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Structural plasticity driven by task 
performance leads to criticality 
signatures in neuromorphic 
oscillator networks
Petro Feketa1,3*, Thomas Meurer1,3 & Hermann Kohlstedt2,3

Oscillator networks rapidly become one of the promising vehicles for energy-efficient computing due 
to their intrinsic parallelism of execution. The criticality property of the oscillator-based networks is 
regarded to be essential for performing complex tasks. There are numerous bio-inspired synaptic and 
structural plasticity mechanisms available, especially for spiking neural networks, which can drive the 
network towards the criticality. However, there is no solid connection between these self-adaption 
mechanisms and the task performance, and it is not clear how and why particular self-adaptation 
mechanisms contribute to the solution of the task, although their relation to criticality is understood. 
Here we propose an evolutionary approach for the structural plasticity that relies solely on the task 
performance and does not contain any task-independent adaptation mechanisms, which usually 
contribute towards the criticality of the network. As a driver for the structural plasticity, we use a 
direct binary search guided by the performance of the classification task that can be interpreted as an 
interaction of the network with the environment. Remarkably, such interaction with the environment 
brings the network to criticality, although this property was not a part of the objectives of the 
employed structural plasticity mechanism. This observation confirms a duality of criticality and task 
performance, and legitimizes internal activity-dependent plasticity mechanisms from the viewpoint 
of evolution as mechanisms contributing to the task performance, but following the dual route. 
Finally, we analyze the trained network against task-independent information-theoretic measures and 
identify the interconnection graph’s entropy to be an essential ingredient for the classification task 
performance and network’s criticality.

Criticality as a property marking the transition between ordered and disordered states has been a central focus 
of statistical physics for decades1–4. More recently, criticality has found its application in the theory of neuro-
morphic computing and neural networks, both artificial and biological. In particular, it has been shown that a 
network at the critical state exhibits a high computational performance during classification tasks5, possesses a 
wide dynamical range6, and maximal information transmission and storage capacity7,8. Since the discovery of 
criticality in neocortical circuits9, the research focus is centered around self-organized motifs of criticality10–13. 
Typical self-organization mechanisms which may lead to criticality in biological neural networks and their 
artificial counterparts are the synaptic and structural plasticity. These activity-dependent adaptation mecha-
nisms allow for the adjustments of the signal propagation rate from neuron to neuron and the time-varying 
interconnection topology of the network, respectively14. It has been shown that some plasticity rules (e.g., the 
spike-timing dependent plasticity (STDP) for spiking neural networks) can tune the network towards critical-
ity and, thus, appeared to be beneficial for certain tasks (like classification)15. However, these rules are rather 
decoupled from the task and a direct relation between the plasticity mechanism and the task performance is 
missing. Very recently, it has been shown that the plasticity mechanisms responsible for spatio-temporal learning 
also can tune a network to criticality16. However, it is again not clear if the plasticity mechanisms used therein 
(inhibitory STDP, homeostatic regulation of firing thresholds, synaptic normalization, and structural plasticity) 
simply steer the considered class of recurrent neural networks to criticality, and, therefore, contribute towards 
a successful realization of tasks.
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Most of the discussed task-performing networks are deployed within the reservoir computing paradigm 
(see17,18 and surveys19,20) whereas the bio-inspired plasticity rules are used to precondition the structural and 
dynamical properties of the reservoir, and the supervised training procedure for the readout is performed to 
realize certain functionality (Fig. 1a). Here we propose an evolutionary approach for the structural plasticity of 
the reservoir that relies solely on the task performance and does not contain any task-independent adaptation 
mechanisms, which usually contribute towards the criticality of the network. As a driver for the structural plas-
ticity, we use a direct binary search guided by the performance of the classification task that can be interpreted 
as an interaction of the network with the environment. With this, we decouple intrinsic adaptation mechanisms 
of neuromorphic oscillator networks and let the interconnection topology change purely under the task perfor-
mance stimuli (Fig. 1b). Remarkably, starting in the super-critical regime, the trained network exhibits criticality 
signatures although this property was not a part of the objectives of the employed structural plasticity mechanism.

