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ABSTRACT: Solvation and hydrophobicity play a key role in a
variety of biological mechanisms. In substrate binding, but also
in structure-based drug design, the thermodynamic properties
of water molecules surrounding a given protein are of high
interest. One of the main algorithms devised in recent years to
quantify thermodynamic properties of water is the grid
inhomogeneous solvation theory (GIST), which calculates
these features on a grid surrounding the protein. Despite the
inherent advantages of GIST, the computational demand is a
major drawback, as calculations for larger systems can take days
or even weeks. Here, we present a GPU accelerated version of
the GIST algorithm, which facilitates efficient estimates of
solvation free energy even of large biomolecular interfaces.
Furthermore, we show that GIST can be used as a reliable tool to evaluate protein surface hydrophobicity. We apply the
approach on a set of nine different proteases calculating localized solvation free energies on the surface of the binding interfaces
as a measure of their hydrophobicity. We find a compelling agreement with the hydrophobicity of their substrates, i.e., peptides,
binding into the binding cleft, and thus our approach provides a reliable description of hydrophobicity characteristics of these
biological interfaces.

■ INTRODUCTION

The hydrophobic effect is a major driving force for chemical
interactions in aqueous solution and thus a heavily studied
phenomenon.1−4 However, it is discussed to be the least
understood intermolecular interaction,5 which is particularly
true in the complex environment of biomolecules.6,7 In spite of
the conceptual challenges, a detailed profile of the hydrophobic
surface area is critical in state-of-the-art drug design.8,9

Hydrophobic areas, where water is easily replaced and released
into the bulk, indicate possible interaction sites at the protein
surface. On the one hand, this information can be exploited to
optimize binding properties of small molecules and bio-
pharmaceuticals alike.10−12 On the other hand, surface
hydrophobicity is believed to be linked to protein aggregation,
a crucial factor in the developability of biopharmaceutical
products.13,14 Hence, there is an acute demand for methods to
estimate the hydrophobicity of biomolecular interfaces.
A broad range of concepts and algorithms have already been

devised to calculate the surface hydrophobicity of proteins.
Most common approaches describe hydrophobicity residue-
wise, relying on an average hydrophobicity for each amino
acid, which is extracted from premeasured or precalculated
hydrophobicity scales.15−20 These traditional hydrophobicity
scales found a broad spectrum of applications, ranging from

purely sequence-based secondary structure prediction tools to
identification of hydrophobic patches on the protein
surfaces.13−15,21−23 More fine-grained scales have been
developed, where distinctions are made between different
atom types in the amino acids.8,24 Despite their applicability
for a broad range of problems, hydrophobicity scales share a
common limitationthey only consider the average hydro-
phobicity of each building block independently. Yet, in the
context of a protein, the solvent interactions of each residue
strongly depend on its surrounding, i.e., on nonadditive effects.
Furthermore, it is interesting to study hydrophobicity in terms
of entropic and enthalpic contributions to gain insight into the
underlying mechanisms of hydrophobicity and protein
hydration. However, none of the aforementioned methods
can quantify the entropic contribution to hydrophobicity, or
hydration, directly. Free energy perturbation and thermody-
namic integration are often used to calculate the hydration free
energy of various molecules.25,26 But, to calculate the entropic
contribution to hydration these models use either the
temperature dependence of the free energy or the difference
of the free energy and enthalpy.27,28
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As hydration is a key feature for a variety of different
processes, such as biomolecular recognition, a plethora of
methods has been developed in recent years to model and
analyze water molecules and interactions thereof (AcquaAlta,29

AQUARIUS2,30,31 Biki Hydra,32 Consolv,33 Dowser++,34

GRID,35−37 HINT toolkit,38 MCSS,39−41 PyWATER,42

SPAM,43 SZMAP,44 WatCH,45 WATCLUST,46 WaterDock,47

WaterFLAP,48 WaterScore,49 WATGEN,50 wPMF51). Meth-
ods like AQUARIUS2, MCSS, PyWATER, or WatCH were
developed to suggest the placement of water molecules, which
can be extremely useful either for further molecular dynamics
simulations or molecular docking studies. Another group of
methods, such as GRID, WaterDock, or SPAM, calculate the
interaction energies of water molecules around a protein. But,
most of these cannot calculate the entropic contributions
directly or can only analyze certain parts of the protein.
Another approach to estimate the solvation free energy is
presented by methods based on the Inhomogeneous Solvation
Theory (IST). Multiple implementations exist, some of which
only analyze the free energy of water on specific, high density
water sites, i.e., solvation thermodynamic of ordered water
(STOW)52 or WaterMap.53,54 Grid inhomogeneous solvation
theory (GIST),12,55−57 on the other hand, calculates the
thermodynamic properties of the water molecules for each
voxel on a three-dimensional grid. A highly versatile alternative
to GIST is the 3D reference site interaction model (3D-
RISM).58,59 This approach relies on the Ornstein−Zernike
equation to calculate the enthalpy and entropy directly.
However, due to the estimations necessary to calculate the
closure relationship, the values obtained by the 3D-RISM
theory are approximate. In a recent paper, Nguyen et al.60

