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Construction and evaluation 
of two computational models 
for predicting the incidence of 
influenza in Nagasaki Prefecture, 
Japan
Fei He1,2, Zhi-jian Hu1,2, Wen-chang Zhang2,3, Lin Cai1, Guo-xi Cai4,5 & Kiyoshi Aoyagi6

It remains challenging to forecast local, seasonal outbreaks of influenza. The goal of this study was to 
construct a computational model for predicting influenza incidence. We built two computational models 
including an Autoregressive Distributed Lag (ARDL) model and a hybrid model integrating ARDL with 
a Generalized Regression Neural Network (GRNN), to assess meteorological factors associated with 
temporal trends in influenza incidence. The modelling and forecasting performance of these two models 
were compared using observations collected between 2006 and 2015 in Nagasaki Prefecture, Japan. In 
both the training and forecasting stages, the hybrid model showed lower error rates, including a lower 
residual mean square error (RMSE) and mean absolute error (MAE) than the ARDL model. The lag of log-
incidence, weekly average barometric pressure, and weekly average of air temperature were 4, 1, and 3, 
respectively in the ARDL model. The ARDL-GRNN hybrid model can serve as a tool to better understand 
the characteristics of influenza epidemic, and facilitate their prevention and control.

Influenza virus is the most common cause of acute respiratory illness1. Although influenza infection is usually 
self-limiting, it affects all age groups around the world and cause severe complications in high-risk individuals 
such as children, the elderly and those with chronic medical conditions. In Japan, influenza was designated in 
1947 as a notifiable disease under the Japanese Communicable Disease Prevention Law, and systematic surveil-
lance of influenza/influenza-like illness started in 1981. It has also been designated as a notifiable disease to be 
reported from sentinels (Category 4b) under the Infectious Disease Control Law in Japan since 19992. To date, the 
dominant viruses causing influenza endemics in Japan include influenza A subtype H3N2 (since 1977), influenza 
A subtype H1N1 (since 1988), and influenza B. A prominent example of recent influenza pandemic in Japan is the 
influenza A (H1) pdm09, which first occurred in 2009 and affected 25 million people. Influenza has continued to 
impose a significant impact on the Japanese population through the 2010/2011 and 2013/2014 seasons3.

The prevalence of seasonal influenza epidemics is associated with many different factors such as virus varia-
tion, climate and environmental changes, and public health interventions including vaccination. The transmission 
pattern of influenza and its seasonal variation have long been reported worldwide4. Over the past two decades, 
efforts have been made to develop mathematic models to analyze the characteristics of influenza epidemics, and, 
more importantly, to forecast outbreaks. The most widely used models for influenza forecasting include the time 
series autoregressive integrated moving average (ARIMA) model, generalized linear regression (GLM) model, 
and Bayesian network. Forecasting the timing, extent and duration of influenza outbreaks will be invaluable in 
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guiding planning and implementing effective intervention measurements. However, accurate forecasting remains 
highly challenging. The 2009 Google Flu Trends (GFT) article5 was highly- publicized. However, in 2014 Lazer et 
al. reported that the number of influenza-like outpatients reported by nation-wide CDC laboratory monitoring in 
2013 was twice that predicted by GFT prediction service compared by using CDC, which came to the conclusion 
from laboratory-based monitoring reports across America, indicating the failure of the GFT was recognized as a 
defective model6, because of big data hubris and change of algorithm dynamics. Key words that employed by GFT 
model may thought having nothing to do with influenza. For example, when “fever” was searched, the key word 
as “flu” would be suggested. In addition, recommended search could also add the searched frequency of certain 
popular words. The relative high-frequency key words would always be used by GFT, therefore search engine 
algorithms would produce adverse effect on forecast results of GFT.

In this study, we constructed two mathematical models including an auto-regressive distributed lag model 
(ARDL) and a hybrid model integrating ARDL with a generalized regression neural network (GRNN), designated 
as ARDL-GRNN. We validated the capacity of these two models to model and forecast influenza incidence, using 
influenza incidence data collected in Nagasaki prefecture between 2006 and 2015 by the Japanese infectious dis-
ease surveillance systems (http://www.nih.go.jp/niid/en/idsc-e.html). The performance of these two models was 
compared to identify the best influenza forecasting model.

