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MOTIVATION Biologics, such asmonoclonal antibody therapeutics, are routinely discovered via screening
large, randomly diversified libraries for promising sequences. While these methods are effective for identi-
fying candidates with high affinity for targets of interest, they require the use of molecular counterselection
for identifying nonspecific binding, which utilizes combinations of selected unintended targets and can lack
sensitivity. The nonspecific binding of therapeutics can lead to costly failure during drug development and
unintended adverse health effects. We sought to develop a computational method for identifying nonspe-
cific antibody candidates early in the process without combinatorial experiments by training machine
learning models on single-target sequencing data from antibody affinity-selection campaigns.
SUMMARY
Effective biologics require high specificity and limited off-target binding, but these properties are not guar-
anteed by current affinity-selection-based discovery methods. Molecular counterselection against off tar-
gets is a technique for identifying nonspecific sequences but is experimentally costly and can fail to eliminate
a large fraction of nonspecific sequences. Here, we introduce computational counterselection, a framework
for removing nonspecific sequences from pools of candidate biologics using machine learning models. We
demonstrate themethod using sequencing data from single-target affinity selection of antibodies, bypassing
combinatorial experiments. We show that computational counterselection outperforms molecular counter-
selection by performing cross-target selection and individual binding assays to determine the performance
of each method at retaining on-target, specific antibodies and identifying and eliminating off-target, nonspe-
cific antibodies. Further, we show that one can identify generally polyspecific antibody sequences using a
general model trained on affinity data from unrelated targets with potential affinity for a broad range of
sequences.
INTRODUCTION

Biologics have increasingly become an important therapeutic

modality in the treatment of cancer, infectious diseases, and

other human diseases. A growing number of biologic therapeu-

tics, primarily biological sequences such as proteins or ap-

tamers, are discovered using affinity-selection techniques in

which large libraries of candidate sequences are screened, or

‘‘panned,’’ against a desired target, and strong binders are iden-

tified as lead candidates for further preclinical development. This

technique is useful but often results in a large proportion of unus-

able candidates due to nonspecific interactions with potential off

targets that cannot be evaluated during single-target screens.
Cel
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This often results in significant wasted resources on high-affinity

binders that are ultimately undevelopable due to nonspecificity.

Here, we present a framework for using high-throughput

sequencing from affinity-selection campaigns to computation-

ally identify and filter nonspecific sequences, increasing the effi-

ciency of early-stage therapeutic discovery. We showcase the

utility of this approach applied to antibody therapeutic discovery,

but it can be used for any sequence-based biologic discovery

campaign that uses affinity-based screening.

The high-affinity binding of synthetic antibodies to disease

related targets has provided an important source of therapeu-

tics, and the safety of these therapeutics relies in part upon their

ability to bind a single desired target and, more importantly,
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avoid nonspecific binding. In one application, therapeutic anti-

bodies are clinically used to block and activate cellular recep-

tors. In other applications, when conjugated with other bioactive

substances, antibodies can implement a wide range of thera-

peutic modalities (An, 2010). The nonspecific binding of anti-

bodies can result in negative consequences ranging from limited

therapeutic efficacy to illness and death (Raybould et al., 2019;

Zhou et al., 2007). Thus, antibody specificity is crucial.

Affinity-selection techniques are often used to screen libraries

against targets of interest, and molecular competitors can be

included to reduce the probability that affinity-selected anti-

bodies will bind to predetermined potential off targets (Chiu

et al., 2019). This approach, molecular counterselection, relies

upon the accurate selection of the undesired target and its con-

centration. Thus, molecular counterselection is specific to one or

more predetermined off-target molecules, and thus the data

from molecular counterselection for a target cannot be used to

reduce undesired binding to untested off-target molecules.

Further, molecular counterselection is inherently combinato-

rial—each potential set of off targets requires a separate coun-

terselection experiment, which is in the limit intractable when

considering a large number of potential off targets. In practice,

candidate antibodies are assayed further down the antibody dis-

covery pipeline for binding to undesired targets using a battery of

in vitro high-throughput-array-based assays and adverse effects

in animal studies. This can result in significant wasted resources

on high-affinity antibody candidates that are ultimately found to

be unusable. More recently, experimentally designed libraries

that attempt to minimize the promiscuous binding of antibodies

have been proposed by excluding certain trinucleotide combina-

tions during random synthesis, but this approach relies on a

small set of deterministic rules that cannot capture all aspects

of nonspecific binding (Kelly et al., 2017). Small-scale computa-

tionally designed libraries with individually specified sequences

have also been proposed, but achieving the diversity necessary

for therapeutic discovery with libraries composed of directly syn-

thesized sequences is expensive and currently intractable (Ko-

suri and Church, 2014; Liu et al., 2020; Shin et al., 2021).

