30]. Although highly ordered arrays of superparamagnetic Fe3O4 and
Fe2O3 nanodots [18,20] have been produced, the blocking temperature (Tb), at which the nanodots go
through the transition from ferrimagnetic to superparamagnetic, is relatively low (115 K for 20 nm
diameter dots), which largely limits their applications in memory storage devices. Raising the blocking
temperature to above room temperature is, thus, key to create application opportunities. Here we
extend this deposition approach to cobalt ferrite (CFO) nanodots. Various dot sizes and separations
were obtained from PS-b-PEO thin films with different phase dimensions. Owing to the larger magnetic
anisotropy of CFO, Tb of the obtained nanodots are greatly enhanced compared to the values for
Fe3O4 [20]. In addition, scanning electron microscopy (SEM) and X-ray absorption fine structure
spectroscopy (EXAFS) studies across different preparation steps shed more light on the structural
evolution during the preparation.

2. Materials and Methods

All materials were used as received without further purification. Si wafers with (100) surface
planes and approximately 2 nm native oxide surface layer were purchased from Microchemicals GmbH
(Ulm, Germany) and used as substrates. Iron (III) acetylacetonate (99.9%), cobalt (II) acetylacetonate
(97%) and CoFe2O4 powder (30 nm particle size, 99% trace metals basis) were purchased from
Sigma-Aldrich (Zwijndrecht, The Netherlands). All solvents used were of ACS reagent grade.
Polystyrene-block-poly(ethylene oxide) (PS-b-PEO) with various block lengths was purchased from
Polymer Source, Inc. (Dorval (Montreal) Quebec, Canada). The different block lengths studied and
their naming codes in this article are listed in Table 1.

Table 1. Name codes, number average molecular weights (Mn) and the polydispersity index (PDI) of
polystyrene-block-poly(ethylene oxide) (PS-b-PEO) block copolymers.

Polymer Code Mn,PS (kg/mol) Mn,PEO (kg/mol) PDI

SEO-26k 19 6.5 1.09
SEO-49k 38 11 1.06
SEO-89k 63 26 1.07

SEO-136k 102 34 1.18

Si wafers were cut into 1 cm × 1 cm pieces and cleaned by ultrasonication in acetone and then
toluene for 15 min each and dried with compressed air. PS-b-PEO BCPs were dissolved in toluene
and stirred for 12 h, yielding a 1 wt % solution. The solutions were filtered (0.2 mm, PTFE filter)
and spin-coated onto the silicon wafers at 2900 rpm for 30 s, with an acceleration rate of 1450 rpm/s.
The films were subsequently transferred into a closed 40 mL vessel containing one or two solvent
reservoirs (3 mL each). The two solvent reservoirs were used to generate a mixed vapor inside the SVA
chamber. The vessel was kept in an oven at 50 ◦C for 2 h in toluene vapor, or 1 h in the mixed vapor,
to enable the self-assembly of the polymer chains.
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Iron (III) acetylacetonate and cobalt (II) acetylacetonate were first dissolved separately in anhydrous
methanol and combined afterward to yield an 11 mg/mL precursor solution. After solvent vapor
annealing, BCP thin films were immersed in the precursor solution for 40 min at 40 ◦C and dried with
compressed air afterward. The remaining precursor salt on the backside of the wafers was carefully
wiped off with ethanol-wetted tissues. The ion-incorporated films were treated with UV/ozone in a
Novascan PSDP UV/Ozone cleaner (Boone, IA, USA) to pre-oxidize the precursor and remove the major
part of the polymer templates. A two-step high-temperature treatment was subsequently performed
in air. The samples were heated up with 10 ◦C/min rate to 600 ◦C, kept at temperature for 30 min,
then heated to 950 ◦C with the same rate and kept there for 1 h, before being cooled naturally in air.
The fabrication procedure is schematically illustrated in Figure 1.
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Figure 1. Schematic representation of the fabrication process of the cobalt ferrite (CFO) nanodots.
Abbreviations: PEO, poly(ethylene oxide); PS, polystyrene; UV/O, ultraviolet/ozone.

Atomic force microscopy (AFM) measurements were carried out on a Veeco Dimension V scanning
probe microscope (Plainview, NY, USA). Veeco RTESPW tips (resonant frequency 267–294 kHz, spring
constant 20–80 N/m) were used in the tapping mode. Software WxSM (Version 4.0 Beta 9.1, Madrid,
Spain) was used to analyze the obtained AFM images [31]. SEM images were obtained with a Philips
XL30 ESEM, using 5 kV (20 kV) acceleration voltage for BCP films (CFO nanostructures). To reduce
the charging effect, the SEM samples were typically coated with a 4 nm Pt/Pd (80:20) layer via
Ar+ sputtering.

