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Quantitative mass spectrometry (MS) is a key technique in
many research areas (1), including proteomics, metabo-
lomics, glycomics, and lipidomics. Because all of the cor-
responding molecules can be described by chemical for-
mulas, universal quantification tools are highly desirable.
Here, we present pyQms, an open-source software for
accurate quantification of all types of molecules measur-
able by MS. pyQms uses isotope pattern matching that
offers an accurate quality assessment of all quantifi-
cations and the ability to directly incorporate mass
spectrometer accuracy. pyQms is, due to its universal
design, applicable to every research field, labeling strat-
egy, and acquisition technique. This opens ultimate flex-
ibility for researchers to design experiments employing
innovative and hitherto unexplored labeling strategies.
Importantly, pyQms performs very well to accurately
quantify partially labeled proteomes in large scale and
high throughput, the most challenging task for a quan-
tification algorithm. Molecular & Cellular Proteomics
16: 10.1074/mcp.M117.068007, 1736–1745, 2017.

Current mass spectrometric workflows use a plethora of
labeling strategies (Fig. 1). Established examples are label-
free quantification (Fig. 1A) and metabolic labeling with par-
tially or fully enriched isotopes (Figs. 1B and 1C). Furthermore,
labeled molecules can be added to the culture, as in stable

isotope labeling with amino acids in cell culture (2) or can be
introduced in vitro by chemical tagging, e.g. TMT10 (3, 4) (Fig.
1D). For certain research areas and labeling strategies, pow-
erful data analysis tools are well established (5–14). However,
existing software solutions are generally not universal as they
have been tailored to specific research fields and are often
restricted to defined experimental protocols (see Supplemen-
tal Table S1 for a summary). For example, some software can
quantify peptides with artificial isotope distributions, but not
metabolites, or can quantify molecules when they are meta-
bolically labeled with nitrogen isotope 15N, but not if labeled
with carbon isotope 13C. Finally, some labeling strategies can
currently not be combined within the same experiment (Figs.
1E and 1F).

These limitations, however, are artificial since all quantified
entities are molecules defined by chemical formulas with
known isotope distributions and masses. pyQms takes ad-
vantage of this knowledge and treats all molecules as formu-
las to calculate accurate isotope patterns that are based on
the labeling strategy. This liberates the algorithm to perform
analyses irrespective of the type of molecule (protein, metab-
olite, lipid, glycan, etc.), the type of label (metabolic or fixed) or
MS level. Accordingly, there is no restriction in quantifying any
combination of labels within the same experiment, paving the
way for innovative experimental designs that would be pre-
cluded with most quantification tools. pyQms has been eval-
uated for accuracy and sensitivity in label-free proteomics
(Supplemental Figs. 1 A–1C) and for pulse (chase) metabolic
labeling data analysis using a novel partially labeled proteome
gold standard data set (Supplemental Figs. 1 D–1J).

EXPERIMENTAL PROCEDURES

Partially Labeled Proteome Gold Standard Data Set Sample Prep-
aration—Chlamydomonas reinhardtii (strain CW15) cells were grown
in photoheterotrophic conditions in tris-acetate-phosphate (TAP) me-
dium (15) at a light intensity of 50 �E m�2 s�1 at 22 °C on a rotary
shaker at 120 rpm or on TAP-agar plates containing 1.5% agar at a
light intensity of 40–50 �E m�2 s�1. Metabolic labeling was per-
formed by mixing unlabeled TAP medium with fully labeled TAP
medium containing 100% 15N at different proportions (0, 20, 40, 60,
80, and 100% (w/w)). Fully labeled medium was created using 99.4%
15N enriched 15NH4Cl (Cambridge Isotope Laboratories, Tewksbury,
MA). Cells were grown several generations on 15N containing agar
plates to ensure complete metabolic labeling with the defined 15N
proportion. Cells were then grown for 3 days in liquid medium, main-
taining the labeling proportion and harvested at 5000 � g (Beckmann
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Coulter J 20 XP), suspended in H6 buffer (5 mM HEPES, pH 7.5, 10
mM EDTA), and stored at �80 °C. Protein samples were digested with
trypsin using a modified filter-aided sample preparation protocol (16)
as described in Barth et al. (17) with the following modifications:
Samples were mixed based on equal chlorophyll content (6.25 �g)
and washing steps were repeated four times.