We introduce computational counterselection, a general

method that utilizes sequencing data from affinity-selection ex-

periments to train machine learning models of nonspecific bind-

ing. An attractive aspect of this approach is that historical affinity

data can be collectively repurposed to improve the detection of

off-target binders for future affinity-selection-based discovery

campaigns. In the work presented here, we train models using

the affinity enrichment of antibody heavy-chain complementarity

determining region 3 (CDR-H3) sequences. Using these models,

for a given antibody’s CDR-H3 sequence, we predict affinity

for the on-target of interest and the set of off-targets. Since

sequencing of affinity-selection experiments is now routinely per-

formed, sequencing data from antibody discovery campaigns for

a wide range of targets are continuously being generated and can

be used to train computational counterselection models. We

focus on variation in the CDR-H3 sequence here because this re-

gion has been found to exhibit the largest sequence and confor-

mational diversity of the CDRs and has been shown to drive spec-

ificity of the antibody binding domain (D’Angelo et al., 2018). We

note that computational counterselection could be expanded to
2 Cell Reports Methods 2, 100254, July 18, 2022
include variation in other CDRs with selection data from libraries

that have diversified other CDRs. In the absence of antibody

campaigns for relevant targets, we demonstrate that using data

from affinity-selection experiments against targets commonly

used to assay polyspecificty can identify generally nonspecific

sequences. Other methods have been proposed that predict

specificity using machine learning approaches but only use sin-

gle-target affinity measures for screening large libraries for spe-

cific binding without considering combinatorial specificity against

suspected off targets (Mason et al., 2021). Computational

counterselection is an explicit tool for nonspecificty identification

that can be used in an iterative loop with routinely performed

affinity-selection experiments of on- and off targets of interest,

providing an avenue for highly certain filtering of nonspecific se-

quences early in the discovery process.

RESULTS

Multi-task neural network ensembles predict binding
affinity to trastuzumab and omalizumab
First, we trained models on sequencing data from phage panning

against two individual targets, omalizumab (Xolair) and trastuzu-

mab (Herceptin). We chose two publicly available molecules

that had both unique and shared epitopes for our evaluation of

computational counterselection. We reasoned that the inclusion

of shared epitopes would provide a natural source of nonspecific

binding, increasing the difficulty of counterselection. We com-

bined the single-target panning data for omalizumab and trastu-

zumab via a full outer join (i.e., the union of sequences in both da-

tasets) and trained a multi-task ensemble that predicts round 2

(R2) to R3 enrichment of sequences binding to these two targets

(Figure 1A). We choose ensemble models, as they provide an

explicit measure of epistemic uncertainty, which is essential

when training with noisy and potentially sparse experimental

sequencing data. Multi-task learning allows for soft parameter

sharing between on- and off-target predictions, which improves

the ability for the models to learn shared features driving nonspe-

cificity. Because the union of the two datasets includes non-over-

lapping sequences (i.e., sequences present in one dataset but not

the other) between the two datasets, we used a masked mean-

squared-error loss to deal with the missing values during training.

Masking occurred when updating target-specific weights when

data for that target was not observed for a given input sequence

in the training set (STARMethodss; Table S1).When evaluated on

held-out validation data, this multi-task ensemble successfully

predicts binding affinity of trastuzumab (r = 0.65) and omalizumab

(r = 0.59) (Figure S1). Further details on data preprocessing and

training datasets are provided in the STAR Methods.

Machine-learning-guided computational
counterselection eliminates antibodies with affinity for
both trastuzumab and omalizumab
Next, we utilized these multi-task neural network models to

conduct computational counterselection to identify nonspecific

sequences that bind both trastuzumab and omalizumab (Fig-

ure 1A). Computational counterselection uses multi-task bind-

ing-affinity models of on- and off targets and identifies nonspe-

cific sequences if the predicted enrichment for off targets by
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Figure 1. Overview of computational counterselection strategy and experimental validation

(A) Using enrichment over rounds from single-target phage panning as a regression label, we trainmulti-task ensemblemodels that jointly predict affinity to on and

off targets. We can then use this affinity prediction to identify sequences that bind to the off-target molecule and remove these sequences.

(B) Comparison with molecular counterselection for validation. To compare to molecular counterselection, cross-panning experiments of the on and off target

and individual binding assays of 48 selected sequences were done.
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the model is above a chosen threshold (Figure S2). We then vali-

dated this approach using experimental data from both cross-

panning experiments and individual binding assays of specificity

(Figure 1B). Briefly, cross-panning is a phage selection experi-

ment in which the first two rounds of panning are conducted

against the on-target molecule and the last round is conducted

against the off-target molecule. Sequences enriched in the third

round of cross-panning experiments share affinity to both the

on- and off targets, andwe classify them as nonspecific antibody

sequences.

We found that computational counterselection was more

effective at reducing off-target binding than conventional molec-

ular counterselection when cross-panning was conducted with

both trastuzumab as the on-target and omalizumab as the off-

target, and vice versa. Efficient counterselection should reduce

nonspecific binding by a significant margin. We found that mo-

lecular counterselection failed to eliminate a substantial fraction

of off-target binding. In contrast, we found that computational

counterselection succeeded in removing most nonspecific

binders (Figure 2A).

We next quantified the efficiency of nonspecific antibody

removal as a function of an antibody’s cross-panning R3 fre-

quency. High R3 antibody sequence frequency in a cross-

panning experiment indicates that an antibody sequence is

nonspecific, as it will only be observed if it binds to both antigens.

For molecular counterselection, we consider a sequence as

being removed if the on-target R3 frequency is reduced after
counterselection. We find that molecular counterselection is

less efficient at removing off-target binders than computational

counterselection and that it also removes certain on-target

binders that are specific. For example, trastuzumab molecular

counterselection exhibits a large false negative rate for nonspe-

cific binders for antibody sequences that are positively enriched

in cross-panning (nonspecific binders) and a large false positive

rate when antibody sequences are negatively enriched in cross-

panning (specific binders). In comparison, computational coun-

terselection removed almost no specific binders and substan-

tially removed nonspecific binders (Figure 2B).