analyzed the differences of GIST and 3D-RISM and have
shown that, in general, 3D-RISM yields lower enthalpic and
entropic penalties for moving a water molecule from the bulk
to the protein’s surface. This leads to lower free energies than
are calculated by GIST. Another method similar to GIST is the
grid cell theory (GCT),61 in which the thermodynamic values
of the water molecules are calculated on a grid according to the
cell theory. However, compared to GIST this approach is
extremely computationally expensive.
We recently suggested an approach based on GIST to

calculate hydrophobicity as solvation free energy.62 The
strengths of this approach include the possibility to dissect
solvation free energy into its contributionsenthalpy and
entropy. In this method, the individual contributions to the
free energy of water surrounding a solute are analyzed on a
grid. This allows a detailed analysis of the different
contributions to the solvation free energy. Furthermore,
GIST allows areas contributing to the solvation free energy
of the solute to be identified, therefore providing a method to
estimate local contributions to the ensemble property.
However, a major drawback we encountered is the extensive
computational demand of the approach, especially when it
comes to large biomolecular systems. In recent years, the GPU
has been harnessed more and more to accelerate simulations
and analyses thereof. Here, we reimplement the GIST
algorithm to make use of the GPU’s calculation power.
Thereby, the approach becomes feasible for the analysis of
extensive biomolecular interfaces.
We apply our algorithm to characterize the hydrophobicity

of the biomolecular interfaces of nine Chymotrypsin-like serine
proteases. Proteases in general accelerate the hydrolysis of
peptide bonds, via nucleophilic attack on the otherwise

kinetically stable amide group.63 Due to the versatility of this
reaction, proteases fulfill a broad range of functions in the
human body.64 Thus, they are highly appealing drug targets
and a detailed understanding of their substrate recognition
mechanism is paramount.65,66 For numerous proteases, their
substrate preference has been extremely well characterized by
massive amounts of cleavage data accumulated in the public
MEROPS database.67 A key feature of protease binding sites
captured by the MEROPS is that binding data can be localized
to so-called subpockets.68,69 The concept of subpockets goes
back to Schechter and Berger,70 who suggested to number the
binding interface of proteases with S4−S4′ and to do the same
on the substrate side, where the substrate positions are named
P4−P4′. This partitioning of the binding interface facilitates a
localized analysis of the contributions to biomolecular
recognition.
Due to their role in various diseases, the Chymotrypsin-like

serine protease family has been extensively studied exper-
imentally as well as computationally.69,71,72 In one of our
recent studies, we exploited the experimental data on local
substrate preferences to show that similarity of Chymotrypsin-
like proteases in terms of their electrostatic substrate
recognition correlates with the similarity of their electrostatic
molecular interaction fields.73 This finding suggests that
electrostatic recognition and shape-based recognition are
orthogonal aspects of substrate binding. Our results so far
are thus well in-line with a two-step mechanism of protein−
protein binding, where in a first step, an initial preordering of
the substrate takes place, which relies on long-range electro-
static interactions between the binding partners.74−76 To allow
for the second step, where the formation of the complex
structure is partly driven by shape complementarity, water in
the binding interface needs to be displaced. Displacement of
energetically unfavorable water molecules in the binding
interface contributes beneficially to the binding process. This
effect is strongest when both the protease binding interface and
substrate are strongly hydrophobic, as water molecules are
then more easily stripped from both surfaces. We thus surmise
that, especially during this last step of protein−protein
complex formation, the hydrophobicity of the binding interface
plays a key role.
In this study, we implement and employ the GIST algorithm

on the GPU, for an accelerated estimation of solvation free
energy from molecular dynamics simulations. Focusing on a set
of nine Chymotrypsin-like serine proteases, we use the GIST
results to characterize and localize the hydrophobicity in the
respective binding interfaces. Furthermore, we compare this
analysis to the proteases’ substrate data, by introducing a
straightforward methodology to calculate the average hydro-
phobicity of the substrate binding to each of the proteases’
subpockets. Combining both analyses we then show that the
substrate hydrophobicity correlates well with the local
solvation patterns of the binding site.