In order to investigate relationship between the proposed learning methodology and criticality, we have cho-
sen a network of spin-torque oscillators (STOs)21, whose physical properties make them perspective candidates 
for future unconventional neuromorphic computing systems22–27. The STO-network serves as a reservoir that 
receives an input formed out of the MNIST digits28 and it is augmented with a readout to classify the input signal 
in a supervised fashion. As a signature of the criticality in the STO-network, we use the power law probability 
distribution of the sizes of the clusters of synchrony emerging therein29 (see section “Methods” for details). The 
proposed training procedure (Fig. 1b) can be seen as the inverse design technique that seeks for the best intercon-
nection topology of the reservoir minimizing the classification error. This differs to the existing approaches for 
the reservoir’s preconditioning that are based on the unsupervised techniques mostly following the bio-inspired 
principles12,15,16,30–33.

In numerical simulations, we confirm that the best task performance is indeed achieved at the criticality. This 
is an indicator of a certain duality between the task performance and the criticality observed in many previous 
results5,12,15,16. Our result is, however, the first one in which criticality signatures have been obtained without any 
activity-dependent plasticity rules, but following the task performance solely. Additionally, in contrast to the 
existing results, we show the persistence of criticality signatures in the STO-network under structured periodic 
input, whereas such input breaks criticality and a sufficient noise is necessary for the occurrence of the criticality 
signatures for a class of self-organized spiking recurrent neural networks16. At the end of the paper, we analyze 
the trained network against task-independent information-theoretic measures and provide a qualitative char-
acterization of the interconnection graph evolution during training.

Results
Model overview.  The magnetization dynamics of the STO can be modeled by21,34

where z(t) ∈ C is the projection of the magnetization of the free magnetic layer on a plane orthogonal to the 
effective magnetic field at time t ≥ 0 , p = |z|2 represents the square amplitude of oscillations, ω is the linear 
frequency, L is the nonlinear frequency coefficient, ŴG is the linear damping, Q is the nonlinear damping coef-
ficient, I is the current density applied to the system, and parameter σ characterizes the spin transfer. If σ I ≤ ŴG , 
the origin z = 0 is an asymptotically stable equilibrium point. Oscillations will occur if σ I > ŴG . Assuming that 
this condition holds true, split the right hand side of (1) into a linear contribution in terms of Ŵ = σ I − ŴG > 0 
and a nonlinear part using S = ŴGQ + σ I so that (1) can be re-written as

Solutions to (2) will oscillate with amplitude √p =
√
Ŵ/S and with the frequency φ̇ = ω + LŴ/S , where φ 

is the phase of the oscillator.

(1)ż = i(ω + Lp)z − ŴG(1+ Qp)z + σ I(1− p)z,

(2)ż = i(ω + Lp)z + (Ŵ − Sp)z.

Figure 1.   Two approaches for reservoir computing. (a) Bio-inspired plasticity is used to adjust the structural 
and dynamical properties of the reservoir in the unsupervised fashion. (b) Task performance feedback is used to 
optimize the interconnection topology of the reservoir. The detailed description of the feedback is presented in 
the Results section (see also Fig. 4).
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Let G = (V ,E ) be the directed graph representing the network of STOs, where V = {1, . . . ,N} , N ∈ N 
and E ⊆ V ×V represent the oscillators and their interconnection edges, respectively. Let A = [aij](i,j)∈V×V 
be the adjacency matrix of G , where aij = 1 if the edge (i, j) ∈ E , and aij = 0 when (i, j)  ∈ E . Additionally, it is 
assumed that the graph does not have self-loops, i.e., aii = 0 for all i ∈ V . The dynamics of the network is given by

where ui will be used later to assign a certain external input to the i-th oscillator, and the complex-valued coupling 
F = α + iβ is parametrized by α > 0 and β ∈ R . The amplitude and phase of F represent the coupling strength 
and the coupling phase, respectively. A typical behavior of solutions to (3) is depicted in Fig. 2.