LC-MS/MS Measurement—Liquid chromatography coupled tan-
dem mass spectrometry (LC-MS/MS) measurements were done em-
ploying a Dionex Ultimate 3000 UPLC system (Thermo Scientific) and
Q Exactive Plus (Thermo Scientific, Bremen, Germany) instrument.
Software versions, which were used are: Exactive Series (Tune) 2.3
Build 1765 and Xcalibur 3.0.63. Peptides were separated by reversed
phase chromatography. Peptide samples were loaded on a trap col-
umn (Acclaim PepMap100, 300 �m � 5 mm, 5 �m particle size, 100
Å pore size; Thermo Scientific, Bremen, Germany). Samples were
desalted utilizing a flow rate of 5 �l/min for 5 min using 2% (v/v)
acetonitrile/0.05% (v/v) trifluoroacetic acid in ultrapure water. Peptide
separation was done using a mobile phase composed of 0.1% (v/v)
formic acid in ultrapure water (A) and 80% (v/v) acetonitrile/0.1% (v/v)
formic acid in ultrapure water (B). The trap column was switched for
peptide elution in-line with a C18 capillary column (Acclaim PepMap
100, 75 �m � 150 mm, 2 �m particle size, 100 Å pore size, Thermo
Scientific, Bremen, Germany). The gradient used was: 2.5–35% B (90
min), 35–99% B (5 min), 99% B (5 min). Ions were generated by
electrospray ionization. For full scans a resolution of 70,000 at m/z
200 was used (maximum injection time: 50 ms, automatic gain control
target: 1e6, range: 400–1600 m/z). For each full scan, the 12 most
abundant precursor ions (charge 2� to 7�) were selected for frag-
mentation (MS2) by higher energy c-trap dissociation. For MS2 scans
a resolution of 17,500 at m/z 200 was used (maximum injection time:
50 ms, AGC target: 5e4, underfill ratio: 1%). A dynamic exclusion of
60 s for fragmented precursor ions was used. In total, 35 LC-MS/MS
runs were recorded consisting of 636,910 MS1 and 1,258,099 MS2

scans.
Data Analysis—LC-MS/MS files in RAW format were converted to

mzML (18, 19) using Proteome Discoverer (version 1.4.0.0). Subse-
quently, pymzML (20) was used to convert the mzML files to the
mascot generic format (mgf), if required. It is noteworthy that although
MS1 scans were recorded in profile mode, all spectra used for quan-
tification in pyQms need to be transformed to a centroided format,
which can be done automatically during conversion to mzML or
alternatively if mzML parsing is performed using pymzML (20).

All peptide identification algorithms were executed using Ursgal
(21), a Python framework for performing peptide identifications, sta-
tistical postprocessing, and data visualization using unified parame-
ters. Briefly, peptides were identified using the algorithms OMSSA
(version 2.19, (22)), X!Tandem (version 2013.09.01, (23)), MS-GF�
(version 9979, (24)), and MyriMatch (version 2.1.138 (25)). Default
values were used for most of the search parameters. Precursor mass
accuracy was set to 5 parts per million (ppm), fragmentation mass
accuracy was set to 20 ppm. Trypsin was defined as protease. A
shuffled-peptide-based target–decoy database (conserving trypsin
cleavage sites) was generated as described previously (17) using
Ursgal. The Chlamydomonas reinhardtii database from the Joint Ge-
nome Institute version 5.3.1/236 (26) with Augustus 11.6 (27), the
chloroplastic (28) and mitochondrial proteome as well as a contami-
nant database (cRAP, (29)) were used for the generation of the target
decoy database containing in total 19,537 (target) protein sequences
(see supplemental material). Further search parameters were variable
modifications: oxidation of methionine (�15.9949 Da) and acetylation
of the N terminus (�42.0106 Da). No fixed modifications were de-
fined. Two missed cleavage sites were permitted. Database searches
were conducted for 14N and 15N labeling separately. The posterior
error probability was determined for each peptide-spectrum match

using Percolator (version 2.08, (30, 31)). All peptide-spectrum
matches with posterior error probabilities �1% at the level of the
database search engine were used for all subsequent analyses. A
total of 19,976 unique peptides were identified, mapping to 18,285
unique chemical formulas. The MS proteomics data have been de-
posited to the ProteomeXchange (32) via the PRIDE partner reposi-
tory with the dataset identifier PXD003236. Venn diagrams of identi-
fied peptides and overlap of the different samples can be found in
Supplemental Figs. 2 and 3, respectively. Spectrum annotations of
proteins with one peptide-spectrum match or one distinct peptide
can be found in the supplemental material. All identified proteins and
peptides, including sequence coverage can be found in Supplemental
Tables S2 and S3.

Peptides were quantified using pyQms (v0.5.0). Retention-time (RT)
alignment and enhancement defining RT windows for all peptides
(Supplemental Table S4) was carried out using piqDB as described
earlier (17).

pyQms scoring—The pyQms matching score (mScore) is based on
the work of Gower (33). The matching and scoring is performed on the
m/z values and the intensity values independently yielding two
scores, i.e. Smz and Sintensity. In both cases, each peak k is scored,
comparing the measured value i with the calculated value j (Equation
1), whereas a perfect match is 1. Each peak of the isotopologue that
has a relative intensity (relative to the maximum intensity isotope
peak) rk above the matching threshold (by default 1% of the maximum
intensity isotope peak) is matched and scored.

sijk � �0,1� (Eq. 1)

The m/z Score: Smz—For each peak k, the m/z similarity between
measured value i and the calculated value j is defined as

sijk
mz � 1 � ��ijk

mz

� � (Eq. 2)

Whereas �ijk
mz the difference in ppm between measured m/zik and

calculated m/zjk and � defines the range in ppm, in which the score
decreases from 1 to 0 in a linear fashion. In principle, � is equal to the
precision of the measurement defined by the user (pyQms parameter
REL_MZ_RANGE, default 5 ppm, http://pyqms.readthedocs.io/en/
latest/params.html). For example, if the difference between measured
and theoretical m/z values would be 2.5 ppm, then the sijk

mz score for
this peak k would be 0.5.

The total m/z score for all peaks termed Smz is the weighted sum of
all single similarity m/z scores sijk

mz (Equation 3). The weighting is
defined by the theoretical intensity of the peak k relative to the highest
peak in the theoretical isotope pattern, termed rk.