■ METHODS
Grid Inhomogeneous Solvation Theory. In this section,

a brief overview of the grid inhomogeneous solvation theory,
devised by Gilson and co-workers, will be given. For a more
detailed introduction, the reader is referred to their original
studies.12,55−57 GIST uses a grid to replace the spatial integrals
from IST with discrete sums over the voxels on the constructed
grid, and only the discrete case will be explained here. For a
more general discussion of IST itself, we again refer the reader
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to the original publication.77 In GIST, the contributions to a
localized, density-weighted free energy of solvation is split into
energy and entropy contributions according to eq 1. The
energy contribution is then split up further into the solvent−
solvent interaction energy and the solute−solvent interaction
energy, as shown in eq 2. For the entropy, only the two-body
term is considered and split into translational and orientational
entropy (eq 3).

r r rA E T S( ) ( ) ( )k total k uv
total

kΔ = Δ − Δ (1)

r r rE E E( ) ( ) ( )total k vv k uv kΔ = Δ + Δ (2)

r r rS S S( ) ( ) ( )uv
total

k uv
trans

k uv
orient

kΔ = Δ + Δ (3)

The total equation for the localized free energy of solvation can
be derived by inserting eqs 2 and 3 into eq 1. The calculation
of Evv and Euv is straightforward, as this is the averaged
interaction energy between the solvent molecules in the
current voxel with the solute (Euv) or the other solvent
molecules (Evv). Algorithmically, these interaction energies
directly derive from the applied force field and are simply
averaged over all frames of the trajectory. To avoid double
counting of the solvent−solvent interactions, this contribution
is divided by 2. For the entropic contribution to solvation free
energy, solvent−solvent correlations are neglected. The
entropy is then calculated via the distribution of the solvent
molecules in each voxel. This distribution is a function of the
position of the solvent molecule in three-dimensional space
and of the orientation of the solvent molecule. This can be
partitioned into two different functions, one considering only
the position of the solvent molecule, which is calculated as the
translational entropy, and a second one depending on the
orientation of the solvent molecule in a certain grid voxel,
which is the orientational entropy. The translational entropy is
then calculated as a Shannon entropy of the distribution of the
position of the solvent molecules, as can be seen in eq 4.

r r rS k V g g( ) ( ) ln ( )uv
trans

k B k k k
0ρΔ = − (4)

where kB is Boltzmann’s constant, ρ0 is the reference density of
the solvent model, Vk is the volume of a voxel, and g(rk) is the
positional distribution of the solvent molecule.
Similarly, the orientational entropy is also calculated as a

Shannon entropy of the orientational distribution of the
solvent molecules at a certain position, following eq 5.
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As proposed by the original GIST implementation,57 we use a
nearest neighbor method78 (eqs 6 and 7) to compute the
orientational and translational entropy for voxel k, from the
simulation data.
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where Nk is the total number of solvent molecules in voxel k
and γ is Euler’s constant that corrects for an asymptotic bias,

dtrans is the closest distance between two solvent molecules,
Δωi is the closest angular distance between two solvent
molecules, and Nf is the total number of frames. Algorithmi-
cally, dtrans is calculated as the Euclidean distance between two
solvent molecules. Δωi is calculated as the distance between
two quaternions, which represent the orientation of each
solvent molecule in space (eq 8).79,80

q q2 arccos( , )i 1 2ωΔ = · |⟨ ⟩| (8)

where |.| denotes the absolute value and ⟨q1, q2⟩ denotes the
dot product between the two quaternions.
Both contributions to the entropy can also be estimated

together via the same nearest neighbor method, estimating the
integral of sixth order.57

For all discussed metrics, the reference state is a pure solvent
box without solute. Since the solvent−solvent correlations are
neglected for the entropic contributions, the reference value for
both entropic contributions is zero, as there is no preferred
position or orientation resulting in a uniform distribution.
Furthermore, the reference for the solute−solvent interaction
energy is also zero, with only the solvent−solvent interaction
energy differing from zero. In the case of TIP3P water this
reference energy is −9.533 kcal/mol for the water−water
interaction energy per water molecule.

GIST Implementation. The GPU-accelerated GIST
algorithm was implemented using C++ and CUDA.
Cpptraj,57,81 the analysis tool chain included in the AMBER
software package, served as backbone for the code. The
presented GPU-accelerated GIST algorithm will be provided
to be included to the official version of cpptraj. The calculation
of the interaction energies was reimplemented on the GPU,
since this is the most time-consuming part. The calculation of
the entropic contributions is still performed on the CPU, as
this calculation is very fast in comparison. The GPU
implementation of GIST was analyzed with respect to speedup
by performing GIST calculations on pure truncated octahe-
dron water boxes of various sizes. The entire GIST calculation
was considered for the analysis of the speedup. These water
boxes ranged from a minimum wall distance from the origin of
20 Å to 50 Å, which we will denote as a box radius for
readability purposes. For each water box 5000 frames were
analyzed, and the grid was created in a way to cover the entire
simulation box, using a grid size of 125 Å × 125 Å × 125 Å and
a grid spacing of 0.5 Å, resulting in a total number of 250 ×
250 × 250 or 15,625,000 grid points.