Phase transitions and criticality signatures in the all‑to‑all network.  Synchronization properties 
of the oscillators’ dynamical behavior heavily depend on the intensity of interaction between oscillators35. For 
any fixed interconnection topology, the intensity can be parametrized by the coupling strength α and the cou-
pling phase β . As a measure for the synchrony we use the order parameter rx – the standard deviation of oscil-
lators states averaged over a certain time interval (see (4) in section Methods for precise formula). Taking an 
all-to-all connected network of N = 28 STOs, the values of rx against coupling parameters α,β are depicted in 
Fig. 3a. There are three qualitatively different regions which correspond to high values of rx (a plateau), moder-
ate values (a gorge), and low values (a valley) with a pronouncing bifurcation regime on the border between the 
plateau and the valley. The coherence of oscillators’ behavior for every mentioned regime can be alternatively 
characterized by the probability distribution of the cluster sizes of coherent behavior depicted in Fig. 3b (please 
see section Methods for detailed computation procedure). We exemplary pick three different points that cor-
respond to the three different regimes: Supercritical regime (red dot) leads to literally complete synchronization 

(3)żi = i(ωi + Lipi)zi + (Ŵi − Sipi)zi + F
∑

j∈V
aijzj + ui , i ∈ V ,

Figure 2.   The collective behavior of the network of N = 100 spin-torque oscillators with coupling parameters 
α = 0.075 and β = 0.01 in the absence of external input. The adjacency matrix A is randomly filled with 
ones with probability 1/40. (a) Time series of the real (top panel) and imaginary (bottom panel) parts of zi , 
i ∈ V . (b) Phase portrait of (3). (c) Correlation matrices for the time-series of real (top panel) and imaginary 
(bottom panel) parts of zi , i ∈ V over the time interval of length �T = 1/12 ns taken at the beginning (left 
figures), middle (middle figures), and at the end (right figures) of simulation. Please see section Methods for the 
description of the clusterization method used for correlation matrices. (d) Graphical representation of the graph 
G.
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in the network, whilst the subcritical one (green dot) is characterized by almost absence of synchronized clusters 
of large sizes (close to N). The critical regime (orange dot) manifests itself in a power-law probability distribution 
of cluster sizes. Additionally, the presence of different dynamical regimes on either side of the critical point indi-
cates that the power law is related to a phase transition, and serve another signature of criticality in the network 
according to Beggs and Timme36.

In the following, we analyze how the structural plasticity driven solely by the task performance can steer the 
network’s behavior from the supercritical to the critical one.

Structural plasticity as a response to the interaction with the environment.  Here we study the 
behavior of the network under the influence of the external input. The inputs to every of the 28 nodes are formed 
as periodic waves that correspond to the gray-scale intensity of pixels in the respective columns of the MNIST 
digits (see section Methods for details). The network is initialized in the super-critical state with high values of 
coupling parameters and the all-to-all interconnection topology. Even in the absence of any external input such 
network exhibits a high coherence of oscillators’ behavior since every node influence its neighbours too much.

To reconstruct the external input (MNIST digit), we augment the STO-network with a readout, which is 
a two-layer ANN taking the discretized (in time) evolution of z as its input and returning a probability of the 
input to belong to one of 3 classes of digits (’0’, ’1’, and ’2’). With this setup, the readout captures the temporal 
evolution of the reservoir. The weights of the readout are trained using classical supervised learning algorithms 
(see section Methods).

Figure 3.   Comparison of different dynamical regimes for the all-to-all network of N = 28 spin torque 
oscillators depending on the coupling parameters. (a) Order parameter rx depending on the coupling 
parameters α ∈ [0, 0.3] and β ∈ [−0.02, 0.02] . (b) Probability distributions in three qualitatively different 
scenarios: Subcritical (top figure, α = 0.2755 , β = 0.0167 ), critical (middle figure, α = 0.0306 , β = 0.0192 ), 
and supercritical (bottom figure, α = 0.2939 , β = −0.0192 ) regimes. The critical regime is characterized by the 
power law probability distribution of cluster sizes (close to the straight line in the log-log coordinates).
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In the considered supercritical regime, the external inputs do not qualitatively change the collective behavior 
and the network shows a high coherence of behavior and, therefore, it is difficult to decide on the unknown 
external input by looking into the networks’ evolution. This is a typical shortcoming of the super-critical behavior.