Smz �
�ksijk

mzrk�krk

(Eq. 3)

The Intensity Score: Sintensity—Prior to intensity scoring, the scaling
factor � is calculated by comparing the intensities of the measured i
and calculated j intensities for all peaks k within the matching thresh-
old (see above). This scaling factor is calculated by dividing the
weighted sum of the measured intensity by the weighted sum of the
theoretical intensities (Equation 4).

� �
�kintensityikrk�kintensityjkrk

(Eq. 4)

Using this scaling factor, which is equal to the abundance of the
measured molecule, one can calculate �ijk

intensity, which is the relative
intensity error between measured and theoretical intensity for each
peak k (Equation 5).
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�ijk
intensity �

�intensityik � � 	 intensityjk�
� 	 intensityjk

(Eq. 5)

The intensity score of peak k is then defined (Equation 6).

sijk
intensity � 1 � � �ijk

intensity

1 � rk 
 �� (Eq. 6)

In analogy to the m/z score (sijk
mz), the denominator defines the range

in which the peak-based intensity score decreases from 1 to 0.
However, in contrast to the m/z score, the intensity error has to be
weighted by the abundance of each peak (1 – rk) as more abundant
peaks can be measured more accurately than smaller peaks. Addi-
tionally, we introduced � (pyQms parameter REL_I_RANGE, default
0.2), which represents the most conservative relative error applied to
the most precisely measured peak (rk � 1). Thus, the overall relative
error (denominator) will increase with lower peaks (see online docu-
mentation http://pyqms.readthedocs.io/en/latest).

The total intensity score Sintensity is the weighted sum of all similarity
scores k in analogy to the Smz score:

Sintensity �
�ksijk

intensityrk�krk

(Eq. 7)

The Combined Final Score: mScore—The final score is termed
mScore and is a sum of Smz and Sintensity. However, because some
machines can measure m/z much more accurately then intensities,
we introduced � to allow for flexibilities depending on the type of mass
spectrometer used. � (the pyQms parameter MZ_SCORE_PERCEN-
TILE, default 0.4) is the fraction the Smz score is weighted into the
sum. Thus, the final mScore is defined as

mScore � �Smz 
 �1 � �	Sintensity (Eq. 8)

Statistical Evaluation of the Gold Standard Data Set—Statistical
evaluation was performed by reducing and grouping the matched
isotope pattern chromatograms (MICs). A MIC is defined as all spec-
tra matches of a peptide with a certain charge state in one LC-MS/MS
run. As the name suggests, an MIC is similar to a XIC but based on all
matched isotope patterns instead of a single m/z value, thus contain-
ing an additional data dimension, that is, the mScore. Grouping of the
MICs was based on the chemical formula and charge of the respec-
tive peptide. First, each MIC was reduced to one single match, which
showed the highest mScore, yielding two values per MIC (i.e. score
and intensity). Second, the reduced MICs belonging to one chemical
formula and charge state were grouped depending on their 15N la-
beling into one of 11 label percentile bins ranging from 0–5, 6–15,
16–25, …, 96–100%. Third, each bin was reduced to a single match
based on the maximum score. Finally, for each mixed sample, we
considered only one ground truth at a time. Given this setup, we
reduced the evaluation of a quantified chemical formula and charge
combination for each ground truth in each sample to ten bins, for
which the true and false positives/negatives were counted at different
score thresholds. For this, MICs (with a certain charge in one MS run)
were grouped as following: for true positives (TP), the expected
labeling percentile bin has matches, and no other bin has matches; for
false positives (FP), the expected bin has no matches, but another
unexpected bin has matches; for false negative (FN) the expected bin
has no match at all, and for true negative (TN) the unexpected bin has
no match at all. False discovery rate (FDR) was defined as FP/
(FP�TP), true positive rate (TPR, sensitivity) as TP/(TP�FN) and
false positive rate (FPR) as FP/(FP�TN). In total, 13.9e6 MICs were
grouped according to molecular formula, charge state, and LC-
MS/MS run.

Label-Free Quantification—The data set from Bruderer et al. (34)
was used to evaluate label-free peptide quantification performance

and quality of pyQms for data-dependent acquisition (DDA)1 and
data-independent acquisition (DIA) mode. RAW MS files were ob-
tained from www.peptideatlas.org and converted into mzML using
msconvert, which is part of Proteowizard (version 3.0.7408, (35)).
MaxQuant/Andromeda (version 1.4.1.2, (5)) peptide identification re-
sults were used from Bruderer et al. (34) and stored in piqDB. All
peptides were subsequently quantified by pyQms using default pa-
rameters except an adjustment of the machine offset in ppm to
correct for measuring error (21, 34). Carbamidomethylation of cys-
teine was defined as fixed modification. RT alignment (Supplemental
Table S5), and enhancements were carried out using piqDB as de-
scribed earlier (17, 36). Intensity alignment (Supplemental Table S6) of
all samples was performed as described earlier (37). The signal in-
tensity of a given peptide (i.e. peptide charge combination) within
each MS run was defined as the maximum intensity over all spectra
within the predefined retention time window. RT alignment functions
and raw peptide amounts for the DDA data set can be found in
Supplemental Tables S5 and S7, respectively. The linear correlation
of peptide concentrations and their matched peptide intensities over
a wide concentration range (0.8 fmol/�l–819.2 fmol/�l) can be found
in Supplemental Figs. 4 and 5.