Simulation Setup. We performed MD simulations starting
from the crystal structures of Chymotrypsin (4CHA),82

Elastase (1QNJ),83 Factor VIIa (1KLI),84 Factor Xa
(1C5M),85 Granzyme B (1IAU),86 Granzyme M (2ZGH),87

Kallikrein-1 (1SPJ),88 Thrombin (4AYY),89 and Trypsin
(1PQ7)90 for subsequent GIST calculations. The structures
were prepared using the MOE software package (2019.01),91

and ligands were deleted where present. We used the
implemented Protonate3D tool92 to resemble a pH of 7.0.
Special attention was devoted to the catalytic histidine, to
make sure it was not protonated. A TIP3P93 water box was
added with a minimal wall distance of 12 Å. All simulations
were performed using the AMBER simulation engine,94 with
the GPU implementation of the particle mesh Ewald
algorithm.95

We employed the Langevin thermostat for temperature
control of the system and simulated at a temperature of 300 K.
Since simulations were performed in the NpT ensemble, the
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Berendsen barostat was used with a relaxation time of 2.0 ps.
Each structure was simulated for 100 ns, and 5000 frames were
used, to ensure convergence. The solute was restrained using a
restraint weight of 50 kcal/(mol Å2).
The GIST analysis for the proteases was carried out, using

the newly implemented GPU version of the GIST algorithm. A
grid of size 100 Å × 100 Å × 100 Å was used for all protease
structures, with grid spacing of 0.5 Å, resulting in a grid of size
200 × 200 × 200, or 8 × 106 grid points. The temperature was
set to 300 K, and the reference density of water was chosen
according to the AMBER manual (TIP3P: 0.0329 molecules/
Å3). For the analysis, 5000 frames of the simulation were used.
The reference water−water interaction energy was set to the
same as stated in the AMBER manual (TIP3P: −9.533 kcal/
mol).
Amino Acid Solvation Free Energy. To calculate the

solvation free energy of each amino acid in the substrates, the
same procedure was followed as published previously.62 Three
conformations of each of the naturally occurring 20 amino
acids were considered to calculate their solvation free energy.
In a distance of 5 Å, integration of the solvation free energy
was performed to calculate the total solvation free energy for
each conformation of each amino acid. These values were then
averaged, and for histidine, the average of the two possible
uncharged tautomeric states was used.

Substrate Hydrophobicity. The substrate hydrophobicity
is calculated as the weighted average hydrophobicity at each
substrate position, based on the MEROPS cleavage data.
Here, we used the hydrophobicity scale from Eisenberg15 as

a reference to calculate the average hydrophobicity of an amino
acid at each substrate position. We normalized the values of
that scale by shifting the hydrophobicity value of the most
hydrophobic amino acid to zero. This enables an easy
comparison between different methods.
Additionally, we calculated the solvation free energy profile

of each substrate position using GIST. Also, for this scale, the
most hydrophobic amino acid was shifted to have a score of 0.
Here, we used the solvation free energy of the different amino
acids as a scale, as suggested previously.62 Then, the
hydrophobicity for each substrate position was calculated via
eq 9, which is the weighted average of the hydrophobicity
score of each individual amino acid. This step was performed
for both scales to compare the solvation free energy ansatz
with the experimental concept of Eisenberg’s scale.

H
n G

nGIST
P a AA a i a

a AA a i

,

,

i =
∑ ·Δ

∑
ϵ

ϵ (9)

where Pi is the substrate position i, AA is the set of all 20
naturally occurring amino acids, na,i is the number of substrates
containing amino acid a in substrate position i, and ΔGa is the
solvation free energy of amino acid a. The substrate binding