As a driver for the structural plasticity, we use a direct binary search guided by the loss of supervised learn-
ing procedure for the readout weights. On each iteration, (i) we change one random entry of the adjacency 
matrix (from 1 to 0 if aij = 0 , and, vice versa, from 0 to 1 if aij = 1 ); (ii) run supervised learning procedure and 
compare the resulting loss to the loss on the previous step; (iii) if the new loss is larger than the previous one, we 
revert the made change in the adjacency matrix and, finally, repeat the procedure from step (i). The proposed 
algorithm stems from the direct binary search used for the inverse design of magnonic devices37 and its scheme 
is depicted in Fig. 4.

The behavior of solutions to (3) before (complete interconnection graph) and after the training over 3000 
iteration is summarized in Fig. 5. In the following subsection, we analyze the evolution of the interconnection 
topology during the training process, and inspect the criticality signatures in the trained network. However, 
already at this stage, it is strikingly that rather minor adjustments to the interconnection topology lead to quali-
tatively significant changes in the network’s behavior (Fig. 5a).

Relation between the criticality, task performance, and information‑theoretic measures of 
the network.  The training process described in the previous subsection has resulted in the loss of ≈ 6% of 
interconnection links in the network (from 756 to 710). The classification loss value for the readout has dropped 
dramatically from 0.4483 to 0.0015. Beside this, the trained network clearly exhibits criticality signatures (Fig. 6), 
although the proposed plasticity mechanism does not encounter any activity of the network (like bio-inspired 

Figure 4.   Scheme of the algorithm for the structural plasticity that is driven by the interaction of the reservoir 
(STOs network) with the environment (performance in solving hand-written digits classification task).

Figure 5.   Behavior of the STO-network under the MNIST-input. (a) Time series of the real and imaginary 
parts of z under two different interconnection topologies (before and after the training). The switch between the 
topologies is performed at t = 2 ns. (b) Phase space representation of z. (c) Graphical representation of the used 
MNIST digit. (d) Periodic input u that corresponds to the chosen MNIST digit (see section Methods for details 
on the input construction).
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plasticity mechanisms, which are task-independent and depend on the nodes’ activity) and rely purely on the 
task performance.

Figure 7 shows that the trained network exhibits power law probability distribution of cluster sizes even in 
absence of any external input. However, additional external inputs bring the distribution even closer to the power 
law with the same power law exponent, i.e., the standard deviation of the power law fitting decreases thanks to the 
external input. This is in accordance with the commonly accepted approach in neuroscience stating that networks 
without any external input reside in a vicinity of the critical state and reach criticality under external stimuli38. In 
particular, this means that the best initialization for the reservoir is not at criticality but in its vicinity. However, 
how to know this vicinity? How far should the network reside away from the criticality? The task-performance 
feedback proposed in the present paper can be seen as a fine-tuning mechanism that brings the reservoir to the 
’best’ vicinity of the critical state for the given type of input signals.

To uncover the reasons for criticality, we examine basic task-independent information-theoretic properties39 
of the trained network, namely, the entropy, assortativity, and clustering coefficient. These are summarized in 
Fig. 8. It is clearly visible that the network’s characteristics that changed the most is the entropy, which is the 

Figure 6.   Only ≈ 6% of removed edges lead to significant qualitative changes in the network’s behavior (from 
(b) to (c)). The input applied to the original all-to-all network does not qualitatively change the collective 
behavior (from (b) to (a)). The trained network without any external input resides in a vicinity of the critical 
state (c) and reaches the criticality under the external input (d). This is additionally demonstrated in Fig. 7. 
Nodes’ labels on the graph (e) indicate the difference between the number of the node’s outgoing edges for the 
initial and the trained topology. These removed edges are highlighted with red color.