Grazing incidence small-angle X-ray scattering (GISAXS) was performed at the MINA beamline
at the University of Groningen. The instrument is based on a Cu rotating anode (X-ray wavelength
of λ = 0.15413 nm, photon energy of 8 keV) and has a beam dimension of about 0.5 mm. The used
sample-to-detector distance is about 3 m and incident angles ranging from 0.15◦ to 0.25◦ were
used. Two-dimensional patterns were acquired using a Vantec2000 Bruker detector (Leiderdorp,
The Netherlands) and 2D GISAXS patterns are presented as a function of the horizontal qy and vertical
qz scattering vector, with qy = 2π

λ

[
sin

(
2θ f

)
cos

(
α f

)]
and qz =

2π
λ [sin(αi) + sin

(
α f

)
], where 2θ f and α f

are the horizontal and vertical scattering angles, respectively. One-dimensional intensity cuts along
the horizontal qy and the vertical qz directions were extracted from the 2D diffraction pattern using
the FITGISAXS program in Igor Pro [32]. The fit of the 1D intensity cuts was achieved using the
same program and assuming a hemispherical shape to describe the nanodots supported on the SiO2

substrate [32,33]. The fitted variables were the scale factor, dot diameter, dot height, dot separation,
the full width half maximum (FWHM) of the Gaussian distribution for the dot diameter, and the
positional disorder factor which determines the peak width in the horizontal cuts and is related
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to the domain size. The dot diameter and the dot height were extracted by fitting the qy and qz

cuts, respectively. In order to achieve the best fitting results, the 1D cuts were first fitted using a
monodisperse model and later by introducing a dot size polydispersity. After 1D fitting was achieved,
fitting of the 2D patterns was performed. The polydispersity in the dot diameter was taken into
account for SEO-49k, SEO-89k and SEO-136k. In contrast, the SEO-26k dots were only fitted using the
monodisperse model.

Transmission electron microscopy (TEM) analysis was performed with a JEOL 2010F
(Nieuw-Vennep, The Netherlands), operated at 200 kV. TEM specimens were prepared by mechanical
grinding and Ar+ ion-polishing with a Gatan PIPS II.

Extended X-ray absorption fine structure (EXAFS) spectroscopy measurements were performed
at the DUBBLE 26A beamline of the European Synchrotron Radiation Facility (ESRF, Grenoble, France).
EXAFS spectra at the Fe K-edge (7112 eV) and Co K-edge (7709 eV) were acquired at liquid nitrogen
temperature inside a cryostat, to lower the thermal noise. The standard CFO nanopowder with
30 nm particle size was mixed with cellulose, ground and pressed into a thin pellet, then measured
in transmission mode. CFO nanodots grown on Si wafers were measured in the fluorescence mode,
at an incident angle of 45◦. The absorption coefficient µ(E) was calculated based on the ratio of
the transmission or fluorescence intensity to the intensity of the incident X-ray. Using the program
Viper, the beginning of the absorption edge E0 was identified and a smooth background µ0(E) was
fitted. The fitted background and the jump ∆µ0 at the edge were then used to calculate the EXAFS
fine-structure function χ (E), as

χ(E) =
µ(E) − µ0(E)

∆µ0

The spectra recorded in energy were converted into χ(k) spectra according to

k =

√
2m(E− E0)

}2

where k is the wave vector, m is the mass of an electron and } is the reduced Planck constant. The k2χ(k)
spectra and their Fourier transform in R-space are the forms presented in this work, where R is the
distance between the absorbing atom and its relevant neighboring atom.

GNXAS software was used to model the atomic environment around the absorbing atom. In this
approach, the local atomic arrangement around the absorbing atom is decomposed into model atomic
configurations containing 2, 3, ..., n atoms. The theoretical EXAFS signal χ(k) is given by the sum of
the two-body γ2, γ3, ..., γn, and η2, η3, ..., ηn three-body contributions, respectively, which take into
account all the possible single and multiple scattering (MS) paths between the n atoms. The fitting
of χ(k) to the experimental EXAFS signal allows refining the relevant structural parameters of the
different coordination shells. The suitability of the model is also evaluated by comparison of the
experimental EXAFS signal Fourier transform (FT) with the FT of the calculated k2χ(k) function. The fit
parameters that were allowed to vary during the fitting procedure were the coordination numbers (CN),
the distances R(Å), the Debye–Waller factors (σ) and the angles of the ηn contributions. The threshold
energy E0 was defined at 7.7089 and 7.112 keV for the Co and Fe K-edge, respectively.

According to the atomic arrangement of CFO in the inverse-spinel structure (space group Fd-3
m; a = b = c = 8.400Å) tetrahedral (site 1) and octahedral (site 2) sites are present in the structure
and interconnected to each other. Co and Fe atoms reside at the centers of the tetrahedrons and the
octahedrons, whereas O atoms occupy the corners. To fit the structure to the spectra, if we take the Co
edge as an example, four two-body configurations γ2 corresponding to the four-fold Co–O distance at
~1.9 Å, the six-fold Co–O at 2.06 Å, the six-fold Co–Co at 2.97 Å, and the twelve-fold Co–Co at 3.48 Å
were considered. To model the higher shells, three three-body ηn configurations, arising from the three
Co–O···M or O–Co···M alignments at 123◦, 153◦ and 120◦ with Co···M (M = Co or Fe) long distances
at ~3.64 Å (four-fold), ~5.14 Å (twelve-fold), and ~5.46 Å (eight-fold), respectively, were taken into
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account. The model used to analyze the data both at the Fe and Co K-edge, and the paths described
are sketched in Figure S1 (in Supplementary Materials).