Figure 1. Average hydrophobicity at each substrate position (P4 to P4′). Based on the MEROPS cleavage data, we calculate substrate
hydrophobicity using GIST (left) and the Eisenberg scale (right). Substrate positions range from more hydrophobic, i.e., higher score on the
hydrophobicity scale (white), to more hydrophilic, i.e., lower score on the hydrophobicity scale (blue).
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data needed for each protease was gathered from the MEROPS
database.
Protein Surface Hydrophobicity Mapping. The surface

hydrophobicity mapping projects the values of the solvation
free energy around a molecule onto its surface. In this case, the
mapping was performed on an atomistic level, but also more
coarse- and more fine-grained levels could be used, e.g.,
considering the entire residue or calculating points on the
surface and projecting the values there.
The hydrophobicity was calculated by a density-weighted

average around each atom. Additionally, a Gaussian cutoff
function with a σ of 1 Å was applied between 4 and 7 Å.
Localized Subpocket Hydrophobicity. The localized

subpocket hydrophobicity is a metric to calculate the solvation
free energy that would need to be replaced by a ligand binding
into a certain pocket of a protease.
The localized subpocket hydrophobicity was calculated,

using four different ligands to define the binding interface of
each protease. The four different ligands where chosen from
different X-ray structures to cover the binding interface of the
different proteases from the S4 subpocket to the S4′ subpocket
(PDB Codes: 1DE7,96 3LU9,97 2ZGH,87 and 3TJV98). The
ligands were positioned by aligning the protease crystal
structures to the simulated structures.
Grid voxels were assigned to each of the amino acids of

these ligands to calculate the solvation free energy of the water
molecules replaced by the ligands. The grid points were

weighted by a Gaussian function with respect to the distance of
the atoms of the ligand residue. For the distance in the
Gaussian function, the nearest grid point to any side chain
atom of any ligand amino acid at the specific substrate position
was used. A σ of 1 Å was used to define the Gaussian, and a
hard cutoff was defined after 3 σ (3 Å away from any of the
ligand’s atoms).

■ RESULTS

The solvation free energy was calculated for all 20 naturally
occurring amino acids as described in the Methods section.
The resulting values for these calculations are reported in the
SI (Table S1).
We then calculated the hydrophobicity in substrate space via

eq 9. For each substrate position, a value was assigned
according to the average hydrophobicity of an amino acid in
the substrate at that position. In this metric, small values (less
negative) imply that the pocket is prone to bind hydrophobic
residues. Large values, i.e., favorable solvation free energies,
indicate that mostly hydrophilic residues were determined to
bind in this pocket. As a reference for our GIST-based
approach, we calculated the same values based on the widely
established Eisenberg scale. This scale has been created as a
consensus scale of five different hydrophobicity scales. The
scales considered to generate this consensus scale ranged from
scales based on the free energies for the transition from water
to ethanol99,100 and for the transfer from water to vapor,101 as

Figure 2. Comparison of the substrate hydrophobicity (left), the localized subpocket hydrophobicity (middle), and the protease binding interface
colored by the localized hydrophobicity (right). The surface is colored from whitemore hydrophobic, higher solvation free energy (cutoff: 0
kcal/mol)to bluemore hydrophilic, more negative solvation free energy (−6 kcal/mol). The substrate hydrophobicity from Figure 1 is
depicted on the far left, and the localized subpocket hydrophobicity is depicted in the middle. For both, the values range from more hydrophobic
(white) to more hydrophilic (blue).
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well as two scales based on calculated free energies for the
transfer of amino acid side chains from the surface into the
interior of a protein102,103 and a last semiempirical scale.104

Figure 1 compares the substrate hydrophobicity from GIST
and the Eisenberg scale for four representative proteases. The
results for the remaining five Chymotrypsin-like serine
proteases can be found in the SI (Figure S1). Comparing
the two metrices for all studied proteases and subpockets, we
find a striking Pearson correlation of 0.88.
Furthermore, we used GIST to quantify and localize the

hydrophobicity within the binding site of each studied
protease. To illustrate the resulting free energy grid, we
mapped it onto the protein surfaces. Figure 2 compares
localized hydrophobicity within the protease binding interface
with the respective substrate hydrophobicity. The same
analysis was carried out for the remaining five proteases and
can be found in the Supporting Information (Figure S2).
To quantify the local hydrophobicity in each subpocket, we

calculated the localized subpocket hydrophobicity using four
different ligands, as described in the Methods section. This
approach allowed us to calculate the correlation between the
localized subpocket hydrophobicity and the substrate hydro-
phobicity. Including all nine proteases in our set, we find a
Pearson correlation coefficient of 0.70.
For a more qualitative visualization we also mapped the

values for the hydrophobicity onto the surface, as mentioned in
the Methods section, and for visualization we used PyMOL.105