Results
General characteristics of influenza incidences in Nagasaki, Japan.  Figure 1A shows weekly inci-
dence of influenza between 2006 and 2015 in Nagasaki, Japan. Influenza occurred in each of the 492 weeks or 123 
months surveyed, indicating that influenza infection occurs throughout the year, while incidence almost always 
peaks between November and January, or at least in winter and early spring. Figure 1B shows the transformed 
data, Nln-incidence of influenza, in Nagasaki.

Relationship between influenza Nln-incidence and meteorological factors.  To assess the rela-
tionship between influenza Nln-incidence and meteorological factors we used the Spearman’s rank correlation 
test as meteorological factors were non-normally distributed. Nln-incidence of influenza correlated statistically 
significantly with each of the 13 meteorological factors surveyed except for hours of sunshine per week and 
weekly average of cloud cover per week (Table 1). In addition, we built a regression model to further analyze the 
relationship of influenza Nln-incidence with factors, such as weekly average air temperature, precipitation, wind 
speed, barometric pressure, and relative humidity.

This regression model was significant (F = 178.40, P < 0.001). We observed a strong correlation between influ-
enza incidence and weekly average air temperature (t = −6.777, P < 0.001), weekly average barometric pressure 
(t = 2.015, P = 0.044). These observations indicate that an increase in air temperature of 1 °C was associated with 
a reduction in influenza incidence of 0.0413 units; an increase of 1 Pa in weekly average barometric pressure was 
associated with an 0.0109 unit increase in incidence. Therefore, we constructed the ARDL model using weekly 
average air temperature and weekly average barometric pressure.

The best-fitting ARDL model.  First, we performed the augmented Dickey–Fuller (ADF) test according 
to SC criterion with unit root in level data and included an intercept in the equation. We found that the time 
series data of the Nln-incidence of influenza (t = −6.313, P = 0.010), weekly average air temperature (t = −7.596, 
P = 0.010), and weekly average barometric pressure (t = −7.572, P = 0.010) were all stationary series.

Figure 1.  (A) The sequence chart of the influenza incidence in Nagasaki prefecture from the 14th week of 2006 
to the 36th week of 2015. (Black lines represent the weekly incidence of influenza; Red lines represent the yearly 
incidence of influenza). (B) The sequence chart of the influenza Nln-incidence and influenza ln-incidence in 
Nagasaki prefecture from the 14th week of 2006 to the 36th week of 2015. (Black lines represent the year Nln-
incidence of influenza; Red lines represent the year ln-incidence).

http://www.nih.go.jp/niid/en/idsc-e.html
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Then we chose to construct an ARDL model to analyze these time series data. Using the bounds testing 
approach of cointegration relationships, the F-statistic was 15.532, which far exceeded even the 1% critical value 
for the upper bound (I0 = 5.15, I1 = 6.36). Accordingly, we assumed a long-run relationship between variables.

Before the model was built, the key parameter of lag order should be confirmed. According to the criterion 
of adjusted R2 we set four as the maximum dependent lags and determined the lag order for each series variable 
after evaluating 100 models (Supplementary Table 1). In total, 100 ARDL models were evaluated, the ARDL 
(4,1,3) model remained. While 20 models performed well, the ARDL model (4,1,3) (Table 2) in which the lag of 
Nln-incidence was four, the lag of weekly average barometric pressure was one, and the lag of weekly average air 
temperature was three, was selected for further analyses (Fig. 2). Based on the ARDL (4,1,3) model, the weekly 
average air temperature (P < 0.001) and weekly average barometric pressure (P = 0.0027) were significantly asso-
ciated with the incidence of influenza (Table 3). The formula for the error-correction model was expressed as: the 
Nln-incidence of influenza − (0.0735 × weekly average barometric pressure + 0.1172 × weekly average air tem-
perature + 1.1271) (F = 1547.405, adjusted R2 = 0.9727, AIC = −3.015 and SC = −2.912) (Table 3). We found that 
that the current Nln-incidence of influenza was significantly associated with the Nln-incidence of influenza four 
weeks prior, average barometric pressure one weeks prior, and weekly average air temperature three weeks prior.