Finally, we experimentally confirmed model predictions of

nonspecific binding with a total of 48 selected on- and off-target

candidates with Octet or ELISA individual binding assays. For

both directions (omalizumab or trastuzumab as the off target),

we grouped antibody sequences by their single-target R3 fre-

quency into three groups: strong (top binders), medium, and

weak binders. Within each group, we selected eight sequences

that were not in the training set of the computational model.

Where there were more than eight sequences that satisified

these conditions, a random subset of eight was chosen. This re-

sulted in a total of 48 sequences to test.We used the Octet assay

for anti-trastuzumab antibodies and ELISA for anti-omalizumab,

as Octet failed to produce good-quality data for the latter (STAR

Methods). We observed that computational counterselection

more accurately predicted ground-truth labels derived from

Octet/ELISA assays when compared with molecular
Cell Reports Methods 2, 100254, July 18, 2022 3



Figure 2. Computational counterselection outperformsmolecular counterselection in removing off-target antibodies from antibody libraries

(A) Computational counterselection removes off-target bindersmore effectively thanmolecular counterselection. The x axis is the antibody enrichment for the on-

target antigen. The y axis is the antibody enrichment for the on-target antigen in the presence of an off-target competitor (counterselection). In the leftmost

scatterplots, points are colored by their enrichment in independent cross-panning experiments (green). Across all plots, off-target antibody sequences are

identified by independent cross-panning and are strictly highlighted in orange. The middle plots show depletion of off-target sequences by molecular coun-

terselection. The far-right plots show off-target sequences identified and set to zero by computational counterselection.

(B) Computational counterselection (orange) is more efficient thanmolecular counterselection across off-target affinity levels, leading to fewer false positives and

negatives. The y axis is the efficiency of nonspecific binder removal, and the x axis is the independent observation of enrichment of nonspecific binding in a cross-

panning experiment. Computational counterselection (orange) and molecular counterselection (blue) curves are shown.

(C) Computational counterselection provides superior classifications using ground-truth metrics from Octet/ELISA data for 48 candidates split by trastuzumab

(top) and omalizumab (bottom) predictions. Computational counterselection and molecular counterselection predictions indicated by blue (nonspecific) and or-

ange (anti-idiopathic) bars grouped by ground-truth labels.

(D) Fab/immunoglobulin G (IgG; lower ratio indicates nonspecific binding) and cross-selection/on-target selection ratios (higher indicates nonspecific binding).

Computational counter-selection (left) and molecular counterselection (right) predictions indicated by blue (nonspecific) and orange (specific) were evaluated by

their Fab/IgG and cross-selection/on-target selection ratio distributions.
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counterselection (Figure 2C). We next evaluated the 48 se-

quences using data from Fab binding and cross-panning exper-

iments and found that computational counterselection produced

superior results. We calculated the ratio of observed Fab/full-

target binding, where a lower ratio indicates nonspecific binding.

We also calculated the ratio of counterselection enrichment to

on-target enrichment, where a higher metric indicates nonspe-

cific binding. We found that the classifications provided by our

computational model had a more accurate distribution of these

nonspecificity metrics compared with classifications based

upon molecular counterselection (Figure 2D).

Generally polyspecific sequences share features with
nonspecific binders to trastuzumab and omalizumab
While we find that computational counterselection is highly

effective when high-throughput affinity data for off targets are

available, it is possible that potential off targets are unknown or

that off-target affinity data are not available. It has been previ-

ously hypothesized that nonspecificity can be characteristic to

some sequences rather than being unique to pairs of on- and
4 Cell Reports Methods 2, 100254, July 18, 2022
off targets (Cunningham et al., 2021; Notkins, 2004). This implies

that a subset of antibody sequences that are found to be

nonspecific could potentially be generally polyspecific—binding

promiscuously to a wide range of targets—which is a highly un-

desirable characteristic for therapeutic use and usually only

detected late in the discovery process. In these late stages of

preclinical antibody development, panels of unrelated targets

are used to eliminate antibody sequences that exhibit this gen-

eral polyspecificity, and previous work has proposed a library

with limited nonspecific sequences by identifying features that

are shared among generally polyspecific sequences (Kelly et

al., 2017).

We hypothesized that we could train a general model for

computational counterselection using affinity data from

randomly selected, unrelated targets with potential affinity for a

wide range of sequences as a consequence of biophysical prop-

erties, macromolecular composition, or function in biological ex-

periments. To test this hypothesis, we conducted cross-panning

(STAR Methods) against a set of unrelated targets using the R3

output of the previously described panning against trastuzumab
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and omalizumab. We choose three targets, baculovirus (BV)

extract, bovine serum albumin (BSA), and transforming growth

factor b (TGF-b). BV extract is a mix of proteins, DNA, and lipids

that has been previously used for identifying polyspecific se-

quences, TGF-b is an extremely hydrophobic protein that ad-

heres strongly to surfaces, and BSA is routinely used as a block-

ing agent (e.g., in ELISA). An additional round of panning against

omalizumab and trastuzumab was also conducted (Figure 3A).