X-ray photoemission spectroscopy (XPS) measurements were performed with a Surface Science
SSX-100 ESCA instrument with a monochromatic Al KαX-ray source (hν = 1486.6 eV). The measurement
was done at a pressure below 5 × 10−9 mbar. The spot size was 1000 µm. The energy resolution was set
to 1.26 eV and the electron take-off angle with respect to the surface normal was 37◦. The spectra were
analyzed using the least-squares curve-fitting program Winspec, developed at the LISE laboratory,
University of Namur, Belgium. A Shirley background was used. Binding energies are reported with a
precision of ±0.1 eV and referenced to the C1s peak at 284.6 eV [34,35].

Magnetic properties of the samples were investigated with a Quantum Design MPMS XL SQUID
magnetometer, using the reciprocating sample option (RSO). The M–T curves were obtained at 100 Oe
during heating the sample from 5 to 350 K at a rate of 5 K/min. Prior to the measurements, samples
went through either the FC (field-cooling) process, in which samples were cooled from 350 to 5 K
(10 K/min) in a 100 Oe field, or the ZFC (zero-field-cooling) process during which samples were
cooled from 350 to 5 K (10 K/min) in zero field. The diamagnetic contribution of the substrate was
deducted from the obtained M–H loops by fitting and subtracting the linear M–H background with a
negative slope. In some cases, the magnetization per cm3 is plotted instead of the total magnetization
of the sample. This was based on a rough estimation of the total volume (V) of the nanodots in one
sample using: V = areal density × dot volume. The areal density of dots on the substrate surface was
estimated from the SEM images by counting the number of nanodots per 0.5 µm2. The dot volume
was estimated using the dot height and average dot diameter, assuming a cylindrical dot shape. Thus,
the magnetization per unit volume obtained in this way is not an accurate value, but only a rough
number for qualitative comparison between samples.

3. Results and Discussion

The steps involved in the fabrication of the CFO nanodot arrays are illustrated in Figure 1.
Micro-phase separated BCP thin films were obtained by spin coating and annealed in a solvent vapor
to increase ordering and form hexagonally-packed PEO cylinders in a PS matrix [18,36]. Fe3+ and Co2+

ions were selectively loaded into the PEO blocks via immersion in the precursor solution. UV/ozone
treatment was then carried out to pre-oxidize the precursor and remove the major part of the polymer
templates. A subsequent two-step thermal treatment process at 650 and 900 ◦C was applied to further
oxidize the precursor, remove the rest of the polymer and induce crystallization of the nanodots.

3.1. PS-b-PEO Template Preparation

The morphologies of the four block copolymer thin films are shown by the AFM images in the
four rows in Figure 2, in which column 1, 2 and 3 depict the film morphology before SVA, after SVA in
toluene, and after SVA in a mixed vapor of toluene and water, respectively. The native SiO2 layer on
the substrate has a stronger interaction with PEO than with PS, due to the hydrogen bonding formation
between PEO and the small number of hydroxyl groups on SiO2 [37,38]. PS, on the other hand, prefers
to wet the free surface, owing to its lower surface tension than the PEO block at 50 ◦C [20]. However,
in the pristine film, a disordered quasi-cylindrical morphology was formed, with PEO cylinders (dark)
embedded inside the PS matrix (bright). This observation is in agreement with what was reported in
literature and can be explained considering the alignment effect of the field gradient created by fast
solvent evaporation during spin-coating [36].
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SVA in a toluene + water mixed vapor at 50 °C for 1 h, respectively. The scale bars are 100 nm. 
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subsequent UV/ozone (UVO) treatment was applied to simultaneously decompose the polymer 
template and pre-oxide the ions located within the PEO cylindrical domains. The effect of UVO 
treatment time on the nanodot fabrication is demonstrated by the SEM images of the ion-loaded SEO-
89k templates after UVO (see Figure 3). Before UVO treatment (0 min), soaking in the precursor 
solution did not disrupt the template morphology (Figure 3a). The appearance of protrusions in 
Figure 3b gives the first indication that the metal ions have undergone a chemical reaction (i.e., 
became oxidized after 10 min UVO treatment). The residual polymer was further decomposed, and 
the inorganic dots became clearer and clearer in the SEM images as the treatment time increased to 
30 min and further to 60 min. After UVO treatment, nanodots were thermal-annealed (TA) at 600 °C 
for 30 min, then at 950 °C for 1 h. Without UVO, the ordered structure of the polymeric template was 

Figure 2. Atomic force microscopy (AFM) images of BCP templates from (a–c) SEO-26k; (d–f) SEO-49k;
(g–i) SEO-89k; (j–l) SEO-136k. Columns 1, 2 and 3 list the film morphology before solvent vapor
annealing (SVA), after SVA in toluene at 50 ◦C for 2 h, and after SVA in a toluene + water mixed vapor
at 50 ◦C for 1 h, respectively. The scale bars are 100 nm.