ARDL-GRNN hybrid model.  Because the lag order of Nln-incidence of influenza was four and only the 
weekly incidence between the 18th week of 2006 and the 35nd week of 2014 were predicted by the ARDL model. 
The resulting prediction data and their corresponding time values were fed into the GRNN model. To determine 
the optimal spread factor, the Nln-incidence data of the 1st week of 2008 and the 30th week of 2013 were randomly 
selected as testing samples. In principle, if the RMSE for the testing samples is the least, the spreading factor will 
be the best-fitting. To find the minimum RMSE, we set the spread factor between 0.01 and 0.2 with an interval 
of 0.001 to avoid overfitting. Through trial and error we determined that the spread factor of 0.013 was associ-
ated with the lowest RMSE for the testing samples (Fig. 3). Hence, we set up the GRNN model with the RMSE 
2.48 × 10−4.

To test the forecasting capacities of the ARDL-GRNN hybrid model, the predicted incidence values generated 
by the ARDL (4,1,3) model for the period from the 36th week of 2014 to the 36th week of 2015 were used as the 
input. The resulting forecasted incidence values were compared with actual observed data as described below.

Comparison of modelling and forecasting performance.  Figure 4 illustrates the comparison of the 
fitting degree and forecasting performance of the ARDL and ARDL-GRNN models. Both models fitted and pre-
dicted the observed incidence of influenza well. In both the modelling and forecasting stage, the ARDL-GRNN 
hybrid model showed lower error rates including the RMSE and MAE compared to the ARDL model (Table 4).

Discussion
In the current study, we established two computational models, the ARDL and ARDL-GRNN, and evaluated their 
performance in modelling and forecasting influenza incidence using influenza incidence data and meteorological 
data in Nagasaki Prefecture, Japan. The ARDL-GRNN hybrid model models and forecasts influenza incidence 
better than the ARDL model. To the best of our knowledge, this is the first study to integrate ARDL and GRNN to 
identify the best model for forecasting influenza incidence. The performance of the ARDL-GRNN model suggests 
that it can serve as a tool to better understand the characteristics of epidemics, and facilitate the prevention and 
control of influenza.

The most frequently used time series analysis method is the ARIMA model, also known as the Box-Jenkins 
model7, which was originally developed for econometric and environmental time series analyses, and has been 
expanded to various new models such as seasonal ARIMA and fractional ARIMA. Many infectious diseases, 
including influenza, exhibit secular trends and seasonal variation due to pathogen strain variation, climate, soci-
oeconomic changes, and health interventions including vaccination. The ARIMA model, including its expanded 
versions, has become a popular tool in the epidemiological analysis of infectious diseases8, 9. Usually, this model 

Meteorological actors M (P25-P75) Spearman’s rank correlation coefficient P

average weekly air temperature 17.18(10.30–23.21) −0.665 <0.001

average weekly daily maximum air temperature 20.99(13.83–26.18) −0.652 <0.001

average weekly daily minimum air temperature 13.86(6.93–20.68) −0.672 <0.001

highest air temperature per week 23.70(17.32–28.45) −0.642 <0.001

lowest air temperature per week 10.92(3.75–18.75) −0.670 <0.001

weekly precipitation 22.70(5.97–52.99) −0.131 0.006

maximum precipitation per week 16.25(4.34–37.77) −0.128 0.007

duration of sunshine per week 33.54(23.43–44.99) −0.065 0.175

average weekly wind speed 3.41(2.94–3.84) 0.256 <0.001

maximum wind speed per week 9.62(8.49–10.67) 0.280 <0.001

average weekly barometric pressure 13.73(8.30–23.19) −0.645 <0.001

average weekly relative humidity 73.40(67.50–80.60) −0.473 <0.001

weekly average of cloud cover per week 6.80(5.50–8.04) −0.077 0.109

Table 1.  The relationship between the log-incidence of influenza and the meteorological factors.
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is used for fitting without independent variables and relies on retrospective dependent variable data. Additive 
models are required to study other factors that may affect the incidence or mortality of a specific disease. About 
20 studies have been published describing the GLM model or generalized additive models as standard models for 
analyzing the relationship between influenza epidemics and environmental factors10. Also, other time-series data, 
such as wavelet analysis, has also been used for influenza forecasting11.