Peptide ratios (log2) between LC-MS/MS runs were calculated
using these raw quantification data (mScore 
 � 0.8). MaxQuant raw
peptide quantification results were obtained from the supplement
material of Bruderer et al. (34). Correlation plots between the Max-
Quant and pyQms amounts for the spiked-in proteins and for the
human background proteins can be found in Supplemental Figs. 6
and 7, respectively. In order to compare pyQms with MaxQuant, the
peptide (peptide charge combinations) ratios were equally calcu-
lated using the raw peptide amounts reported by Bruderer et al.
(34).

A similar procedure was applied to the DIA measurements of the
same samples. For all peptides that are proteotypic to the spiked-in
proteins, all fragment ions were determined and ions suitable for
quantification were determined using an algorithm that will be de-
scribed elsewhere. These selected fragment ions were quantified in
the cycle window corresponding to their peptide precursor m/z. A
complete table of all ions used for quantification can be found in
Supplemental Table S8. DIA runs were intensity aligned with the same
method as for the DDA runs as described earlier (37). DIA peptide
quantification was based on summing up all fragment ion intensities
(maximum intensity in each MS run within the retention time window).
Only ions that could be quantified in both samples were taken into
account for the ratio calculation. All pyQms peptide quantification
results for the DIA data set can be found in Supplemental Table S9.
Spectronaut DIA raw peptide amounts were taken from the supple-
ment material of Bruderer et al. (34), and those were equally summed
up at the peptide level. Finally, to ensure comparability, peptide ratios
(log2) were calculated similar as for the pyQms results.

Peptide Ratio Evaluation—The data set published by Bruderer et al.
(34) contains 12 non-human proteins spiked in a background of hu-
man HEK293 cells. The setup contained three different master mixes
(MMs) spanning several orders of magnitudes of various protein con-
centration (MM1: 1.1 to 13.33 fold, MM2: 1- to 200-fold, MM3: 1- to
16,384-fold; eight concentrations in total for each MM). Three tech-

1 The abbreviations used are: DDA, data-dependent acquisition;
DIA, data-independent acquisition; FDR, false discovery rate; FN,
false negative; FP, false positive; FPR, false positive rate; LC-MS/MS,
liquid chromatography coupled tandem mass spectrometry; MIC,
matched isotope pattern chromatogram; MS, mass spectrometry;
ROC, receiver-operating characteristic; RT, retention time; TAP, tris-
acetate-phosphate; TN, true negative; TP, true positive; TPR, true
positive rate.
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nical replicates for each of the eight different samples containing a
distinct concentration of each master mix were measured by LC-
MS/MS (Supplemental Fig. 1). pyQms was used to quantify the
peptides belonging to the spiked-in proteins. Subsequently, the
quantification was used to calculate ratios for all peptide charge
combinations between all samples (see above), including all technical
replicates. This resulted in 276 potential ratios for each peptide (de-
fined by all combinations of the 24 measurements). All peptides
belonging to one spiked-in protein were used to evaluate the ob-
served and calculated log2 ratio against the known ground-truth using
a two-sided t test implemented in Scipy (www.scipy.org, (38)). At least
three peptides (or peptide charge combination ratios) were required
per sample comparison. We grouped the calculated p values into four
bins that classify the quality of the quantification, i.e. the similarity to
the expected ground truth: a p value (1) above 0.05 was classified as
‘not significant different’ and colored blue, (2) 0.05–0.01 (*) colored
green, (3) 0.01–0.001 (**) colored yellow, and (4) smaller than 0.001
(***) colored red. This color scheme is consistent throughout this work
(Fig. 2 and Supplemental Figs. 8–10).

Liquid Chromatography MS of Ribonucleosides—Chemically syn-
thesized MS-grade adenosine (C10O4N5H13; Carbosynth, Ltd., Berk-
shire, UK) was dissolved in 5 mM ammonium formate, pH 5.3, at a
concentration of 50 ng/�L and further diluted to yield the following
concentrations; 1000 pg/�L, 500 pg/�L, 250 pg/�L, 125 pg/�L, 62.5
pg/�L, 31.25 pg/�L, 20 pg/�L, 10 pg/�L, 5 pg/�L, 2.5 pg/�L, 1
pg/�L, 0.5 pg/�L, 0.2 pg/�L, 0.1 pg/�L, 0.05 pg/�L, 0.02 pg/�L, and
0.01 pg/�L. 4 �L of each dilution was subjected to reversed phase
LC-MS analysis on a self-packed 75 �m � 500 mm porous graphitic
carbon column connected to a Q Exactive mass spectrometer
(Thermo Scientific). Full MS spectra (m/z 100–700) were recorded
with three technical replicates for each sample, and the resulting
LC-MS runs were analyzed by pyQms. Full details of the chromatog-
raphy and MS conditions will be published elsewhere.