We define ‘‘nonspecific’’ as sequences that were identified as

binding both omalizumab and trastuzumab in R4 and ‘‘polyspe-

cific’’ as sequences that bind any of the three unrelated targets in

R4 (STARMethods). We then found that the overlap between se-

quences identified as nonspecific and polyspecific sequences is

large (Figure 3B). We next characterized sequences that were

identified as nonspecific versus polyspecific by computing

amino acid enrichment analyses and STREME motif enrichment

analysis from the DREME suite of bioinformatics tools (Bailey,

2021). Additional details on this analysis can be found in the

STAR Methods. Nonspecific and polyspecific sequences share

similar amino acid compositions in the internal 10 positions of

the CDR-H3 sequence (Figures 3C and 3D). Further, the top 2

motifs (excluding canonical antibody CDR-H3 signatures) identi-

fied by STREME are similar between polyspecific and nonspe-

cific sequences and reflect common 2-mer motifs enriched in

nonspecific sequences, as previously identified (Kelly et al.,

2017) (Figure 3E). These pieces of evidence suggest that using

unrelated targets along with computational counterselection

could be viable for identifying generally polyspecific sequences

in the absence of single-target panning data against targets of

interest.

Computational counterselection with unrelated targets
identifies nonspecific binders
Next, we sought to show that computational counterselection

models trained on sequencing data from our three unrelated tar-

gets (BV extract, BSA, and TGF-b) are able to identify nonspecific

binders. We conducted two rounds of affinity selection against

BV, BSA, and TGF-b using the output of a round of panning

against no target (mock) (Figure 4A). At each round, enriched an-

tibodies were sequenced, and round enrichment was computed

and given a binary labeled based on R2 to R3 enrichment. Using

these data, we then trained individual binding classification

models using the same architecture as described in Table S1 to

predict binder or non-binder labels for each unrelated target

and show that these models successfully classify binders by

computing the area under the receiver operating curve

(AUROC) and area under the precision-recall curve (AUPRC) for

both 10-fold cross-validation on the training set and testing on a

held-out biological replicate (Figures 4B and 4C).

We then performed computational counterselection using

these ensemble models trained on affinity data to the three gen-

eral unrelated targets (BV, BSA, and TGF-b). We labeled a

sequence as nonspecific if it was predicted to bind to any one

of these three unrelated targets (Figure 4A). To validate the

generalizability of this computational counterselection method

with unrelated targets, we repeated the experiments identifying

nonspecific binders using cross-panning data and ELISA/

Octet data against omalizumab and trastuzumab (and vice
versa). Computational counterselection with unrelated targets

outperformed molecular counterselection on the ELISA/Octet

ground-truth-label prediction task (Figure 4D). Further, we found

that the classifications provided by our computational model had

a more accurate distribution of the Fab/full-target binding ratio

and the ratio of counterselection enrichment to on-target enrich-

ment (as previously described) compared with classifications

based on molecular counterselection (Figure 4E).

DISCUSSION

Biologics must have both high affinity and specificity for their

desired targets to be effective and safe. Sequence-based thera-

peutics, such as monoclonal antibodies and oligonucleotide ap-

tamers, are often discovered via affinity-selection experiments to

identify a pool of lead candidates. Screening out nonspecific

binders typically occurs late in the therapeutic-development

pipeline, potentially resulting in wasted time and resources on ul-

timately nonspecific, and therefore undevelopable, sequence

candidates. Techniques such as molecular counterselection

can be used during affinity-selection experiments but are not

definitive and, more importantly, are experimentally costly due

to the combinatorial nature of screening for all possible off tar-

gets. In this work, we introduce computational counterselection

to identify nonspecific sequences without the need for combina-

torial experiments.

Computational counterselection utilizes high-throughput seq-

uencing data from affinity-selection experiments against individ-

ual targets to filter nonspecific sequences from a pool of

candidates viamachine learningmodels of affinity. Here, we con-

ducted computational counterselection for antibody discovery

andcompared performancewith correspondingmolecular coun-

terselection experiments. Using neural networks that predict

antibody binding affinity based on phage panning enrichment

over rounds of selection, we show that it is possible to filter

nonspecific sequences for specific targets. In addition, we

show that computational counterselection models trained on

randomly selected, unrelated targets can identify nonspecific se-

quences without the need for off-target affinity data. Thus,

computational counterselection is a tool that can be used to

efficiently identify nonspecific sequences using historical and

universal affinity data in place of combinatorial molecular

competitor screens. Theutility of computational counterselection

will continue to increase as data accumulate from successive

antibody discovery campaigns, providing one method of identi-

fying highly specific antibody sequences. Further, computational

counterselection can be used for any sequence-based therapeu-

tic discovery from T cell receptors (TCRs), viral tropism targeting

by capsid sequence selection, to oligonucleotide therapeutics.

Limitations of the study
The primary limitation of present work is the need for sequence

enrichment data for on- and off targets.We note that antibody dis-

covery campaigns increasingly generate sequencing data for

downstream use in analysis. We present a general strategy for

identifying general polyspecificity by the reuse of these data

across antibody discovery campaigns. Another limitation was

the validation of our approach using commercial antibodies as
Cell Reports Methods 2, 100254, July 18, 2022 5



Figure 3. Off-target binders can be identified via cross-panning with unrelated targets

(A and B) Overview of cross-panning experiments against BV extract and BSA.

(B) Overlap of specific sequences identified by R4 on target and cross-panning against unrelated targets. Black circles connected by lines indicate a set made up

of sequences denoted by left text labels, and bars reflect the number of members in that set.

(C) Amino acid enrichment over 10 internal CDR-H3 positions (colored bars) for sequences identified to be polyspecific via panning against unrelated targets.

(D) Amino acid enrichment over 10 internal CDR-H3 positions (colored bars) for sequences identified to be nonspecific via cross-panning experiments with

Herceptin/Xolair.