We speculated that the influence of weather conditions on influenza epidemics involved a temporal lag, so 
we selected the ARDL model proposed by Pesaran and Shin12, 13 as the base for our model. The ARDL model has 
seldom been used in infectious disease epidemiology. One advantage is suitable for time series data analysis with 
a small sample size. Additionally, the other advantage of yielding consistent estimates of the long-run coefficients 
that are asymptotically normal irrespective of whether the underlying regressors are I(1) or I(0).

Secular trends and seasonal variation are crucial contributors to influenza incidence (Fig. 1). We constructed 
the ARDL model based on the multiple linear regression (MLR) ordinary least-squares (OLS) methods14, and 
found that the current incidence of influenza could be affected by the air temperature three weeks prior and 
barometric pressure one week prior. Although the incubation time for influenza virus was only two days, this 
time lag highlighted the delay between virus infection personally and observed incidence shifts of influenza in 

Variable Coefficient Standard Error t-Statistic P

Nln-incidence of influenza (−1) 1.267491 0.048202 26.29540 <0.001

Nln-incidence of influenza (−2) −0.245196 0.077996 −3.143685 0.0018

Nln-incidence of influenza (−3) −0.033365 0.074708 −0.446602 0.6554

Nln-incidence of influenza (−4) −0.056554 0.044652 −1.266554 0.2060

barometric pressure 0.002365 0.001961 1.205900 0.2285

barometric pressure (−1) 0.002607 0.001966 1.326359 0.1854

average weekly air temperature −0.003733 0.002441 −1.528967 0.1270

average weekly air temperature (−1) −0.011915 0.002535 −4.700947 <0.001

average weekly air temperature (−2) 0.005619 0.001704 3.298203 0.0011

average weekly air temperature (−3) 0.002103 0.001429 1.471199 0.1420

Fixed regressors 0.076219 0.012589 6.054227 0.0000

R-squared 0.973330 Mean dependent var 0.314721

Adjusted R-squared 0.972701 S.D. dependent var 0.320280

S.E. of regression 0.052918 Akaike info criterion −3.015187

Sum squared resid 1.187330 Schwarz criterion −2.912132

Log likelihood 666.8032 Hannan-Quinn criter. −2.974513

F-statistic 1547.405 Durbin-Watson stat 2.017523

Prob (F-statistic) <0.001

Table 2.  The parameters of selected ARDL (4,1,3) model.

Figure 2.  The top 20 ARDL ordered by adjusted R2. The ARDL model lag of Nln-incidence of influenza was 
four, the lag of weekly average barometric pressure was one and the lag of weekly average air temperature was 
three. The adjusted R2 value was chosen to determine the optimal lag order of the variables in ARDL model.
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population. It was reported that the time lag between changes in influenza incidence and changes in temperature 
and barometric pressure need at least 1–3 weeks15. Moreover, as a result of geographical factors, the Mongolia cold 
high pressure impacts the weather in Nagasaki Prefecture16. When the temperature is colder, the air pressure is 
higher, and spreads more easily17.

To overcome the possibility that the ARDL model may not efficiently extract non-linear characteristics of 
weekly incidence data, we sought to construct a hybrid model by integrating ARDL with GRNN. In contrast 
to the back-propagation neural network (BPNN)18, GRNN includes a special form of the radical basis function 
neural network in the training stage, which has several advantages over BPNN, including a fast training time, easy 
parameter settings, and great stability. The spread factor plays an important role in function approximation. On 
the one hand, a lower spread factor leads to a steeper radial basis function, thus yielding fitting values closer to the 
actual values, but with poor generalization. On the other hand, a greater spread factor can make the fitting curve 
smoother, but weakens performance. In the modelling training process, we determined the optimal spread factor 
following the method of Specht19. Since the time series data for influenza incidence in Nagasaki showed a strong 
seasonal variation and secular trend, we believed it necessary to use the time values as GRNN inputs. Our com-
parative analysis revealed that the ARDL-GRNN model had a higher prediction accuracy than the ARDL-ECM 
model that used only the estimated weekly incidence values. Our results agree with published studies in which 
integration of GRNN into other models such as ARIMA, allowed improved modelling and forecasting accuracy 
in studies of infectious disease and environmental health20, 21.