Figure 7.   Power law exponent and standard deviation of the power law fitting for different inputs. External 
inputs do not change the mean exponent of the power law distribution, however, the standard deviation of the 
power law fitting decreases under the input. This indicates that the trained network without an input resides in 
the vicinity of the critical state and the external input brings it closer to criticality.



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:15321  | https://doi.org/10.1038/s41598-022-19386-z

www.nature.com/scientificreports/

typical measure of the heterogeneity of the network39 (see also Supplementary Figures 1(d), 2(d), and 3(d) for 
the entropy evolution during the performance-based training under other input types). Neither assortativity nor 
clustering shows significant changes over the training period.

Generality of the proposed approach and benchmarking.  The proposed structural plasticity mecha-
nism for the STO-network leads to the qualitatively same results in different tasks. To showcase this, we compare 
the interconnection topology characteristics and criticality signatures of the trained networks under the perfor-
mance feedback for two additional tasks: handwritten digits (’0’–’9’) classification from the MNIST dataset28 and 
Parkinson disease assessment using Parkinson’s Disease Classification Data Set40. The latter one contains various 
acoustic characteristics of phonation of the vowel ’a’ recorded from Parkinson’s disease patients to extract clini-
cally useful information for the disease diagnosis. The results are summarized in Table 1.

Figure 8.   Evolution of the task performance and graph-theoretic characteristics in course of training: (a) 
Classification loss; (b) Classification accuracy; (c) Network’s average degree; (d) Entropy; (e) ’In’-’in’-, ’in’-
’out’, ’out’-’in’-, and ’out’-’out’- assortativity; (f) Average clustering coefficient; (g) A comparison of the trained 
interconnection topologies (blue dots) to some selected classes of graphs against the entropy, ’out’-’out’ 
assortativity, and clustering.

Table 1.   Macroscopic characteristics of the interconnection graphs and criticality signatures of the trained 
networks for different tasks. The first three columns correspond to the STO network (3). The last column 
summarizes the training results for the network of identical harmonic oscillators under the MNIST-input 
(digits ’0’–’2’).

 Number of links

MNIST 0–2 MNIST 0–9 Parkinson’s Disease DS Harmonic oscillators

710 713 721 640

Average degree 25.38 25.46 25.75 22.86

Entropy 0.4223 0.4385 0.3930 0.4862

Assortativity ’in’-’in’ − 0.0499 − 0.0172 − 0.0146 − 0.0669

Assortativity ’in’-’out’ 0.0054 0.0149 0.0097 0.0123

Assortativity ’out’-’in’ − 0.0465 − 0.0264 − 0.0168 − 0.0579

Assortativity ’out’-’out’ − 0.0437 − 0.0208 − 0.0183 − 0.0385

Clustering coefficient 0.9409 0.9424 0.9531 0.8459

Power law exponent (w/o input) −1.0859± 0.0332 −1.0694± 0.0344 −1.0926± 0.0266 −1.002± 0.1609

Mean power law exponent (with input) −1.0837± 0.0258 −1.0663± 0.0288 −1.2129± 0.0245 −1.601± 0.1046
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It should be noted that the interconnection topologies of the trained networks are different (see Fig. 6 and 
Supplementary Figures 1(g), 2(g)), however, the macroscopic characteristics of the networks are similar. The 
probability distributions of cluster sizes after the training follow the power law, and the standard deviation of 
the power law fitting decreases when the network receives external input compared to the input-free case (see 
Fig. 9). Finally, the proposed structural plasticity approach does not necessarily require the STO network for 
its functioning, but it can be also applied to other types of oscillator networks. For example, the last column of 
Table 1 summarizes the training results for the network of identical harmonic oscillators that has been steered to 
a vicinity of criticality using the task-performance feedback (MNIST digits ’0’-’2’ classification). The mathemati-
cal model used for the latter case is provided in Supplementary Information.