(E) Top two enriched motifs of sequences specific to trastuzumab/omalizumab, nonspecific sequences identified by cross-panning against trastuzumab/

omalizumab, and polyspecific sequences identified by panning against BSA, BV extract, and TGF-b.
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targets. While their clear binding epitopes are advantageous for

outlining the validity of computational counterselection, we did

not teston therapeutic targets thatmighthavemultiplebindingepi-
6 Cell Reports Methods 2, 100254, July 18, 2022
topes with a wider range of affinities. However, the advantage of

our ensemble machine learning models is that one can directly

compute uncertainty in predictions, which can be considered



Figure 4. Computational counterselection models trained on unrelated targets can identify nonspecific sequences

(A) Overview of single-target panning experiments against BV extract, BSA, and TGF-b.

(B) AUROC curves for classifiers trained on BV extract (black), BSA (red), and TGF-b (blue). Solid lines indicate the test set is a held-out biological replicate.

Dashed lines show the result of cross-validation.

(C) Precision-recall curves for ensemble classifier trained on BV extract (black), BSA (blue), and TGF-b (red). Solid lines indicate the test set is a held-out biological

replicate. Dashed lines show the result of cross-validation.

(D) Computational counterselection with unrelated targets provides superior classifications using ground-truth metrics from Octet/ELISA data for 48 candidates

split by trastuzumab (top) and omalizumab (bottom) predictions. Computational counterselection (left panel) and molecular counterselection (right panel) predic-

tions indicated by blue (nonspecific) and orange (anti-idiopathic) bars grouped by ground-truth labels.

(E) Fab/IgG (lower ratio indicates nonspecific binding) and cross-selection/on-target selection ratios (higher indicates nonspecific binding). Computational (top)

and molecular (bottom) counterselection predictions indicated by blue (nonspecific) and orange (specific) were evaluated by their Fab/IgG and cross-selection/

on-target selection ratio distributions.
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when evaluating thresholds for filtering nonspecific candidates.

Further, we show the performance of machine learning models

of affinity on large, multi-epitope antigen targets when predicting

general polyspecificity. We also choose to focus on the CDR-H3

sequence because the diversified library that our data were

based on focused on these positions of the antibody. Finally, an

aspect of antibody therapeutic design that is not incorporated in

this work is downstream affinity maturation and engineering that

can alter the specificity profile of screened candidates (Mason

et al., 2021). We view computational counterselection as a tool

to improve the specificity distribution of candidates that advance

to the lower throughput affinity maturation and engineering stage

of development.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d METHOD DETAILS

B Identification of specific and nonspecific antibodies via

panning experiments
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B Description of panning targets

B High throughput sequencing data processing and

training dataset information

B Training neural network ensembles for predicting bind-

ing affinity

B Individual binding assays for specificity validation

B Details of motif enrichment analysis on post-trastuzu-

mab/omalizumab output

d QUANTIFICATION AND STATISTICAL ANALYSES

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

crmeth.2022.100254.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Trastuzumab pharmacy Herceptin�

Omalizumab pharmacy Xolair�

Bacterial and virus strains

Helperphage VCSM13 Agilent 200251

E. coli TG1 F+ supE thi-1 D(lac-proAB) D

(mcrB-hsdSM)5(rK– mK–) [F0 traD36 proAB

lacIqZDM15]

Roche 1 411 446 001

Chemicals, peptides, and recombinant proteins

TGFb-1 Peprotech 100-21

Bovine serum albumin Biowest P6154

Superblock� Thermo Scientific 37515

10 mM Glycine pH 2.0 GE Healthcare BR-1003-55

FlashGel DNA Marker 100-4000 bp Lonza 50473

FlashGel Loading Dye Lonza 50462

SyBR Safe Invitrogen S33112

6X loading dye Fermentas R0611

O’GeneRuler 100 bp DNA ladder plus Thermo Scientific SM1153

Agarose Invitrogen 16500-500

ChromaLink Biotin (DMF Soluble) Solulink B-1001-010

Neutravidin Thermo 3100

AttoPhosTM fluorescence substrate Roche 11 681 982 001

StreptAvidin-AP conjugated Roche 11089 161 001

10x Kinetic buffer ForteBio 18-1105

Critical commercial assays

Qiaprep Spin Miniprep Kit Qiagen 27106

1.2% FlashGel cassette Lonza 57023

MiSeq� v3 Reagent Kit 150 Cycles PE Illumina Box1: 15043893

Box2: 15043894

Zeba Spin Desalting Columns, 2mL Thermo 89889

Anti-Streptavidin biosensors ForteBio 18-5019

KAPA HiFi HotStart PCR kit Roche 07958935001

Baculovirus particle (BVP) production for

polyspecificity screening kit

Lake Pharma 25690

Wizard� SV Gel and PCR Clean-Up System Promega A9282

Deposited data

Training data for computational counterselection This paper doi:10.5281/zenodo.6625509