Here again, a good agreement between the substrate
hydrophobicity and our projection becomes apparent. In this
way, Figure 2 intuitively reflects that the studied proteases are
not only distinct in their substrate preferences but also in their
respective surface hydrophobicities.
Elastase, for example, is known to bind a broad range of

hydrophobic substrates. First, the substrate hydrophobicity of
Elastase is significantly higher than for the remaining proteases,
with only minor signals in the hydrophilic range. Second, also
the solvation free energy within the binding site of Elastase
clearly points toward an overall hydrophobic site. In particular,
its S1 subpocket is considerably more hydrophobic than in
other proteases, but also the outer subpockets of Elastase show
barely any indication of hydrophilicity.
Kallikrein is a protease that recognizes a higher variety of

amino acids at the P1 substrate position, is more hydrophilic
than, for example, Elastase, but is rather hydrophobic
compared to the strongly hydrophilic proteases, e.g., Trypsin.
Using the described metrics, we can clearly identify Kallikrein
as amphiphilic in the S1 subpocket. This is interesting as also
the surface mapping shows different parts in the S1 subpocket,
where a very hydrophilic and a more hydrophobic part can be
seen.
Granzyme B shows a fairly different pattern as it accepts

almost exclusively hydrophilic substrates at the S1 position,
recognizing primarily aspartate and glutamate. This is well in
line with the surface mapping of solvation free energy, where
we find a pronounced hydrophilic signal at that position.
Interestingly, Granzyme B is rather hydrophobic at the P4
substrate position, which also agrees well with the binding
site’s solvation free energy at the S4 subpocket.
Trypsin, compared to the other proteases, is strongly

hydrophilic at the P1 substrate position but rather hydro-
phobic in the remaining substrate positions. We observe the
same trend in the surface mapping, where the subpocket S1 is
depicted as extraordinarily hydrophilic while the other

subpockets are much more hydrophobic. Also, our localized
substrate hydrophobicity metric clearly quantifies that the S1
subpocket is significantly more hydrophilic than the other
subpockets.

GPU Implementation. We tested the efficiency of our
parallelization efforts on water boxes of increasing size and on
the example of Chymotrypsin. The computational time of the
calculations for the different systems is shown in Figure 3. For

the water boxes an almost linear increase in the acceleration
can be seen even to the 50 Å radius. When looking at the
speedup with respect to the number of atoms, we still observe
a significant acceleration up to our biggest system with almost
90 000 atoms. For the considered systems, we achieved four
times faster calculations on the smaller systems, which increase
to even 45 times faster calculations for larger systems. So far,
these trends are not really showing indications of leveling off.
We did not test the speedup for systems larger than 50 Å,
because of the substantial computational demand of the CPU
implemented version of GIST. All benchmarks were carried
out using a machine consisting of an AMD Ryzen 7 1800X and
a NVIDIA GeForce GTX 1080. The exact values are given in
the SI (Tables S2 and S3) both for the speedup of the entire
cpptraj run and for only the parallelized part of the code.

■ DISCUSSION
We use the physics-based method GIST to profile the
hydrophobicity of protein−protein interaction sites. We test
the reliability of the approach on the thoroughly studied family
of Chymotrypsin-like serine proteases. The virtues of this set of
model systems include structurally well-characterized binding
sites as well as compelling statistics on their substrate
preferences. Furthermore, protease binding interfaces are
designed to allow significant differences in their local
physicochemical properties.
To evaluate the binding preferences of these nine different

proteases, we performed a simple analysis of binding data
found in the MEROPS database. We benchmark the
plausibility of the GIST-based results against the well-
established Eisenberg hydrophobicity scale. Reassuringly, we

Figure 3. Calculation time of the GIST calculation on the GPU
(green) compared to the original implementation on the CPU
(orange) and the respective speedup, for the entire analysis. The same
is shown as the inlet, using a logarithmic scale for the time.
Calculations were performed on the same machine, containing an
AMD Ryzen 7 1800X CPU and a NVIDIA GeForce GTX 1080 GPU.
GIST calculations were performed on a truncated octahedron water
box, with increasing radius.
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find that both methods perform very similar in respect to the
calculation of substrate hydrophobicity, despite major differ-
ences in their underlying concepts. This consistency between
the two metrics is further highlighted by a Pearson correlation
coefficient of 0.88 over all substrate positions in all nine
proteases.
Interestingly, the scale devised by Eisenberg rates the