After SVA in toluene for two hours, films from the two shorter BCPs (SEO26k and SEO49k) were
found to transform into a highly ordered arrangement of hexagonally-packed cylinders (Figure 2b,e).
For the two longer BCPs (SEO89k and SEO136k), however, PS largely replaced PEO on the film surface,
yielding a PS-rich surface (Figure 2h,k). Although the solubility parameter differences of PS-water
(δH2O−δPS = 47.9−18.6 = 29.3 MPa1/2) and PEO-water (δH2O−δPEO = 47.9−20.2 = 27.7 MPa1/2) [39]
are both large, PEO can easily dissolve in water due to the hydrogen bonding formation. Adding
water into the SVA vapor could, therefore, enhance the free-surface affinity of PEO blocks, forming
an arrangement poorer than the hexagonally-packed cylinder arrangement as observed in Figure 2i,l.
Based on these results, for CFO nanodot preparation, templates from the two shorter BCPs were treated
in toluene vapor for 2 h, while the longer BCPs were treated in toluene/H2O mixed vapor for 1 h.
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3.2. CFO Nanodot Fabrication

Soaking of the BCP thin films in the methanol precursor solution of iron (III) acetylacetonate and
cobalt (II) acetylacetonate allows Fe3+ and Co2+ ions to be selectively loaded into the PEO blocks.
A subsequent UV/ozone (UVO) treatment was applied to simultaneously decompose the polymer
template and pre-oxide the ions located within the PEO cylindrical domains. The effect of UVO
treatment time on the nanodot fabrication is demonstrated by the SEM images of the ion-loaded
SEO-89k templates after UVO (see Figure 3). Before UVO treatment (0 min), soaking in the precursor
solution did not disrupt the template morphology (Figure 3a). The appearance of protrusions in
Figure 3b gives the first indication that the metal ions have undergone a chemical reaction (i.e., became
oxidized after 10 min UVO treatment). The residual polymer was further decomposed, and the
inorganic dots became clearer and clearer in the SEM images as the treatment time increased to 30 min
and further to 60 min. After UVO treatment, nanodots were thermal-annealed (TA) at 600 ◦C for 30 min,
then at 950 ◦C for 1 h. Without UVO, the ordered structure of the polymeric template was disrupted
during TA before the polymer decomposed, resulting in a film of polydisperse CFO nanoparticles with
a lower degree of order, as illustrated by Figure 3e.
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Figure 3. Scanning electron microscopy (SEM) images of the ion-loaded SEO-89k templates after UV/O3

treatment. The treatment durations are 0 min for (a,e); 10 min for (b,f), 30 min for (c,g); and 60 min
for (d,h). Images in the first row are from samples before thermal annealing (TA), and in the second
row is after TA. The scale bars are 100 nm.

SEM images of the nanodots prepared from four BCP templates on silicon substrates are shown
in Figure 4a. Except for that from the SEO-26k template, nanodot arrays prepared from the other
three BCPs all made excellent replications of the PEO cylinder arrays in the original BCP templates.
In SEO-26k-templated samples, the dot arrangement appears irregular with many dots missing, while
for the SEO-49k-templated samples a much more uniform distribution of dots is observed. The same is
true for samples with the other two BCP templates. It seems reasonable to assume that ions at the
positions of those missing dots were carried away when the template decomposed, a phenomenon,
which seems to occur preferentially for smaller and more close-packed dots.



Polymers 2019, 11, 1598 8 of 17
Polymers 2019, 11, x FOR PEER REVIEW 8 of 17 

 

 

 
(a) 

 
(b) (c) 

Figure 4. (a) SEM images from CFO nanodots (scale bar 100 nm). The text in the white boxes reports 
the BCP template name (Table 1) used to prepare the CFO dot assemblies. (b) The corresponding 
experimental and simulated 2D grazing incident small-angle X-ray scattering (GISAXS) patterns. (c) 
The corresponding 1D GISAXS patterns along the qy direction together with the best-fit curves in red. 
The blue arrow in the 1D pattern of SEO-26k is a visual aid for a broad diffraction peak. 