However, our conclusions are limited by the scope of this study. As recently reported22, when analyzing time 
series data, we are confronted with five issues including changes in immune population, strong autocorrelations, a 
wide range of plausible lag structure and association patterns, seasonality adjustments, and large over-dispersion. 

Variable Coefficient
Standard 
Error t-Statistic P

Long-run coefficients

average weekly air temperature −0.117198 0.028129 −4.166445 <0.001

average weekly barometric pressure 0.073526 0.024407 3.012577 0.0027

intercept 1.127094 0.130090 8.663950 <0.001

Error-correction model

D (the log-incidence of influenza (−1)) 0.335115 0.046407 7.221250  < 0.001

D (the log-incidence of influenza (−2)) 0.089919 0.047041 1.911494 0.0566

D (the log-incidence of influenza (−3)) 0.056554 0.044652 1.266554 0.2060

D (average weekly barometric pressure) 0.002365 0.001961 1.205900 0.2285

D (average weekly air temperature) −0.003733 0.002441 −1.528967 0.1270

D (average weekly air temperature (−1)) −0.005619 0.001704 −3.298203 0.0011

D (average weekly air temperature (−2)) −0.002103 0.001429 −1.471199 0.1420

ECM (−1) −0.067624 0.012261 −5.515528 <0.001

Table 3.  Long-run coefficient and error-correction of the ARDL model.

Figure 3.  Selection of the optimal spread of the ARDL-GRNN hybrid model in training samples. When the 
spread is 0.013, the RMSE (the red point) 2.48 × 10−4 of the training samples is the least. In principle, if the 
RMSE for the training samples is the least, the spread is the best.
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In our study, we focused on resolving the issue of seasonality and trends, and assessed the characteristics of asso-
ciation patterns and lag structure using the ARDL model. Our study involves influenza incidence data collected 
between 2006 and 2015, which covers the period of a global influenza epidemic (2009). Although the results of 
model-fitting met our expectations, we do not know the real impact of the 2009 global pandemic on the local 
epidemic in Nagasaki. We speculate that the accuracy of our model may be increased by excluding 2009 data, but 
this possibility awaits further investigation. Finally, this study is limited to only one prefecture and a relatively 
short time-frame. Clearly, further studies will be required to determine whether the ARDL-GRNN hybrid model 
could be adapted to assess influenza epidemiology in other regions or epidemiology of other infectious diseases.

Methods
Study area and data collection.  This study focused on the influenza incidence in the Nagasaki Prefecture 
of Japan. The Prefecture occupies an area of 4095.55 km2 and is located on the island of Kyushu, Japan between 
128.06°~130.23° East longitude and 31.59°~34.43° North latitude. Nagasaki is surrounded on three sides by the 
sea with the second longest coastline of any prefecture in Japan (4,203 km). The sea makes up the majority of the 
prefecture), and Nagasaki also contains many mountains, peninsulas, capes, bays, and bifurcation lakes. Of the 
595 islands in the prefecture, 73 are inhabited. Nagasaki has a typical oceanic climate, warm and rainy, with an 
average annual temperature of 18.0 °C and average annual rainfall of 1,464 mm.

Figure 4.  Comparison of actual, predicted and forecasted week incidence of influenza in Nagasaki prefecture, 
Japan. Training model includes: Actual weekly incidence of influenza by training model (A), Best-fitting 
ARDL training model (C), and ARDL-GRNN training model (E). Forecasting model includes: Actual weekly 
incidence of influenza by forecasting model (B), Besting-fitting ARDL forecasting model (D), and ARDL-
GRNN forecasting model (F).