Oligonucleotides

TruSeq_for_fused PCR: NL15

AATGATACGGCGACCACCGAGATCTACAC

TCTTTCCCTACACGACGCTCTTCCGATCTt

gtattattgcgcgcgt

Microsynth N/A

TruSeq_for_fused PCR: NL22

AATGATACGGCGACCACCGAGATCTACAC

TCTTTCCCTACACGACGCTCTTCCGATCT

Atgtattattgcgcgcgt

Microsynth N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

TruSeq_for_fused PCR: NL23

AATGATACGGCGACCACCGAGATCTAC

ACTCTTTCCCTACACGACGCTCTTCCG

ATCTCAtgtattattgcgcgcgt

Microsynth N/A

TruSeq_for_fused PCR: NL24

AATGATACGGCGACCACCGAGATCTA

CACTCTTTCCCTACACGACGCTCTTCC

GATCTGAAtgtattattgcgcgcgt

Microsynth N/A

TruSeq_index5_rev_fused PCR: NL35

CAAGCAGAAGACGGCATACGAGATCA

CTGTGTGACTGGAGTTCAGACGTGTG

CTCTTCCGATCTtgaccacgctgctcagg

Microsynth N/A

TruSeq_index6_rev_fused PCR: NL36

CAAGCAGAAGACGGCATACGAGATAT

TGGCGTGACTGGAGTTCAGACGTGT

GCTCTTCCGATCTtgaccacgctgctcagg

Microsynth N/A

TruSeq_index12_rev_fused PCR: NL42

CAAGCAGAAGACGGCATACGAGATTA

CAAGGTGACTGGAGTTCAGACGTGTG

CTCTTCCGATCTtgaccacgctgctcagg

Microsynth N/A

TruSeq_index19_rev_fused PCR: NL48

CAAGCAGAAGACGGCATACGAGATT

TTCACGTGACTGGAGTTCAGACGTG

TGCTCTTCCGATCTtgaccacgctgctcagg

Microsynth N/A

Recombinant DNA

Single framework library Liu et al. 2020 doi:10.1093/bioinformatics/btz895

Software and algorithms

Computational counterselection This paper doi:10.5281/zenodo.6625278

Gen5 3.08 Biotek software https://www.biotek.com/products/

software-robotics-software/gen5-

microplate-reader-and-imager-software/

GraphPad Prism 9 GraphPad https://www.graphpad.com/updates/

prism-900-release-notes

Python v1.9.1 Python python.org

PyTorch v1.7.1 Meta pytorch.org

Other

Qubit Invitrogen Q32866

MiSeq system Illumina N/A

ForteBio Data Analysis 9.0 ForteBio N/A
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RESOURCE AVAILABILITY

Lead contact
Further information and requests should be directed to and will be fulfilled by the lead contact, David K. Gifford (gifford@mit.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Training data have been deposited at Zenodo and are publicly available as of the date of publication. DOI (Zenodo: doi:10.5281/

zenodo.6625509) is listed in the key resources table.

d Code has been deposited at Github and Zenodo and is publicly available as of the date of publication. DOI (Zenodo: doi:10.

5281/zenodo.6625278) is listed in the key resources table.

d Any additional data required to reanalyze the data reported in this work paper is available from the lead contact upon request.
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Identification of specific and nonspecific antibodies via panning experiments
Weperformed single-target phage-panning, cross-panning, andmolecular counterselection experiments. In the single-target exper-

iments three rounds of phage panning were performed against a single target. In the cross-panning experiments, two rounds of

phage-panning were performed against a first target, and the final third round of panning was performed against a second-target.

Thus cross-panning selects antibody sequences that bind to both targets. In Fab-panning experiments, two rounds of panning

were done against a target, and for the final third round of panning only the target’s Fab region was used. In the molecular counter-

selection experiments, two rounds of panningwere done against a target, and the final third roundwas performed in the presence of a

competitor molecule that inhibited isolation and sequencing of antibodies bound to the competitor.

In all phage-panning experiments a single framework, randomized library was used. The library used in all selection experiments is

the same as was used in Liu et al., 2020 (Liu et al., 2020). A gene fragment encoding the germline framework combination IGHV3-23

and IGKV1-39 was synthesized by Invitrogen’s GeneArt service in Fab format and cloned into a phagemid vector serving as the base

template. IGHV3-23 and IGKV1-39 were used as they display a favorable framework combination for a phage display library and this

framework combination is used in several therapeutic antibodies including trastuzumab and bevacizumab (Tiller et al., 2013). The

phagemid vector consists of Ampicillin resistance, ColE1 origin, M13 origin and a bi-cistronic expression cassette under a lac pro-

motor with OmpA - light chain followed by PhoA–heavy chain – Amber stop – truncated pIII (amino acids 231 – 406). Only CDR-H3

was diversified and primers were designed to incorporate all naturally occurring amino acids excluding cysteine (free cysteines could

form disulfide bonds), and asparagine (asparagine in conjunction with certain amino acids could undergo deamidation or become

glycosylated) using trinucleotide technology (ELLA Biotech). CDR-H3 lengths between 10 and 16 amino acids and 18 amino acids

were allowed, in which the last two amino acids were kept constant with the sequence Asp-Tyr for length 10 to 16 and Asp-Val for

length 18. The design of the final two CDR-H3 amino acids reflects human VDJ recombination. Short CDR-H3s more often use J-

fragment IGHJ4 with ‘‘DY’’ at the end of CDR-H3 while longer CDR-H3s (here 18 aa) more often use IGHJ6 with ‘‘DV’’ at the end

of CDR-H3. Library inserts were generated by PCR using Phusion High Fidelity DNA polymerase (NEB Biolabs). The resulting

CDR-H3 library inserts were ligated into the base template, transformed into E.coli TG1 DUO (Lucigen) with a minimal library size

of 1E+09 transformants per CDR-H3 length and phages were produced using M13KO7 helper phage (NEB Biolabs) using standard

previously described protocols (Proetzel and Ebersbach, 2016).