The experimental and simulated 2D GISAXS patterns are depicted next to the corresponding 
SEM images in Figure 4b. The corresponding 1D patterns along the qy axis are plotted in Figure 4c, 
together with the best-fit curves (in red). Dots from SEO-49k give three diffraction signals located at 
0.20, 0.35 and 0.40 nm−1, which correspond to row to row distances of 31.4, 18.0 and 15.7 nm, 
respectively. The relationship between the three peak positions is 1:1.73:2.00, which is approximately 1: √3: 2, suggesting a hexagonal packing arrangement of the dots in the plane parallel to the substrate. 
On the contrary, in samples produced from SEO-89k and SEO-136k templates only one broad peak 
is visible. This is consistent with the poor ordering of the BCP templates from high molecular weight 
polymers. In the case of the samples templated with SEO-26k, close inspection reveals two distinct 
lattices, one well-ordered lattice giving rise to the sharp peak located at 0.22 nm−1 that originates from 
the interference between scattering from the neighboring rows of dots, and another broad and weak 

Figure 4. (a) SEM images from CFO nanodots (scale bar 100 nm). The text in the white boxes reports
the BCP template name (Table 1) used to prepare the CFO dot assemblies. (b) The corresponding
experimental and simulated 2D grazing incident small-angle X-ray scattering (GISAXS) patterns.
(c) The corresponding 1D GISAXS patterns along the qy direction together with the best-fit curves in
red. The blue arrow in the 1D pattern of SEO-26k is a visual aid for a broad diffraction peak.

A precise determination of the diameter of the dots from the SEM images is hampered by the size
modification induced by the conductive surface coating. TEM measurements could provide precise
dot shape parameters but involve time-consuming and disruptive sample preparation procedures.
Moreover, SEM informs only on the local dot arrangement at a selected spot of a few micrometers.
GISAXS instead does not require special sample preparation, is undisruptive and relatively time-efficient,
and is, therefore, the technique of choice to study the average dot arrangement in a large area
(several mm2) with simultaneous estimation of the object diameter and height. This estimation is
particularly relevant here since the nanodots grow close to each other and AFM tips very often cannot
reach the bottom of the space between the dots, making the height parameters from AFM unreliable.
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The experimental and simulated 2D GISAXS patterns are depicted next to the corresponding
SEM images in Figure 4b. The corresponding 1D patterns along the qy axis are plotted in Figure 4c,
together with the best-fit curves (in red). Dots from SEO-49k give three diffraction signals located
at 0.20, 0.35 and 0.40 nm−1, which correspond to row to row distances of 31.4, 18.0 and 15.7 nm,
respectively. The relationship between the three peak positions is 1:1.73:2.00, which is approximately
1:
√

3:2 , suggesting a hexagonal packing arrangement of the dots in the plane parallel to the substrate.
On the contrary, in samples produced from SEO-89k and SEO-136k templates only one broad peak is
visible. This is consistent with the poor ordering of the BCP templates from high molecular weight
polymers. In the case of the samples templated with SEO-26k, close inspection reveals two distinct
lattices, one well-ordered lattice giving rise to the sharp peak located at 0.22 nm−1 that originates from
the interference between scattering from the neighboring rows of dots, and another broad and weak
peak (indicated by the blue arrow) located at around 0.12 nm−1, which we propose to associate to
scattering from the superlattice formed by groups of dots, separated by vacancies from missing dots.
The distance corresponding to this second peak is around 52.9 nm, suggesting an average distance of
around 1.8 rows between the groups of dots in the superlattice.

The GISAXS data could be successfully simulated using a model of hemispherical CFO particles
supported on Si (see Figure 4b). The excellent agreement between the experimental and simulated
curves along the qz direction (Figure S2 in Supplementary Materials) and the good prediction of
the first order peak position along the qy direction indicate a reasonable selection of the modeling
parameters. Since the model for the SEO-26k-templated dots does not take into account the missing
dots, the simulated curve does not include the second peak (indicated by the blue arrow) at low angles.
The discrepancy at low angles for the SEO-49k-templated dots most probably originates from the
undesired precipitates on the sample surface during sample preparation. The best fit results for the
horizontal intensity cuts and for the vertical intensity cuts are reported as the red curves in Figure 4 and
Figure S2 (in Supplementary Materials), respectively. The good quality fit of the GISAXS vertical cuts
along the qz direction also allows for a precise deduction of the dot height. The structural parameters
extracted from fitting the GISAXS patterns are summarized in Table 2 (more details in Table S1 in
Supplementary Materials).

Table 2. Structural parameters deduced from the fit of the experimental GISAXS results, where inter-row
distance is the center-to-center distance between two rows of dots.

Template SEO-26k 1 SEO-49k SEO-89k SEO-136k

Inter-row distance (nm) 29.0 30.8 ± 4.0 46.5 ± 9.7 53.8 ± 26.9
Diameter (nm) 20.1 20 ± 2.6 26.3 ± 5.5 30 ± 15

Height (nm) 7.3 6.7 ± 0.9 8.6 ± 1.8 9.0 ± 4.5
1 Since a monodisperse model was used for fitting, no variations of the simulation results were calculated from the
nanodots prepared from the SEO-26k template.

3.3. Structural Analysis of CFO Nanodots

Figure 5 shows the TEM images of the SEO-49k-templated dots on the Si substrate, prepared using
the same conditions as above, except for a soaking time of 2 min. Such a short soaking time yielded
dots with smaller height and diameter than the usual 40 min-soaked samples. Each dot is a single
crystal, as seen from the high magnification images in the insets. However, crystalline orientations of
different nanodots are not unified. This makes the dot arrays practically polycrystalline.
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CFO nanodots obtained from SEO-49k template. The insets are the high-magnification images.