Model

Training performance Forecasting performance

RMSE MAE RMSE MAE

ARDL 0.05224 0.03900 0.05124 0.04206

ARDL-GRNN 0.04730 0.03446 0.03453 0.02841

Table 4.  Comparison of the modeling and forecasting performance of ARDL and ARDL-GRNN models.
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The Japanese infectious disease surveillance system collects surveillance data for influenza and 26 other infec-
tious diseases23. We retrieved the weekly reported influenza incidence in Nagasaki prefecture between the 14th 
week of 2006 and the 36th week of 2015. Meteorological data for the same period (Fig. 5) were retrieved from the 
website of Japan Meteorological Agency (http://www.jma.go.jp).

All the diagnosis of influenza were performed in the hospital, using specific rapid detection kit. However, the 
diagnosis of type A or B influenza, and virus strain were not detected by the rapid kit. There are 70 stationary 
monitoring stations in the Nagasaki Prefecture, however, the subtypes of influenza were only monitored by 15 out 
of all 70 stations. During the non-pandemic period, the subtypes of influenza were only recorded for 15 cases per 
month (1 case for each station), and during the pandemic period the subtypes of influenza were recorded for 15 
cases per week (≥1 cases for each station). Nagasaki Prefecture influenza surveillance data was consistent with 
that collected elsewhere in Japan. The type and rate of influenza inoculation was also consistent to the country, 
according to the Japanese health ministry.

ARDL model construction.  The previously described ARDL12 model was adapted to predict the influenza 
incidence and evaluate the long term and short term relationship between incidence rate and different meteoro-
logical factors. The training model included 439 weeks of incidence data collected between the 14th week of 2006 
and the 36th week of 2014, and forecasting capacity was assessed using 53 weeks of data collected between the 36th 
week of 2014 and the 36th week of 2015.

The model construction workflow consisted of two steps. The first step was to transform the incidence rate of 
influenza into ln data to facilitate processing using the Normalization Method. The data was mapped to the 0~1 
range using the formula [Normalization ln-incidence (Nln-incidence = ln (incidence-0)/max(incidence-0)]. The 
correlation between various meteorological factors and the Nln-incidence was assessed using Spearman’s rank 
correlation and regression analyses. After determining the meteorological factors, the stationarity of the time 
series was estimated using the ADF Unit Root test.

The second step was to determine the optimal-fitting ARDL and use it to forecast the values of testing time 
points. First, we used the bounds testing approach to identify any cointegration relationship between the inde-
pendent variables and the dependent variables in the model, and their direction of action in the presence of 
cointegration. If the model passed the boundary value test, we estimated the long-term and short-term relation-
ship coefficient. The formula of the ARDL (

q q qp, , , l1 2 ) model was:

∑φ β δ= + + .=L P y L q x w u( , ) ( , ) (1)t i
k

i i it t t1

In which

φ φ φ φ= − − − L P L L L( , ) 1 (2)p
p

1 2
2

β β β β= − − − L q L L L( , ) 1 (3)l i i i
2

iq
q i

1 1 i

The long - term dynamic equation was:

Figure 5.  The sequence chart of meteorological data in Nagasaki prefecture from the 14th week of 2006 to the 
36th week of 2015. The weekly average air temperature (A); wind speed (B); relative humidity (C); barometric 
pressure (D); and weekly duration of sunshine (E); and weekly precipitation (F).

http://www.jma.go.jp
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In which n1 and n2 represent the lag order and MF represent the selected meteorological factors used to build 
the model. The short-term effect equation was:
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ECM is an error correction factor representing hysteresis. The coefficients estimated in Eqs (4) and (5) are 
significant only in the case of a cointegration relationship. It is necessary to determine the lag order in the model 
before estimating the long-term coefficients. According to the recommendation of Pesaran et al.13, we use the 
adjusted R2 criterion to determine the optimal lag order of the variables in the model, taking into account the 
length of the sample data, and the maximum lag order parameters were set as four using Eviews 9.0 (IHS, Inc. 
USA). Finally, the best-fitting ARDL was built and applied to forecast the whole complete cycle. The model 
goodness-of-fit was measured using root means square error (RMSE) and.