Experimental Design and Statistical Rationale—The pulse (-chase)
gold standard data set contains in total six samples (0, 20, 40, 60, 80,
and 100% 15N labeling) representing six biological replicates. These
samples were mixed (0I100, 20I100, 40I100, 0I60, and 0I80), resulting
in three technical replicates for the 0% sample and in two technical
replicates for the 100% sample. All other samples have no technical
replicate within these mixes. Furthermore, each of the seven filter-
aided sample preparation fractions (16) was measured individually in
order to achieve higher sensitivity. In total 35 LC-MS/MS runs, includ-
ing 636,910 MS1 and 1,258,099 MS2 scans of the pulse gold standard
data set, were evaluated. Please refer to the methods section “Sta-
tistical Evaluation of the Gold Standard Data Set” for all statistical
tests used for the analysis of this data set.

Requirements, Availability, and Documentation—pyQms requires
Python 3.4� and is platform independent (OS X, macOS, Linux, and
Windows). The module is freely available on https://github.com/py-
Qms/pyqms or pypi, published under Massachusetts Institute of
Technology (MIT) license and requires no additional modules to be
installed. We recommend pymzML (20) for fast access to spectra
from mzML files. To run example scripts, it is necessary to install
pymzML or to change the code for alternative spectrum access.
Some scripts also require the openpyxl or rpy2 modules.

The documentation of pyQms including parameter description
(http://pyqms.readthedocs.io/en/latest/params.html), a quick-start
tutorial (http://pyqms.readthedocs.io/en/latest/quick_start.html), and
example scripts (http://pyqms.readthedocs.io/en/latest/example_
scripts.html) can be found online. pyQms can be run on standard
desktop computers. For further hardware requirements, please refer
to the online documentation.

RESULTS

Algorithm Design—The core of pyQms is a standalone open
source Python module that can be incorporated easily into
any analytical workflow, can be run on standard desktop
computers, and that benefits from the resources of a rich
scientific computing community (20, 21, 39–42). The work-
flow of pyQms can be divided into two steps. First, an isotope
pattern library is built, based on user-defined molecules (Fig.
1G). These molecules are specified as chemical formulas or
peptide sequences, optionally with modifications following
the unimod standard. The metabolic isotopic distribution and
the artificial isotopic distribution of the fixed label are taken
into account. pyQms uses this information to calculate an
accurate isotope pattern for each molecule based on its ele-
mental composition, the isotope distributions, and the re-
spective masses. Second, the predicted isotope patterns are
compared with the MS measurements (Fig. 1H) and scored by
calculating a similarity coefficient (33) optimized for MS data
yielding a similarity match score, termed mScore. The match-
ing and scoring algorithm initially uses the m/z values and the
intensity values independently and combines both later, of-
fering the possibility to adjust the scoring algorithm to the
machine type, as some instruments can measure m/z values
much more accurately than intensities. Furthermore, the sim-
ilarity between each measured and calculated isotope pattern
peak is weighted by its relative abundance. Thus, the more
abundant peaks contribute more to the mScore (see M&M for
details). We developed this similarity matching approach as
the basis for pyQms since it provides several advantages: (i)
The isotope pattern contains multiple peaks that are all used
for quantification, thus increasing the robustness over using
only a single value. (ii) The matching approach tags each
quantification with a quality assessment reflected by its
mScore. (iii) Coeluting molecules can either be distinguished
reliably since the isotope patterns differ or they receive a low
mScore. (iv) The matching algorithm can adapt to any mass
spectrometer accuracy. Thus, future technological advance-
ment in machine accuracy will automatically translate into
higher matching sensitivity without the need to adjust the
algorithm. Overall, any MS data analysis workflow that relies
on single m/z observations will benefit from the incorporation
of isotope pattern matching and our scoring methodology.

Furthermore, pyQms accepts so called evidence files as
input (e.g. peptide identifications from Ursgal (21) or manually
curated data). These files allow molecules with the identical
chemical formula but different identities to be distinguished
by associating their identity with a given retention-time win-
dow. pyQms offers a modular system to use custom functions
that can be used to determine the abundance of a given
molecule. The basic built-in function determines abundance
by the maximum intensity within a retention-time window that
is defined in the evidence files. However, pyQms was primar-
ily build for bioinformaticians, thus functions to define reten-
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tion windows or to determine abundances can easily be in-
corporated if required.

pyQms Provides Quantification with High Accuracy and
Sensitivity—To assess the accuracy and sensitivity of pyQms
for metabolomics, we analyzed chemically synthesized MS-
grade adenosine in a dilution series ranging from 0.04–4000
pg/�L (Fig. 2A). Importantly, the quantification remained linear

over a broad range of concentrations (four to five orders of
magnitude) with an R2 of 0.998, showing that pyQms can be
used for the sensitive quantification of metabolites.

Next, to compare pyQms against established quantification
tools in proteomics, we used the data sets of Bruderer et al.
(34) that contain eight biological replicates of human HEK293
cells, each measured three times in DDA and DIA mode. We