Panning of the library against the targets (in-house expression and purification) was done in solid phase mode. 96-well maxisorb

plates (Nunc) were coated with the target using 500 nM in first and second round and 200 nM in the third round. After each round of

phage selection, polyclonal plasmid DNA was prepared using QIAprep Spin Miniprep Kit (Qiagen). Samples were analyzed on a

MiSeq using MiSeq Reagent Kit v3 (Illumina) with 150 forward cycles or on a HiSeq using HiSeq PE Cluster Kit v4 cBot and HiSeq

SBS Kit v4 (Illumina) with 76 forward cycles. For all targets, a replicate experiment was performed.

Description of panning targets
For initial on-target and off-target counterselection validation, we choose two publicly available antibody targets, trastuzumab

(monoclonal antibody that binds to human epidermal growth factor receptor 2) (Hudis, 2007) and omalizumab (monoclonal antibody

that binds to IgE antibodies) (Davies et al., 2017) because they have both shared and unique binding epitopes that provide an inter-

pretable source of nonspecificity. We chose commercial antibodies because they provide a clear mechanism for both specific and

nonspecific binding, and when introducing our method and comparing to molecular counterselection we wanted to clearly show that

the experimental readout observed in our validation datasets (cross-panning and low-throughput ELISA/Octet) are indicative of

specificity and not other sources of noise (i.e spectrum of sequence similarity of binding epitopes between commercial antigens).

Because the epitope of each antibody is guaranteed to be highly specific when compared with the other, antibody binding to the

variable region is either driven by highly specific interaction or general polyspecificity (which motivates latter sections of the paper).

Similarly, nonspecific binding can be assumed to come from binding to the Fc region of the antibody or general polyspecificity. This

ensures that the advantage of computational counterselection over molecular counterselection on validation tasks is not due to

spurious signals that are picked up from the model and reflected in the validation datasets for trastuzumab/omalizumab non-specific

binding.We note that we use unrelated targets that are commercially available sticky antigens to address the source of nonspecificity

potentially being polyspecific sequences (another signal that using antibodies as targets does not mitigate well). We then chose 3

unrelated antigen targets to train a general polyspecificity predictor (described in the main text).

High throughput sequencing data processing and training dataset information
For high throughput sequencing of antibodies form all selection experiments, in each experiment we had around 107 high quality (Fig-

ure S3) sequences from all 3 rounds of panning. To extract CDR-H3 regions, the fixed flanking sequence of the variable regions (12

base pairs on the head and 9 base pairs on the tail) were used as a template to locate and segment out the CDR-H3 sequence. BLAST

(Altschul et al., 1990) was used for short read alignment to align the template with each read, allowing amaximum of 3mismatches on

each side. We then took the sequence between the end of the head and tail template and extracted sequences that were multiples of

three, indicating translated codons. The translation to amino acid sequences was done using EMBOSS (Rice et al., 2000).
Cell Reports Methods 2, 100254, July 18, 2022 e3
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Training datasets were constructed by retaining sequences that had more than 3 read counts in at least one panning round, or had

non-zero reads in all rounds. For trastuzumab/omalizumab multi-task regression datasets, R2-to-R3 enrichment was used as the

label. Sequences from each target affinity selection experiment were processed independently and labels were then concatenated,

allowing missing values across targets. This resulted in a dataset of 68,943 sequences.�7,000 sequences of this dataset were held-

out for testing. For the unrelated targets individual classification datasets, sequences with a round 3 frequency greater than 5e-5 or

that is higher than its round 2 frequency bymore than 1e-6 was labeled as positive, while sequence whose round 3 frequency is lower

than round 2 frequency by more than 1e-6 and whose round 3 frequency is less than 5e-5 was labeled as negative. This resulted in a

training dataset of 40,129 sequences for TGFb with 21,430 non-binders and 18,699 binders, 25,669 sequences for BSA with 17,629

non-binders and 8,040 binders, and 30,998 sequences for Baculovirus with 19,011 non-binders and 11,987 binders. Using a biolog-

ical replicate, test sets for BSA and TGFb were labelled the same way resulting in test sets of 25,669 (8,909 non-binders/6,329

binders) and 40,129 (6,214 non-binders/19,205 binders) sequences, respectively. Baculovirus did not have a biological replicate

and models were evaluated using 10-fold cross-validation.

Training neural network ensembles for predicting binding affinity
Our machine learning models input the complementarity-determining region heavy-chain three (CDR-H3) sequence of a Fab mole-

cule and output the predicted binding of the Fab to a target or a binary classification label of ‘‘binder’’ or ‘‘non-binder’’. We train each

model on high-throughput data from subsequent rounds of one or more phage panning experiments against the target as previously

described.

We used six different deep learning architectures for our network ensemble models of antibody binding for both regression and

classification tasks (ensembled by average or voting, respectively). Five were convolutional neural networks with 1 or 2 convolutional

layers with filter size of 1, 3 or 5 residues and stride 1, followed by a local max-pooling layer with window size 2 and stride 2. We used

64 and 32 convolutional filters for single convolutional layer networks. In one of the double convolutional layer networks, we used 32

filters with width 5 in the first layer and 64 filters with width 5 in the second layer. In the other network, we used 8 convolutional filters

with width 1 in the first layer to learn an embedding from one-hot to hidden space for each amino acid, and then used 64 filters with

width 5 to learn higher level patterns. In each of our convolutional models, the output from the last convolutional layer was fed into a

fully connected layer with 16 hidden units and a dropout layer. It is then connected to the final output layer that outputs predictions for

each of the target antigens. Our sixth architecture was a 2-layer fully connected neural network with 32 hidden units and dropout in

each layer. Table S1 the detailed setup of each architecture and the number of parameters in each architecture. Each model was

trained using Adam optimizer with default PyTorch v1.7 parameters (Paszke et al., 2019). Model performances were evaluated using

the validation set after each epoch, and the model with the highest performance was saved. All models were trained using either a

single NVIDIA Titan RTX GPU (24 GB RAM) or a single GeForce GTX 1080 Ti (11 GB RAM).