hydrophilic substrate positions less strongly than our GIST-
based approach. This trend probably originates from the
generally broader spread of the data calculated via GIST. The
values calculated by GIST are more negative for the
hydrophilic residues than is the case in the Eisenberg scale.
Additionally, the GIST calculation typically predicts a lower
hydrophobicity for the negatively charged amino acids than
other hydrophobicity scales. This effect has been observed
before62 and is again clearly visible in Figure 1, when
comparing substrate hydrophilicities of Granzyme B, which
mainly binds aspartate and glutamate in the S1. In the GIST
calculation, the P1 substrate position of Granzyme B is
depicted as strongly hydrophilic. However, using the Eisenberg
scale, this position is substantially more hydrophobic than in
the GIST approach. This discrepancy stems from the fact that
the GIST based method ranks the two negatively charged
amino acids, i.e., aspartate and glutamate, more hydrophilic
than the Eisenberg scale. In the Eisenberg scale these amino
acids are considered even less hydrophilic than some of the
uncharged amino acids. However, in our scale, these amino
acids are ranked at the hydrophilic end of the scale, with
aspartate and glutamate being the most hydrophilic amino
acids.
In addition to the hydrophobicity of each substrate position

we use GIST to establish a localized quantification of
hydrophobicity within the protease binding sites. Already
visually, the qualitative agreement between hydrophobicity
mapped onto the protease surface and the substrate hydro-
phobicity is evident. We further calculate the localized
subpocket hydrophobicity to quantitively compare substrate
and binding site hydrophobicity. The resulting Pearson
correlation coefficient of 0.70 indicates that a hydrophilic
subpocket prefers hydrophilic substrates. This is quite intuitive,
as the favorable interactions between the water and the
hydrophilic surface need to be replaced by other favorable
interactions, e.g., with hydrophilic residues. Hydrophobic
surfaces, on the other hand, are drawn to each other as
thereby unfavorable interactions of water molecules are then
removed and replaced. Water molecules can be released into
the bulk, where it has more favorable interactions than with the
biomolecule. Furthermore, a high gain in free energy can be
achieved when releasing fixed, i.e., entropically unfavorable,
water molecules into the bulk, where these molecules can
move freely. Thus, a high gain in entropy can compensate for a
smaller loss in enthalpy. This is also understood as enthalpy−
entropy compensation, where a favorable enthalpic interaction
comes at the price of an unfavorable entropic interaction.106,107

The projection of the hydrophobicity onto the surface shows
quite interesting features on the protease binding sites. A
generally reassuring observation we made is that more
hydrophilic substrates correspond to more hydrophilic
subpockets. This can be visualized for the two proteases that
accept primarily charged amino acids, i.e., Trypsin and
Granzyme B. However, for Elastase, which favors hydrophobic
amino acids, all subpockets are hydrophobic. In this protease,
the S1 subpocket seems to be the most hydrophobic subpocket

of the entire set. Kallikrein binds both hydrophilic and
hydrophobic residues, and strikingly its S1 subpocket is split
into two distinct sections, which could explain its amphipathic
binding behavior.
Interestingly, such a partitioning into different areas is also

found for proteases favoring solely hydrophilic amino acids in
the S1. In most of the cases where a protease favors a positively
charged amino acid in the S1 subpocket, this subpocket is
hydrophilic at the bottom but is rather hydrophobic around its
edges. At first glance, this seems a little counterintuitive, but
the positively charged amino acids lysine and arginine consist
of a charged group on a long hydrophobic chain. The
hydrophobic area at the S1 pocket outlines might thus facilitate
replacing water molecules at these positions. This hypothesis is
further strengthened by the surface hydrophobicity of
Granzyme B’s S1 subpocket. Neither residue favored, i.e.,
aspartate and glutamate, contains a long hydrophobic chain but
is primarily characterized by its negatively charged group.
A coloring based solely on the existing hydrophobicity scales

is not able to capture the differences in hydrophobicity present
in the different areas of the binding interface. When using the
Eisenberg scale to analyze the binding interfaces in terms of
hydrophobicity, the projected values in most cases do not fit to
the values calculated from the substrate distribution (Figure
S3). This is not surprising, as this method uses predefined
values that cannot consider the surroundings of the different
amino acids, as discussed previously. Interestingly, for many
different proteases, the Eisenberg scale actually suggests the
inverse trend, for example, Chymotrypsin, which is very
hydrophobic in the S1 and is colored as slightly hydrophilic.
However, Thrombin and Factor Xa, which both heavily favor
hydrophilic substrates in the S1 pocket, are colored as almost
completely hydrophobic. But both are considered hydrophilic
in our presented method.
This finding emphasizes one of the most intriguing qualities