FIG. 1. Labeling strategies employed in mass spectrometry separated into metabolic (left) and fixed labels (right). Metabolic labeling (e.g. 15N
salt or 13C sugar) is metabolized in the cell and incorporated into newly synthesized molecules. The isotope distribution of the labeled element
can be natural (A, white circles), partially enriched by an isotope (e.g. 15N, light blue color represents e.g. an average labeling of 60%, i.e. three
of five nitrogens are 15N) as observed during pulse or pulse-chase experiments (B, light blue) or fully enriched (C, dark blue). Fixed labels
are incorporated into or attached to the molecule during or after the synthesis steps. Fixed labeling can be performed in vivo (e.g. stable isotope
labeling with amino acids in cell culture incorporation (2)) or in vitro (e.g. digestion in 18O-labeled water (45)). In both cases the element isotope
distributions of the label are independent of the cellular distributions and are thus treated as different element pools (D–F). Combining different
labeling strategies permits novel multiplexing strategies. Only pyQms can be used to quantify all six cases (A–F) in all variations and
combinations irrespective of the label or the molecule type and to, most importantly, score the quantifications. The metabolic isotopic
distribution (left isotopologue) and the artificial isotopic distribution (right isotopologue of a potential fixed label is used to calculate an accurate
isotope pattern for each molecule (G). These patterns are compared with the MS measurements (H). Matches are evaluated providing the
similarity match score (mScore). Black bars, measured peaks; green triangles, matched peaks; x-axes, m/z value; y-axes, intensity. For
considerations on the terms fixed and metabolic labeling, please refer to the online methods.
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compared the published quantification results of the DDA
data set analyzed with MaxQuant (5) and of the DIA data set
analyzed with Spectronaut (43) to our results obtained with
pyQms (Fig. 2B).

We found that 17.4% of the comparisons reflect the ground
truth in the DDA samples. However, concentrations below 4
fmol/�L could not be quantified confidently, which is similar to
the results reported for MaxQuant (5) (21.3%, Supplemental
Fig. 8, 9I2). Furthermore, we found that 82.2% of the ratios
obtained with pyQms reflect the ground truth for the DIA data
set (Fig. 2B, bottom right half), similar to what was reported for
Spectronaut (43) (76.8%, Supplemental Fig. 8, 9I3). These
results are comparable to the remaining spiked-in proteins
(Fig. 2C). In summary, pyQms quantifications reflected
71.2%/85.2% (n � 1380 ratios) of the ground truth in the
DDA/DIA runs for master mix 1 (MM1), 34.9%/66.3% (n �

1380 ratios) for MM2, and 20.8%/52.5% (n � 552 ratios) for
MM3 (Fig. 2C), which is similar to the results reported for
MaxQuant and Spectronaut (34) (MM1: 62.8%/78.8%, MM2:
23.1%/68.5%, MM3: 15%/72.1%) (Supplemental Figs. 8–11,
Supplemental Tables S10 and S11). This shows that pyQms
covers the detection limits of data acquired in DDA mode or
DIA modes.

Quantification of Pulse (-Chase) Samples—In order to eval-
uate the quantification performance of pyQms for pulse
(-chase) samples, we create a gold-standard data set of well-
defined partially labeled proteomes. This data set can be used
to benchmark the accuracy of any quantitative software aim-
ing at analyzing partially labeled proteomes. We cultivated the
green algae Chlamydomonas reinhardtii in media containing 0
to 100% 15N metabolic label in 20% increments. Extracted
proteins were combined to create five mixes: 0I100, 20I100,
40I100, 0I60, and 0I80 (Fig. 3A), which were analyzed by
LC-MS/MS. Subsequently, we quantified all identified pep-
tides, allowing all possible combinations of charge states and
all 15N enrichment percentiles to be matched in all MS1 scans.
This summed up to a total of 5.8e12 performed matches,

FIG. 2. Label-free pyQms quantification of metabolites and pep-
tides. (A) Dilution series of chemically synthesized adenosine (axes
plotted in log scale), each dilution comprising three technical repli-
cates. Line shows the linear regression function (R2 � 0.998). Inset
shows axes plotted in linear scale; x-axes, dilution of nucleoside;
y-axes, maximum intensity. (B) Example of the statistical evaluation of
pyQms peptide quantifications of the Bruderer et al. data sets (DDA,
top left; DIA, bottom right). Shown is the heat map for spiked-in

protein P61823 (ribonuclease pancreatic, Bos Taurus, master mix 2).
The colors reflect the p value for the two-sided t test obtained after
testing whether the calculated peptide ratios between two samples (x
and y axes, eight samples, ticks represent each three technical rep-
licates) differ significantly from the ground truth ratios. Histograms at
the axes show the spiked-in protein concentrations for the eight
samples (master mix 2, for sample setup and other master mix
composition refer to Supplemental Fig. 1 and Bruderer et al. (34),
x-axes, sample; y-axes, concentration of spiked-in proteins. The
number of peptide charge combination ratios (for DDA samples) or
peptide ratios (DIA) used for the t test are shown as numbers in the
bins. (C) Stacked bar plot for relative occurrences of the p values over
all 12 spiked-in proteins across all three master mixes (MM1, MM2,
and MM3). Legend: x axis, relative occurrence of p value; y axis,
master mix, and data acquisition method combination (DDA or DIA).
p value legend for (B) and (C), blue: reflecting the ground truth; green
(p value �0.05), yellow (p value �0.01), and red (p value �0.001): not
reflecting the ground truth.
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which resulted in 1.6e8 positive matches with mScores 0.5.
We grouped matches with an identical chemical formula,
charge state, and labeling percentile from one LC-MS/MS run
into MICs. Altogether, we found 1.4e7 MICs. For each sample,
we assessed the matching quality by aggregating the single
matches of all MICs into one heat map (Fig. 3D, Supplemental
Fig. 12). We used the 15N-labeling percentile and the mScore
of each match as coordinates for the heat map bin and added
the abundance of that match to this bin (including peptide

abundances of all spectra assembled in a MIC). While the
0I100 mix can be separated reliably (Supplemental Fig. 12A),
this was not the case for the other mixes (Supplemental Figs.
12C, 12E, and 12G). Even though it was possible to identify
the ground truth, the correct result was obscured by false
positives leading to a high background signal that was dis-
tributed over all labeling percentiles.