ARDL-GRNN model construction.  The ARDL-ECM described above can recognize linear relationships 
but not non-linear relationships. To overcome this limitation, we integrated the ARDL with the GRNN algorithm. 
The predicted weekly influenza Nln-incidence values from ARDL and their corresponding time values were fed 
into the GRNN model. The resulting data were compared with the actual observed weekly incidence values. Since 
the performance of GRNN depends primarily on the spread factor, we selected the optimal factor after multiple 
rounds of computation following the method reported by Specht19. Two samples randomly selected from the 
training data set were used as testing samples and all the remaining samples were employed to fit the GRNN 
model. This ARDL-GRNN hybrid pipeline allowed computation of both linear and non-linear relationships. To 
compare the prediction accuracy between ARDL and ARDL-GRNN, we estimated the error rates for both mod-
els, including the RMSE, mean absolute error (MAE).

All analysis were performed with R 3.3.0 (https://www.r-project.org/) and Eviews 9.0 (IHS, Inc. USA).

Data availability.  Please contact author for data requests.

References
	 1.	 Cox, N. J. & Subbarao, K. Influenza. Lancet 354, 1277–1282 (1999).
	 2.	 Okabe, N., Yamashita, K. & Inouye, K. T. Influenza surveillance system of Japan and acute encephalitis and encephalopathy in the 

influenza season. Pediatrics International 42, 187–191 (2000).
	 3.	 Murakami, Y. et al. Estimated Number of Patients with Influenza A (H1) pdm09, or Other Viral Types, from 2010 to 2014 in Japan. 

PloS one 11, e0146520 (2016).
	 4.	 Fox, J. P., Cooney, M. K., Hall, C. E. & Foy, H. M. Influenzavirus infections in Seattle families, 1975–1979. II. Pattern of infection in 

invaded households and relation of age and prior antibody to occurrence of infection and related illness. Am J Epidemiol 116, 
228–242 (1982).

	 5.	 Ginsberg, J. et al. Detecting influenza epidemics using search engine query data. Nature 457, 1012–1014, doi:10.1038/nature07634 (2009).
	 6.	 Lazer, D., Kennedy, R., King, G. & Vespignani, A. Big data. The parable of Google Flu: traps in big data analysis. Science 343, 

1203–1205, doi:10.1126/science.1248506 (2014).
	 7.	 Box, G. E., Jenkins, G. M., Reinsel, G. C. & Ljung, G. M. Time series analysis: forecasting and control (John Wiley & Sons, 2015).
	 8.	 Helfenstein, U. Box-Jenkins modelling in medical research. Statistical Methods in Medical Research 5, 3–22 (1996).
	 9.	 Hu, W. et al. Personal and Indoor PM2.5 Exposure from Burning Solid Fuels in Vented and Unvented Stoves in a Rural Region of 

China with a High Incidence of Lung Cancer. Environmental Science & Technology 48, 8456–8464 (2014).
	10.	 Schindeler, S. K. et al. Evaluation of alternative respiratory syndromes for specific syndromic surveillance of influenza and 

respiratory syncytial virus: a time series analysis. BMC infectious diseases 9, 190, doi:10.1186/1471-2334-9-190 (2009).
	11.	 Akay, M. Wavelet applications in medicine. IEEE spectrum 34, 50–56 (1997).
	12.	 Pesaran, M. H. & Shin, Y. An autoregressive distributed-lag modelling approach to cointegration analysis. Econometric Society 

Monographs 31, 371–413 (1998).
	13.	 Pesaran, M. H., Shin, Y. & Smith, R. J. Bounds testing approaches to the analysis of level relationships. Journal of applied econometrics 

16, 289–326 (2001).
	14.	 Srinivasan, P., Kumar, P. S. & Ganesh, L. Tourism and economic growth in Sri Lanka an ARDL bounds testing approach. Environment 

and Urbanization Asia 3, 397–405 (2012).
	15.	 Soebiyanto, R. P. et al. Associations between seasonal influenza and meteorological parameters in Costa Rica, Honduras and 