Although the macroscopic characteristics (entropy, assortativity, and clustering coefficient) of the intercon-
nection graph for the trained network of harmonic oscillators are similar to the corresponding characteristics of 
the trained STOs, the number of links and the power law distributions are different. Reasons for these differences 
are as follows: (i) The initial all-to-all networks are initialized at different distances to criticality and, therefore, 
the network of harmonic oscillators looses more links in the course of training compared to the network of 
STOs. (ii) There are much wider deviations of the power law fitting under the external inputs for the network of 
harmonic oscillators compared to the power law fitting deviations for the STOs. This is due to the same scaling 
of the input signal used for both STOs and harmonic oscillators, whose dynamical properties are different. As a 
result, the applied input has a stronger influence on the overall behavior of the network of harmonic oscillators 
than on the behavior of the STOs. This influence can be balanced, for example, by embedding internal adaptation 
mechanisms into the input nodes that self-adjust signal intensity depending on the internal dynamical charac-
teristics of the nodes. Although the input scaling analysis and mechanisms are not in the scope of the current 
paper, they are definitely important ingredients for the neuromorphic reservoirs’ design41.

Discussion
In this paper, we proposed an evolutionary approach for the structural plasticity that relies solely on the task 
performance and does not contain any task-independent adaptation mechanisms, which usually contribute 
towards the criticality of the network. As a driver for the structural plasticity, we used a direct binary search 
guided by the performance of the classification task that can be interpreted as an interaction of the network 
with the environment. Remarkably, such interaction with the environment brings the network to criticality42, 
although this property was not a part of the objectives of the employed structural plasticity mechanism. We also 
identified the interconnection graph’s entropy (that characterizes how many ways exist for the signal propagation 
through the network) as an essential ingredient for the classification task performance and network’s criticality.

Signatures of criticality have also been found in a class spiking recurrent neural networks used for spatiotem-
poral pattern learning through a combination of neural plasticity mechanisms16. It has been shown therein that 
the biologically inspired plasticity and homeostasis mechanisms responsible for the learning abilities can give 
rise to criticality signatures when driven by random input, but these break down under the structured input of 
short repeating sequences. Moreover, the necessity of sufficient noise for the occurrence of the criticality sig-
natures degrades the model’s performance in simple learning tasks. In contrast, the emergence of the criticality 
signatures and their persistence under the noise-free periodic structured inputs have been shown for the trained 
STO-network considered in our paper. Our findings refute the generality of the hypothesis that the structured 
input breaks down criticality signatures16 and challenge the conjecture that criticality is beneficial for complex 
tasks only12.

Beyond those results, here we have shown for the first time the criticality signatures arising in a network 
model designed for learning under the direct binary search rather than any combination of activity-dependent 
plasticity mechanisms. The paper also showcases criticality signatures in networks of spin-torque oscillators for 
the first time.

Figure 9.   Power law exponent and standard deviation of the power law fitting for different tasks, inputs, and 
networks from Table 1. Figure (a) is a zoom-in of a region from Figure (b) that corresponds to the STO network. 
In all cases, the trained networks exhibit criticality signatures, and the standard deviation of the power law 
fitting decreases under the external input.
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Despite all the current progress, the relationship between criticality and learning in bio-inspired neural 
networks is far from completely understood. The main challenge we see is in understanding mechanisms which 
translate external stimuli generated by the task performance into the language understandable for a network. Our 
paper employs the rather inefficient mechanism of binary search that can be possibly substituted by more sophis-
ticated ones, e.g., genetic learning algorithms, or moved even further down to the network’s self-organization 
level. At this stage, it is however not clear whether the bio-inspired synaptic and structural activity-dependent 
plasticity are sufficient mechanisms to realize adequate reactions of artificial neuromorphic networks to the 
environmental stimuli, or any kinds of mutations and evolutionary adaptations are necessary for this.