We statistically evaluated our results by creating receiver-
operating characteristics (ROC) of the MICs against the

FIG. 3. The partially labeled proteome gold standard. (A) Cultures of C. reinhardtii were grown on medium containing 20, 40, 60, 80, and
100% 15N. Each partially labeled proteome was mixed with an unlabeled (14N) or fully labeled (15N) proteome, yielding five mixed samples
(0 100, 0 60, 0 80, 20 100, and 40 100). (B) Unbiased quantification workflow. All identified peptides (19,976 peptides, 18,285 distinct chemical
formulas) were quantified in all MS1 spectra (6.3e5) of all LC-MS/MS runs in five charge states performing in total 5.8e12 matches. Matches were
filtered using an mScore threshold of 0.5 and assembled into 1.4e7 MICs. Example isotopologues for 0 and 60% 15N incorporation are shown
on the left. (C) 3D visualization of a typical MIC, colors indicate mScores for each match within the MIC; x axis, m/z; y axis, spectrum id; z axis,
intensity. (D) Visual evaluation of all matches in the 0 60 sample, x axis labeling percentile, y axis mScore, heat equals summed up intensities
of matches in all MS1 spectra in a given bin (representing all identified and quantified peptides in all matched charge states). (E) ROC curves
of pyQms performance in all samples shown as specificity (x axis, log scale) versus true positive rate (y axis). (F) mScore-dependent FDR; x
axis, mScore; y axis, FDR (log scale). (G-I) as (D-F), but quantifications are limited to retention time windows. Legends (D, E, G, H): 0% (blue),
100% (red), 20% (green), 40% (purple), 60% (orange), 80% (brown); mixtures: 0I100 (circles), 0I60 (triangles), 20I100 (diamonds), 0I80
(squares), 40I100 (reverse triangles).
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ground truth for each mixed sample (Fig. 3E). The ROC curves
show that pyQms reliably matches the 0I100 mix (71.1% and
76.9% TPR at 99% specificity, blue and red circles). In con-
trast, the partially labeled samples result in TPRs between
12.7% and 21.5% at 99% specificity. The fully labeled (100%)
or unlabeled samples (0%), if mixed with a partially labeled
sample, have lower ROC curves compared with their coun-
terpart in the 0I100 mix (30.9%–35.4% TPR at 99% specific-
ity). The mixes containing partially labeled samples show a
high FDR even at very high mScores (e.g. the 0 and 60%
samples show FDRs of 4.5% and 29.3%, respectively, at
mScores  0.9 in the 0I60 mix; Fig. 3F). Only in the 0I100 mix,
we detected FDRs of 2.7% and 2.1% for the 0 and 100%
samples, respectively, at mScores  0.7.

Decreasing the FDR in Pulse (-Chase) Experiments—To
obtain a lower FDR, we limited quantification to stringent
(2–2.5 min) RT windows (Supplemental Fig. 13, Supplemental
Table S4) based on the RT alignment strategy described
earlier (17). This strategy significantly reduced FP matches, as
shown by reduced noise in the heat map (Fig. 3G). Further-
more, the ROC curves improve significantly for all five mixes
(Fig. 3H). Finally, the mScore-dependent FDR (Fig. 3I) shows
rates of 3.2% and 3.8% for the 40% (40 100 mix) and 60%
(0 60 mix) samples, respectively, at very stringent mScores
of 0.9 (Fig. 3I). This shows, that applying RT windows can
significantly reduce the FDR in pulse (-chase) experiments.

DISCUSSION

pyQms Performs State-of-the-Art DDA and DIA Quantifica-
tion—The presented results emphasize that pyQms performs
optimally within the detection limits of data acquired in DDA
mode or DIA modes similar to what is regarded as state-of-the
art in proteomics. However, pyQms combines the functional-
ity to quantify both DDA and DIA data in a single software.
Furthermore, pyQms uniquely offers a highly accessible bioin-
formatics library, so other packages can incorporate its iso-
tope matching procedure to increase their matching quality
with ease. Ultimately, isotope pattern matching will replace
approaches relying on single m/z values, especially in the
advent of the broad availability of high-resolution mass
spectrometers.

Benchmarked Partial Label Quantification—To demonstrate
that pyQms goes beyond the current state-of-the-art, we
analyzed a data set of differentially labeled proteomes, like
observed during pulse or pulse-chase experiments. This re-
flects the ultimate challenge for any quantification algorithm
since each molecule has different enriched isotope incorpo-
ration levels depending on the time of synthesis. Thus, one
single labeling state cannot be observed, complicating anal-
yses for several reasons: First, the isotope distribution is
different for each labeling state, yet, it is difficult to distinguish
closely related labeling states. Each isotope pattern must
therefore be evaluated independently or in a mixed model.
Second, partially labeled molecules broaden the isotope pat-

tern and lead to more peaks, which are consequently less
intense (Supplemental Fig. 14). This effect leads to a loss of
signal and quantification accuracy. Finally, the number of
isotope patterns that need to be matched increases by two
orders of magnitude when compared with label-free quantifi-
cation, thus requiring significant computational resources.