Nicaragua. Geospatial health 10 (2015).
	16.	 Hashizume, M. et al. Effects of Asian dust events on daily mortality in Nagasaki, Japan. Epidemiology 22, S130 (2011).
	17.	 Shaman, J. & Kohn, M. Absolute humidity modulates influenza survival, transmission, and seasonality. Proceedings of the National 

Academy of Sciences 106, 3243–3248 (2009).
	18.	 Jeatrakul, P. & Wong, K. In Natural Language Processing, 2009. SNLP’09. Eighth International Symposium on. 111–115 (IEEE).
	19.	 Specht, D. F. A general regression neural network. IEEE transactions on neural networks 2, 568–576 (1991).
	20.	 Zhou, Q., Jiang, H., Wang, J. & Zhou, J. A hybrid model for PM 2.5 forecasting based on ensemble empirical mode decomposition 

and a general regression neural network. Science of the Total Environment 496, 264–274 (2014).
	21.	 Zheng, Y.-L., Zhang, L.-P., Zhang, X.-L., Wang, K. & Zheng, Y.-J. Forecast model analysis for the morbidity of tuberculosis in 

Xinjiang, China. PloS one 10, e0116832 (2015).
	22.	 Imai, C., Armstrong, B., Chalabi, Z., Mangtani, P. & Hashizume, M. Time series regression model for infectious disease and weather. 

Environmental research 142, 319–327 (2015).
	23.	 Taniguchi, K. et al. Overview of infectious disease surveillance system in Japan, 1999–2005. Journal of Epidemiology 17, S3–S13 

(2007).

https://www.r-project.org/
http://dx.doi.org/10.1038/nature07634
http://dx.doi.org/10.1126/science.1248506
http://dx.doi.org/10.1186/1471-2334-9-190


www.nature.com/scientificreports/

9ScIENTIFIc Reports | 7: 7192  | DOI:10.1038/s41598-017-07475-3

Acknowledgements
We thank all the staff in Institute of Environmental Health of Nagasaki Prefecture, Japan for collecting data for the 
study. This study was supported in part by grants from the National Natural Science Foundation of China (No. 
81402738) and the projects of environmental science and technology of Fujian Province (No. 2015R012).

Author Contributions
F.H. and Z.-J.H. conceived and supervised the project. L.C., W.-C.Z. and K.A. supervised the project. F.H. and  
G.-X.C. developed the statistical analysis plan, collected and cleaned data. F.H. and Z.-J.H. conducted data 
analysis. F.H. wrote the manuscript. All authors read and approved the final manuscript.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-07475-3
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://dx.doi.org/10.1038/s41598-017-07475-3
http://creativecommons.org/licenses/by/4.0/

	Construction and evaluation of two computational models for predicting the incidence of influenza in Nagasaki Prefecture, J ...
	Results

	General characteristics of influenza incidences in Nagasaki, Japan. 
	Relationship between influenza Nln-incidence and meteorological factors. 
	The best-fitting ARDL model. 
	ARDL-GRNN hybrid model. 
	Comparison of modelling and forecasting performance. 

	Discussion

	Methods

	Study area and data collection. 
	ARDL model construction. 
	ARDL-GRNN model construction. 
	Data availability. 

	Acknowledgements

	Figure 1 (A) The sequence chart of the influenza incidence in Nagasaki prefecture from the 14th week of 2006 to the 36th week of 2015.
	Figure 2 The top 20 ARDL ordered by adjusted R2.
	Figure 3 Selection of the optimal spread of the ARDL-GRNN hybrid model in training samples.
	Figure 4 Comparison of actual, predicted and forecasted week incidence of influenza in Nagasaki prefecture, Japan.
	Figure 5 The sequence chart of meteorological data in Nagasaki prefecture from the 14th week of 2006 to the 36th week of 2015.
	Table 1 The relationship between the log-incidence of influenza and the meteorological factors.
	Table 2 The parameters of selected ARDL (4,1,3) model.
	Table 3 Long-run coefficient and error-correction of the ARDL model.
	Table 4 Comparison of the modeling and forecasting performance of ARDL and ARDL-GRNN models.