Methods
Evaluation of the model.  Evaluation of solutions.  Numerical solution z(t), t ∈ [0,T] to (3) is obtained 
using complex-valued variable-coefficient ODE solver zvode from Python scipy library. For the purpose 
of further analysis all trajectories are discretized in time with the time step dt = 0.0001 ns, i.e., the outcome of 
simulation of length T = 5 ns is stored in 50000-dimensional complex-valued vector. In all numerical simula-
tions, parameters ωi ,Ni ,Ŵi , Si are randomly taken following the truncated normal distribution with bounda-
ries ±90% and standard deviation 45% around the mean values ω = 6.55 · 2π rad/ns, N = −3.82 · 2π rad/ns, 
Ŵ = 1.1781 , S = 2.9688 , respectively. The mean values for oscillator’s parameters are taken from34. As a measure 
for the synchrony in network (3), we use the standard deviation of oscillators states averaged over a certain time 
interval [t1, t2]

where x(t) = (x1(t), . . . , xN (t))
⊤ stands for either real or imaginary part of the state z(t), and {x0i , x1i , . . . , xni } 

is the corresponding time-discretization of xi(t) , t ∈ [t1, t2] , i ∈ {1, . . . ,N} with time step dt. Figure 3a depicts 
rx calculated for real parts of the state trajectory. The standard deviation calculated for imaginary parts has the 
same qualitative properties.

Correlation matrices and their clusterization.  For either real or imaginary part of the trajectory segment of length 
�T = n · dt , we compute pairwise standard correlation ρij between the discretized trajectories {x0i , . . . , xni } and 
{x0j , . . . , xnj } as

where x̄i = 1
n+1

∑n
k=0 x

k
i  and x̄j = 1

n+1

∑n
k=0 x

k
j  are the mean values of the corresponding discretized trajectories 

over time interval �T . All pairwise correlation coefficients form the square N × N-dimensional matrix P that 
we use for hierarchical clustering of oscillators. This is made in the following steps: (i) Taking a threshold for 
the correlation coefficient ρth = 0.95 , we substitute every entry ρ of P with 1 if ρ ≥ ρth , and with 0 otherwise. 
(ii) For this new matrix, we calculate pairwise distances between its elements and create the so-called linkage 
matrix L out of these pairwise distances following the Voor Hees algorithm. (iii) We form clusters with the 
fcluster-function from scipy.cluster.hierarchy (that takes L as an argument) so that the dis-
tance between elements in each cluster is not greater than a half of maximal pairwise distance from step (ii), 
and re-index oscillators accordingly. (iv) The procedure is iterated recursively over every identified cluster until 
its size is larger than 2. Typical outcome of the described procedure is depicted in Fig. 2 (c). The clusters can be 
identified as square sub-matrices centered on the main diagonal with all entries ρij ≥ ρth.

Binning and criticality measures.  As a signature of criticality we use probability distribution of cluster sizes. To 
approximate this distribution, we run a simulation and split the discretized time series of oscillators states into 
bins of length �t = 0.12 ns. For every bin, we calculate the number of clusters of particular sizes for both real 
and imaginary parts, and sum them up across all bins. The relative frequency of the occurrence of clusters of 
particular size is used as an approximation of the probability of the emergence of clusters of this size. The power 
law probability distribution of cluster sizes is treated as the criticality signature (Fig. 3b).

Reservoir computing.  Formation of external inputs and the training set generation.  As an input to the 
reservoir, we use a signal generated from two different datasets: the MNIST dataset28 and Parkinson’s Disease 
Classification Data Set40. Every MNIST-digit is the 28× 28 grayscale image, in which every pixel contains a value 
ranging from 0 to 255. First, we normalize pixels’ intensity and get square matrix U with entries Uij ∈ [0, 10] , 
i, j ∈ {1, . . . , 28} . Every node i ∈ {1, . . . , 28} receives an input ui formed out of the i-th row of the corresponding 
MNIST digit

with period l = 1/7 ns, i.e., the input is a piece-wise constant periodic signal of period l, in which the value of 
every pixel of the i-th row is plugged sequentially for the equal amount of time (Fig. 5d). Every entry of the 
Parkinson’s Disease Classification Data Set contains 754 real values that have been obtained using various speech 
signal processing algorithms from the phonation of the vowel ’a’ recorded from Parkinson’s disease patients. We 