Our pulse or partially labeled gold standard data set re-
vealed a low TPR for samples containing partially labeled
peptides at high specificities in contrast to a sample contain-
ing only unlabeled or fully labeled proteins (Fig. 3E). This
confirms that the complexity of the sample and the number of
detected peaks strongly influences the classification. Simi-
larly, this is reflected in the mScore-dependent FDR (Fig. 3F).
These results illustrate the challenge of assessing partially
labeled molecules in general. These difficulties are rarely ad-
dressed as they only become apparent by benchmarking
against a defined partially labeled sample. Our gold standard
data set can therefore be used to benchmark new software
tools for the quantification of pulse and pulse-chase data.

The benchmarking results of pyQms against the gold stand-
ard data set underlines the universal application and high
quality of pyQms, which goes beyond what is currently avail-
able in single algorithms.

pyQms Is Suitable for Large-Scale Pulse (-Chase) Studies—
The approach to lower the FDR and increase the TPR by
applying stringent RT windows demonstrates that pyQms
allows accurate large-scale high-throughput quantification of
pulse (-chase) MS experiments to be performed. Interestingly,
the sample resembling the most common proteomic samples
(0I100 mix) shows an FDR of only 1.2% at mScores  0.7
using accurate isotope pattern matching in combination with
RT windows (Fig. 3I, blue and red circles). This indicates that
pyQms could be sufficient for MS1-based identifications and
quantification in proteomics. Importantly, this should also
pave the way to reliably overcome the undersampling issue in
proteomics (44), especially if one takes the mScore as a
quality criterion into account. In fact, if the Bruderer et al. (34)
data set is evaluated with respect to mScore, this effect
becomes very obvious (Supplemental Fig. 15).

CONCLUSIONS

In conclusion, we have demonstrated that pyQms is a pow-
erful software to quantify any molecule measured by MS,
independent of the type of molecule, label, research field, or
acquisition mode. These unique features enable novel exper-
imental designs and multiplexing strategies, which are ur-
gently required in the era of personalized medicine in order to
simultaneously compare hundreds of clinical samples. Using
pyQms, researchers will be able to quantify MS data from
proteomics, metabolomics, lipidomics, glycomics, or other
research fields with a single, universal software solution. py-
Qms is open source and freely available via https://github.
com/pyQms/pyqms under an MIT license.
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16. Wiśniewski, J. R., Zougman, A., Nagaraj, N., and Mann, M. (2009) Universal

sample preparation method for proteome analysis. Nat. Methods 6,
359–362

17. Barth, J., Bergner, S. V., Jaeger, D., Niehues, A., Schulze, S., Scholz, M.,
and Fufezan, C. (2014) The interplay of light and oxygen in the reactive
oxygen stress response of Chlamydomonas reinhardtii dissected by
quantitative mass spectrometry. Mol. Cell. Proteomics 13, 969–989

18. Martens, L., Chambers, M., Sturm, M., Kessner, D., Levander, F., Shofstahl,
J., Tang, W. H., Römpp, A., Neumann, S., Pizarro, A. D., Montecchi-
Palazzi, L., Tasman, N., Coleman, M., Reisinger, F., Souda, P., Herm-
jakob, H., Binz, P.-A., and Deutsch, E. W. (2011) mzML—A community
standard for mass spectrometry data. Mol. Cell. Proteomics 10,
R110.000133

19. Deutsch, E. (2008) mzML: A single, unifying data format for mass spec-
trometer output. Proteomics 8, 2776–2777

20. Bald, T., Barth, J., Niehues, A., Specht, M., Hippler, M., and Fufezan, C.
(2012) pymzML—Python module for high-throughput bioinformatics on
mass spectrometry data. Bioinformatics 28, 1052–1053

21. Kremer, L. P., Leufken, J., Oyunchimeg, P., Schulze, S., and Fufezan, C.
(2016) Ursgal, universal Python module combining common bottom-up
proteomics tools for large-scale analysis. J. Proteome Res. 15, 788–794

22. Geer, L. Y., Markey, S. P., Kowalak, J. A., Wagner, L., Xu, M., Maynard,
D. M., Yang, X., Shi, W., and Bryant, S. H. (2004) Open mass spectrom-
etry search algorithm. J. Proteome Res. 3, 958–964

23. Craig, R., and Beavis, R. C. (2003) A method for reducing the time required
to match protein sequences with tandem mass spectra. Rapid Commun.
Mass Spectrom. 17, 2310–2316

24. Kim, S., Mischerikow, N., Bandeira, N., Navarro, J. D., Wich, L., Moham-
med, S., Heck, A. J., and Pevzner, P. A. (2010) The generating function
of CID, ETD, and CID/ETD pairs of tandem mass spectra: Applications to
database search. Mol. Cell. Proteomics 9, 2840–2852

25. Tabb, D. L., Fernando, C. G., and Chambers, M. C. (2007) MyriMatch:
Highly accurate tandem mass spectral peptide identification by multivar-
iate hypergeometric analysis. J. Proteome Res. 6, 654–661

26. Merchant, S. S., Prochnik, S. E., Vallon, O., Harris, E. H., Karpowicz, S. J.,
Witman, G. B., Terry, A., Salamov, A., Fritz-Laylin, L. K., Maréchal-
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