Since the TEM images only analyze a small number of dots and the small dot size and polycrystalline
orientation makes X-ray diffraction characterization of the crystalline structure difficult, we chose
X-ray absorption fine structure spectroscopy (XAFS) to gain insight into the detailed structure of
the nanodots.

The k2χ(k) spectra at the Co and Fe K-edge for samples at different preparation stages are
presented in Figures 6a and 6c, respectively. Their corresponding FT magnitudes are plotted against R
in Figure 6b,d. To make them easier to compare, the plots are shifted vertically, and some are multiplied
by a scaling factor, as indicated by the numbers written above the corresponding spectrum. From
bottom to top, the spectra are as follows: the ion-loaded BCP template before UVO, after UVO, after
UVO and TA at 200 ◦C, after UVO and TA at 400 ◦C, after UVO and TA at 600 ◦C, after UVO and TA
at 600 then 950 ◦C, and the commercial CFO nano powder. The four vertical dashed lines in the Co
K-edge FT spectra mark the peak positions for I: Co1–O and Co2–O, II: Co2

···M2, III: Co2
···M1, Co1

···M2,
Co1
···O and Co2

···O and IV: Co2
···M2 [40–44], where M represents Co or Fe, and the superscripts 1

and 2 represent respectively the tetrahedral site and the octahedral site (see Figure S1 in Supplemtary
Materials) in the inverse spinel unit cell, respectively. At the Fe K-edge, the peak positions are I: Fe1–O
and Fe2–O, II: Fe2

···M2, III: Fe2
···M1, Fe1

···M2, Fe1
···O and Fe2

···O and IV: Fe2
···M2 [40–44].

Due to the lack of mobility below 400 ◦C, the atoms are not able to rearrange efficiently to form
long-range order, only one (Co edge) or two (Fe edge) oscillations are observed. No structure change is
evident for the samples annealed at 200 ◦C. After annealing at 400 ◦C, two new oscillations around
5 and 6.3 Å−1 appear at the Co edge, resulting in the emergence of peak II and III in the FT spectra,
indicative of longer-range order. When the temperature is raised to 600 ◦C, the II to III peak ratio
at Co edge increases, more oscillations at both Co and Fe K-edge arise, and peak IV in FT spectra
starts to appear, pointing to an improved crystalline structure. After annealing at 950 ◦C the atomic
arrangement is further perfected. The oscillations and FT magnitudes become almost identical to the
CFO commercial nanopowder, suggesting an inverse spinel crystalline structure of the nanodots.

The EXAFS spectra from the commercial CFO nanopowder and the final nanodots (annealed
at 950 ◦C) were energy-calibrated, averaged and further analyzed using the GNXAS software.
The simulation curves are plotted in Figure 6 as solid red lines, which fit the experimental results very
well for both the standard and the nanodots. The two-body and three-body simulation results at the
Co K-edge are listed in Tables 3 and 4, respectively, those at the Fe K-edge are listed in Tables S2 and S3
(in Supplementary Materials). The atomic distances are in good agreement with the literature values
for the inverse spinel structure [40–44]. Nevertheless, the coordination numbers (CNs) for both the
standard and the nanodots are smaller than the theoretical values for the inverse spinel structure. This
is a result of the high surface to volume ratio in nanoparticles, implying that there are more surface
atoms with fewer nearest neighbors. The smaller CNs of the nanodots than those in the standard
at the Co edge confirm the smaller dimensions of the nanodots (~7 nm × 20 nm) compared to the
nanoparticles in the powder used as standard (30 nm × 30 nm). At the Fe edge, the coordination
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numbers of the nanodots are comparable to the standard. This suggests a larger amount of Co than Fe
residing on the dot surface.
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Figure 6. X-ray absorption fine structure spectroscopy (EXAF) signals at (a) Co K-edge and (b) Fe
K-edge. The corresponding Fourier transform magnitudes (FT magnitudes) at (c) Co K-edge and (d) Fe
K-edge for samples at different preparation stages. All plots share the same sample sequence and color
code. The solid red lines are the simulation results. The four dashed vertical lines in (b,d) are used to
label the typical peak positions for different shells (see text).

Table 3. Two-body simulation results at Co K-edge of the CFO standard and the nanodots annealed at
600 ◦C and then 950 ◦C, where CN is the coordination number, R is the atomic distance, and σ is the
Debye–Waller factor indicating the static and thermal disorder of the shell.

Nanodots Commercial Nanopowder

Shell CN R (Å) σ2 (Å2) CN R (Å) σ2 (Å2)

Co1–O 2.5 1.90 0.001 3.6 1.85 0.10
Co2–O 4.6 2.05 0.010 5.4 2.04 0.007

Co2
···M2 4.6 2.97 0.005 5.4 2.94 0.005

Co2
···M1 4.6 3.52 0.010 5.4 3.43 0.010

Co1
···M2 7.5 3.44 0001 10.8 3.46 0.003
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Table 4. Three-body simulation results at Co K-edge of the CFO standard and the nanodots annealed
at 600 ◦C and then 950 ◦C.