(4)rx = 1
t2−t1
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1
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(
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∑n

k=0(x
k
i − x̄i)(x
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√
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k=0(x
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√
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(6)ui(t) = Uij , for t ∈ [l(k − 1)+ (j − 1)l/28, l(k − 1)+ jl/28), j ∈ {1, . . . , 28}, k ∈ N
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randomly partition 754 characteristics into 28 pools with every pool has either p = 26 or p = 27 characteristics. 
From every pool i ∈ {1, . . . , 28} , we form a vector of characteristics Ui = [Ui1, . . . ,Uip, 0, . . . , 0

︸ ︷︷ ︸

28−p

] with Uij 

i, j ∈ {1, . . . , 28} being re-scaled to the segment [0, 10]. Every node i ∈ {1, . . . , 28} of the reservoir receives an 
input ui defined by (6).

To generate the training set for the supervised learning of the readout, the corresponding reservoir dynam-
ics are simulated for t = 5 ns, i.e., in every simulation every oscillator receives t/l = 35 iterations of the input 
signal that corresponds to particular MNIST-sample or to a set of acoustic characteristics for particular vowel 
’a’ recording.

Supervised learning for the readout.  The readout consists of two fully connected feed-forward layers of artificial 
neurons: the input layer that receives the signal from the reservoir, and the output layer, with the softmax acti-
vation function, containing two, three, or ten nodes with the classification probabilities depending on the task. 
The input layer of the readout consists of NI = 5600 nodes which receive the real and the imaginary part of the 
solution for every of N = 28 nodes over the last 1 ns evaluated at 100 equidistant time-points. The supervised 
learning procedure is performed in Python using the Keras API43 for 100 epochs. The mean square error is 
backpropagated using the stochastic gradient descent method Adam44. Since the readout should capture the 
temporal information from the reservoir, it can be of interest to explore other types of artificial neural networks 
as readouts. In particular, the recurrent neural networks in form of Long-Short Term Memory networks (LSTM) 
or Gated Recurrent Units (GRU) can be suitable for this role, however, this extension is out of the scope of the 
current paper. Another interesting direction is the usage of readouts implemented in CMOS circuits for the 
synchronization detection in networks of coupled oscillators45.

Information‑theoretic measures of the interconnection graph.  To evaluate changes of the inter-
connection topology in course of the training process the following task-independent graph- information-the-
oretic measures are used: (i) Entropy H(G ) that characterizes the heterogeneity of the interconnection graph 
G = (V ,E ) . Let p = (p1, . . . , p|E |) be the outer degree distribution, i.e., pk stands for the probability of hav-
ing a node with the outer degree k. Then, the entropy can be calculated according to

In Fig. 8, we plot the entropy normalized with respect to the network size using a scaling factor 1/ log |V | so that 
the normalized entropy takes values between 0 and 1. (ii) Assortativity r that measures the tendencies of nodes 
to be connected to other nodes that have similar in- and out- degrees as themselves. Following46, four types of 
assortativity can be introduced: rin,in, rin,out, rout,in , and rout,out . Introducing notation γ , δ ∈ {in, out} and labeling 
edges of the graph with indices 1, . . . , |E | the assortativity rγ ,δ is defined by

where jγi  is the γ-degree of the source node vertex of the edge i, and kδi  is the δ-degree the target node of edge i. 
The average values of the mentioned terms over all edges of the network are denoted by j̄γi  and k̄δi  , respectively. 
(iii) Clustering coefficient is the average of cluster coefficients cu over all nodes u ∈ V

where T(u) is the number of directed triangles through node u, deg(u) stands for the sum of in- and out-degree 
of node u, and deg∗(u) is the reciprocal degree of u, i.e., the ratio of the number of edges in both directions to 
the total number of edges attached to node u47.
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