of the presented metric, which is that it captures nonadditive
effects to hydrophobicity, and it can also analyze cooperative
contributions to hydrophobicity. Cooperative effects might
play a significant role in different aspects of hydrophobicity. A
large amount of hydrophobic amino acids, building a cavity,
induce order on the encapsulated water molecules, thus leading
to an unfavorable entropic contribution. This fixed water then
induces order to the other water molecules in its surrounding.
This can even go so far that the encapsulated water molecules
are forced into a fixed position due to the arrangement of the
other water molecules in that cavity. Most prominently, this
has been shown to be the case in the streptavidin system by
Young et al.,53 where a network of water molecules is
constrained into a similar pattern as the ligand, meaning that
the hydration of amino acids is quite different in the complex
environment of a protein compared to the free amino acids.
When considering only the free amino acids, it is not possible
to capture these cooperative effects of the solvent molecules.
However, the GIST-based approach allows for a localized
analysis of hydrophobicity while considering the surrounding
of each residue. This facilitates a reliable and in-depth analysis
of the protein surface.
Another quite interesting feature of this metric is the

potential to split the hydrophobicity into enthalpic and
entropic contributions (Figures S3 and S4). Hydration of
proteins is still a field of ongoing research with a lot of
controversy about the actual mechanism. We believe that
molecular dynamics simulation and the analysis of the
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hydration on an atomistic level is of high interest. Our method
can directly measure the entropic and enthalpic contributions
to hydration around the protein’s surface. This is particularly
interesting for the entropic contributions, as these are directly
calculated from the phase space of the water molecules. Thus,
from one simulation all major contributions to hydrophobicity
of a particular conformation can be studied separately.
In their recent work, Nguyen et al.60 compared the

thermodynamic quantities generated by GIST with 3D-
RISM. In their study, they used Factor Xa, a protein also
investigated here. As mentioned previously, they found that
3D-RISM generally underestimates the enthalpic penalty for
moving a water molecule out of the bulk onto a surface. The
entropic penalty showed the same behavior when compared to
GIST. However, both methods use different approximations
for the calculation of the entropy and thus no conclusions were
drawn in that regard. For this study, their findings suggest that
3D-RISM will generally yield more hydrophilic properties on
the surface.
A key aspect of this work was the reimplementation of the

GIST algorithm on the GPU. We already briefly discussed the
speedup of the GPU implemented GIST calculation, showing a
speedup of up to 30 for the protease systems and up to 45 for
the simulated water boxes. We believe that the higher amount
of speedup for the largest system is an indication that the
significant gain in speed still has not started to level off with
system size. A few points limit the speedup in smaller systems;
first the copying of the data to and from the GPU’s memory
might be fast but is, for very small systems, also a significant
factor slowing down the calculation on the GPU. Furthermore,
the limited number of atoms in small systems might not fully
utilize the GPU’s potential, thus not allowing for very high
speedup, compared to the larger systems. For our largest
system, we reached a speed of about 1 frame per second, while
the CPU implementation of GIST required almost 1 min for
each frame, showing the highest speedup in our test systems of
nearly 45. This significant acceleration of GIST, coupled with
cpptraj, allowed us to analyze our test systems (ca. 30000
atoms) in roughly 10 min, compared to the hours it would
have taken otherwise. This is most apparent when looking at
the calculation of the largest water box, where the calculation
with our GPU implementation took about 1.5 h. However,
when calculating it on the CPU, the identical analysis took
over three full days.
We surmise that the solvation free energy as a metric for

protein surface hydrophobicity will be particularly valuable for
drug discovery and optimization. The GPU implementation
facilitates a fast detection of trapped water molecules on the
surface, which are easily replaced and thus increase binding
affinity of putative ligands. Furthermore, surface hydro-
phobicity is discussed as a determinant for protein aggregation.
The presented metric is fast enough to reliably identify
hydrophobic areas on extensive biomolecular surfaces and thus
estimate the developability of biopharmaceuticals.

■ CONCLUSION
Hydrophobicity scales have been around for over 50 years now
and are still an integral part in an enormous amount of
theoretical methods. They are of crucial importance for
analyzing membrane-bound proteins and in various other
fields. The major drawback of these methods is that
hydrophobicity is considered residue-wise, neglecting all
cooperative effects, which is particularly problematic in the

complex environment of biomolecules. The presented method
is based on the solvation free energy of a solute and inherently
includes cooperative effects for protein surfaces.
We show that the approach can localize hydrophobicity in

the binding interfaces of nine Chymotrypsin-like serine
proteases. The resulting solvation patterns are well in line
with the respective substrate preferences deposited in the
MEROPS database. Thus, our physics-based approach to
analyze hydrophobicity is able to reliably characterize the
binding interface of the studied proteases.
Reimplementation of the GIST algorithm on the GPU led to

a significant speedup. For our tested systems, we reached a
maximum speedup of almost 45 times faster than calculation
on the CPU. With the presented GPU implementation of
GIST, solvation free energy analysis of large biomolecular
systems at reasonable calculation times is now publicly
accessible.
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