Angles O–Co1–O O–Co1
···M2 O–Co2

···M1 M2
···Co2

···M2

Nanopowder θ (◦) 120 80.93 153.70 120.70
Nanodots θ (◦) 113.44 75.50 153.70 120.70

XPS measurements were then carried out to analyze the chemical composition and determine
the oxidation states. The photoemission spectral lines of the Fe 2p and Co 2p core-level regions are
plotted in Figures 7a and 7b, respectively. Each of the spin-orbit doublet Fe 2p3/2 and Fe 2p1/2 peaks is
accompanied by a weak shake-up satellite. The peak positions are listed in Table 5. The 7.9 eV splitting
between the Fe 2p3/2 peak (at a binding energy of 711.4 eV) and its satellite (at 719.3eV) points to a 3+

valence state for Fe; in fact, the typical satellite splitting for Fe3+ in oxides is 8~8.8 eV [45–49], while for
Fe2+ it is around 6 eV [46,50]. The shape and width of the Fe 2p3/2 peak indicate the presence of an
additional component due to the existence of two nonequivalent lattice sites (i.e., the tetrahedral and
octahedral sites in the inverse spinel structure). Deconvolution and fitting of the peaks suggest an
approximate occupation of 40% and 60% of the tetrahedral and octahedral sites, respectively.Polymers 2019, 11, x FOR PEER REVIEW 12 of 17 
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black open circles indicate the experimental data, the red solid lines are the fitted envelope. The different
fitted components are also plotted. A and B sites represent the tetrahedral and octahedral sites in the
inverse spinel crystal structure, respectively.

Table 5. Binding energy (B.E.), satellite peak position and the satellite splitting (S.S.) energy difference
of the XPS spectra. All numbers are in unit eV.

2p3/2 2p1/2

Range B.E. Satellite S.S. B.E. Satellite S.S.

Fe 711.4 719.3 7.9 724.8 733.4 8.6
Co 780.5 786.5 6.0 796.3 802.6 6.3

As expected, similar spectral components were observed at the Co 2p range: one spin-orbit
doublet (Co 2p3/2 and Co 2p1/2) followed by relatively strong shake-up satellite peaks. Here the 6.1
eV distance of the satellite (at 786.5 eV) from the Co 2p3/2 (at 780.5) testifies to a 2+ valence state,
given that the typical satellite splitting for Co3+ in oxides is 8.9~9.5 eV [51,52], while for Co2+ it is
5~6 eV [46,50]. The deconvolution [53] of the Co2+ 2p3/2 peak suggests that around 60% of Co2+

reside on the octahedral sites while 40% reside on the tetrahedral sites. The ratio between Fe/Co
ratio atomic percentages deduced from the photoemission intensities is 1:2. Therefore, the estimated
chemical composition of the solid solution is (Co0.6Fe0.7)(Co0.9Fe1.0)O4, where the parentheses denote
the tetrahedral site, and the square brackets denote the octahedral site. Due to the uncertainty of the
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modeling, this chemical composition is only a rough estimation. However, XPS verified the presence
of Co2+ and Fe3+ on both the octahedral and tetrahedral sites. Giesecke et al. [24] studied complex
formation in methanol between monodisperse polyethylene oxide (PEO) and a large set of cations
and found that polyvalent cations bind very weakly and give rise to different loadings. The Co/Fe
ratio change with respect to the feed could, therefore, be a result of a more efficient complexing of
Co2+ than Fe3+ during template soaking in the precursor. Nevertheless, the present composition is still
ferrimagnetic at room temperature, as will be discussed in the next section. Combining the results
from XPS and EXAFS, the inverse spinel cobalt ferrite crystalline structure composed of Co2+ and Fe3+

with an estimated composition of (Co0.6Fe0.7)[Co0.9Fe1.0]O4 was confirmed.

3.4. Magnetic Properties of the Nanodots

The in-plane magnetization curves from the nanodots with different sizes and separations are
shown in Figure 8. At room temperature, all samples exhibit a non-zero remnant magnetization, which
makes them potential candidates for room temperature data storage. Data showing the temperature
dependence of magnetization are plotted in Figure 9. At low temperature, a large separation between
the field-cooling (FC) curves (black) and the zero-field-cooling (ZFC) curves (red) is present, which
is additional proof for the presence of net magnetic moment. The two curves get closer as the
temperature rises and merge at temperatures close to 350 K. The maxima in the ZFC curves indicate the
superparamagnetic transitions at which the nanodots change from ferrimagnetic to superparamagnetic.
At this temperature (blocking temperature) the thermal energy is high enough to overcome the
magnetocrystalline anisotropy of the nanodots, flipping the dipoles from one easy direction to another
so quickly that the instrument cannot detect it. At temperatures higher than blocking temperature the
M–H hysteresis disappears, and the remnant magnetization goes to zero. The magnetic parameters
extracted from the measurements are listed in Table S4 (in Supplementary Materials). The blocking
temperatures for all four nanodot sizes are above room temperature, and are much higher than the
values (e.g., 150 K for 25 nm nanodots) reported for the magnetite nanodots prepared with a similar
procedure [20]. This is a result of the higher magnetocrystalline anisotropy of cobalt ferrite (anisotropy
constant K1 in the order of 106 ergs/cm3) than magnetite (K1 in the order of −103 ergs/cm3) [54].
As expected, the coercive field (Figure 8) and blocking temperature (Figure 9) are higher for bigger
dots, because of the higher magnetocrystalline anisotropy energy (KV) for the larger dot volume (V).
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4. Conclusions 