Individual binding assays for specificity validation
Biotinlyation of trastuzumab and omalizumab and all predicted anti-omalizumab binders was performed using ChromaLink Biotin

(DMF Soluble) from Solulink according to supplier’s manual. ChromaLink biotin stock solution was prepared using DMSO. Each re-

action was performed with 10 equivalent of biotin (90 min at RT). Biotinylated proteins were dialysed using Zeba Desalting column

2 mL following supplier’s protocol. PBS was selected as final buffer.

To confirm binding prediction to trastuzumab and Fc, Octet� was performed using biotinlyated targets loaded on StreptAvidin

biosensors. StreptAvidin biosensors were first equilibrated in 1X kinetics buffer (90 mL per well) in a 384 black wells plate during

5 min. Biosensors were then dipped into biotinylated targets (trastuzumab, omalizumab and BSA as a negative control; 100 nM in

1X kinetics buffer, 90 mL per well) during 10min. The baseline was reached by dipping pins in 1X kinetics buffer (90 mL per well) during

5 min. Predicted anti-trastuzumab binders (12 binders) and anti-Fc binders (20 binders) at 100 nM and four additional anti-Fc binders

from the predicted weak group at 400 nM (in 1X kinetics buffer, 90 mL per well) were associated to targets during 10 min and disso-

ciated by finally dipping pins in 1X kinetics buffer (90 mL per well) for 10 min. Assay temperature was set to 25�C. Within assay, bio-

sensors were regenerated using 3 cycles of Glycine 2.0 for regeneration steps and 1x kinetic buffer for neutralization steps. Analysis

was performedwithOctet data Analysis software (ForteBio Data Analysis 9.0). Responseswith values above 0.10 nmwere defined as

binding signals. Binders are considered as anti-Fc binders when response to more than two targets was above this value.

Octet for anti-omalizumab failed because we did not see any binding for antibody sequences expected to have high affinity for

omalizumab (based on panning) in contrast to high affinity anti-trastuzumab and anti-Fc sequences which worked as expected in

the anti-trastuzumab Octet experiment. As described above, we biotinylated the targets and bound them to streptavidin pins. As

we did random biotinylation, we did not have control of where the biotin is going. Our hypothesis is that random biotinylation of oma-

lizumab caused predominant addition of biotin at or close by the CDRs of omalizumab and thus altering or destroying the binding

epitope of omalizumab-specific candidates. In ELISA, we used the Fab version of omalizumab and coated it directly to maxisorb

multi-well plates in order to maintain the binding epitope. ELISA was performed using black MaxiSorpTM 384-wells plates coated

ON at 4�C with Fab-format of the targets (ranibizumab-Fab, trastuzumab-Fab, omalizumab-Fab and BSA ) at a concentration of

200 nM in PBS (20 uL per well). All following steps were performed at room temperature. After washing 2x with TBST, wells are

blocked for 2 h with Superblock� (80 uL per well). Plates were washed 2x with TBST and biotinylated binders at 40 nM were added

(20ul per well). Binding was allowed for 2 h. Plates were washed 3x with TBST and StreptAvidin-AP conjugated antibody (1:5000
e4 Cell Reports Methods 2, 100254, July 18, 2022
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dilution in PBST) is added (20ul per well). After 1 h incubation, plates were washed 5x with TBST and 20ul per well of AttoPhos� sub-

strate 1/5 diluted in water were added. Plates were read after 5 min incubation in the dark using an excitation wavelength of 430 nm

and an emission wavelength of 535 nm using BioTek Synergy neo2 (multi-mode reader) with Gen5 3.08 software. Binding was

defined when signal at 40 nM was at least 5 times over background signals.

Details of motif enrichment analysis on post-trastuzumab/omalizumab output
Panning was done for a fourth round after three rounds of panning against trastuzumab and omalizumab, respectively. Panning for a

fourth round was conducted following the same procedure described above and data processing was conducted as described

above. To reduce noise, only sequences with at least 1 read count in a round of panning were retained. The set of specific sequences

to trastuzumab or omalizumab were identified with stringent filtering of having a round 3 to round 4 fold-change of greater than 2.0.

‘‘Nonspecific’’ or ‘‘off-target’’ sequences were the overlap of these lists of trastuzumab/omalizumab specific sequences with affinity

for trastuzumab and omalizumab. Polyspecific sequences were identified with stringent filtering of having a round 3 to round 4 fold-

change of greater than 2.0 in one of the unrelated targets, BV, BSA, or TGFb. For all round 4 analysis, replicates were combined. Motif

enrichment analysis was done using STREME with the following configuration: –patience 20 –minw 3 –maxw 6.

QUANTIFICATION AND STATISTICAL ANALYSES

All analyses were done using Python version 3.9. Machine learning model training was done using PyTorch version 1.7. Pearson r

values and were computed with scipy (Virtanen et al., 2020). Receiver Operating Characteristic (ROC) and precision-recall (PR)

curves and corresponding area under ROC/PR curves (AUROC/PR) were computed using scikit-learn (Pedregosa et al., 2011).
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