In conclusion, we report here on the preparation of arrays of ferrimagnetic cobalt ferrite (CFO) 
nanodots using the block copolymer templated chemical solution deposition approach. Different size 
and separation of the CFO nanodots were achieved by simply changing the polymer molecular 
weight. A general characterization flow for such super-thin oxide nanodots, which proved 
challenging to characterize, was illustrated. The arrangement and the dimensions of the CFO dots 
were studied by SEM and GISAXS. For some of the produced samples, GISAXS showed successful 
achievement of ordered 2D hexagonal lattices. Atomic arrangement study by EXAFS on different 
preparation stages offered rich details on the relationship between UV/ozone treatment, thermal 
annealing temperatures and events in the dot formation. 

The obtained CFO nanodots, with four different sizes, were all ferrimagnetic at room 
temperature. Due to the higher magnetocrystalline anisotropy [54] the smallest nanodots showed 
blocking temperature Tb (310 K) much higher than the value (150 K) of the magnetite nanodots 
prepared with similar procedures [20]. Blocking temperatures for bigger dots were higher because of 
the higher magnetocrystalline anisotropy energy (KV) for larger dot volume (V). These relatively 
high blocking temperatures render them as promising candidates for memory storage applications. 
Following this direction, one can expect to obtain arrays of ferromagnetic/ferrimagnetic nanodots 
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higher magnetocrystalline anisotropy. 
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Figure 9. Temperature dependence of the in-plane magnetization for nanodots prepared from
(a) SEO-26k, (b) SEO-49k, (c) SEO-89k and (d) SEO-136k. The black and red curves are the field-cooling
and zero-field-cooling curves, respectively.

It is worth noting that the measured curves are an overall response from all the dots.
At a temperature range lower than the blocking temperature, some dots are already going through the
transition to the superparamagnetic state, while some others are not. That is why the transition peak is
so broad. This behavior is expected considering the broad size distribution revealed by the GISAXS
data. To have more predictable and stable performance as memory storage media it is important to
have a sharper transition at a higher temperature. Without having to sacrifice the areal density, this
could be achieved by improving the size distribution, increasing the dot thickness, or switching to a
material with higher magnetocrystalline anisotropy.

4. Conclusions

In conclusion, we report here on the preparation of arrays of ferrimagnetic cobalt ferrite (CFO)
nanodots using the block copolymer templated chemical solution deposition approach. Different size
and separation of the CFO nanodots were achieved by simply changing the polymer molecular weight.
A general characterization flow for such super-thin oxide nanodots, which proved challenging to
characterize, was illustrated. The arrangement and the dimensions of the CFO dots were studied by
SEM and GISAXS. For some of the produced samples, GISAXS showed successful achievement of
ordered 2D hexagonal lattices. Atomic arrangement study by EXAFS on different preparation stages
offered rich details on the relationship between UV/ozone treatment, thermal annealing temperatures
and events in the dot formation.

The obtained CFO nanodots, with four different sizes, were all ferrimagnetic at room temperature.
Due to the higher magnetocrystalline anisotropy [54] the smallest nanodots showed blocking
temperature Tb (310 K) much higher than the value (150 K) of the magnetite nanodots prepared with
similar procedures [20]. Blocking temperatures for bigger dots were higher because of the higher
magnetocrystalline anisotropy energy (KV) for larger dot volume (V). These relatively high blocking
temperatures render them as promising candidates for memory storage applications. Following



Polymers 2019, 11, 1598 15 of 17

this direction, one can expect to obtain arrays of ferromagnetic/ferrimagnetic nanodots with even
higher blocking temperature by increasing the dot height and using materials with even higher
magnetocrystalline anisotropy.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/11/10/1598/s1,
Figure S1: Schematic representation of the spinel structure; Figure S2: 1D GISAXS plots along the qz direction of
the CFO nanodots prepared from different templates; Table S1: Structural parameters obtained from the simulated
and experimental GISAXS results; Table S2: Two-body simulation results at Fe K-edge of the CFO standard and
the nanodots annealed at 950 ◦C; Table S3: Three-body simulation results at Fe K-edge of the CFO standard and
the nanodots annealed at 950 ◦C; Table S4: Magnetic parameters of the nanodots.
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