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ABSTRACT: The adaptive neuro-fuzzy inference system (ANFIS), central composite experimental design (CCD)-response surface
methodology (RSM), and artificial neural network (ANN) are used to model the oxidation of benzyl alcohol using the tert-butyl
hydroperoxide (TBHP) oxidant to selectively yield benzaldehyde over a mesoporous ceria-zirconia catalyst. Characterization reveals
that the produced catalyst has hysteresis loops, a sponge-like structure, and structurally induced reactivity. Three independent
variables were taken into consideration while analyzing the ANN, RSM, and ANFIS models: the amount of catalyst (A), reaction
temperature (B), and reaction time (C). With the application of optimum conditions, along with a constant (45 mmol) TBHP
oxidant amount, (30 mmol) benzyl alcohol amount, and rigorous refluxing of 450 rpm, a maximum optimal benzaldehyde yield of
98.4% was obtained. To examine the acceptability of the models, further sensitivity studies including statistical error functions,
analysis of variance (ANOVA) results, and the lack-of-fit test, among others, were employed. The obtained results show that the
ANFIS model is the most suited to predicting benzaldehyde yield, followed by RSM. Green chemistry matrix calculations for the
reaction reveal lower values of the E-factor (1.57), mass intensity (MI, 2.57), and mass productivity (MP, 38%), which are highly
desirable for green and sustainable reactions. Therefore, utilizing a ceria-zirconia catalyst synthesized via the inverse micelle method
for the oxidation of benzyl alcohol provides a green and sustainable methodology for the synthesis of benzaldehyde under mild
conditions.

1. INTRODUCTION
Selective oxidation of benzyl alcohol to benzaldehyde is a
significant process, and the product benzaldehyde has an
enormous value as a raw material for a large number of
products.1−5 Benzaldehyde is the simplest aromatic aldehyde,
extensively used in both industrial and consumer applications.
These include pharmaceuticals, agrochemicals, chemical syn-
thesis, flavor and fragrance, preservatives, and perfumery.6−9 In
addition, the oxidation of benzyl alcohol is frequently used as a
model process for the oxidation of alcohols.10 Although
homogeneous catalysts are frequently used, they have several
drawbacks, including corrosiveness, the ability to create
undesirable byproducts, being difficult to separate from the
reaction mixture, and nonreusability.11−13 Consequently, clean
and highly effective heterogeneous solid catalysts have been
proposed recently, with a wide range of methods, which are
more environmentally and economically friendly. Most of the

proposed alternatives tend to combine the solid catalysts in
solvent-free procedures (to minimize solvents), under mild
circumstances (to conserve energy), with strong oxidants that
are inexpensive and safe.14,15 However, greater efforts are
directed toward identifying green chemistry metrics to evaluate
the sustainability and environmental impact of the benzyl
alcohol oxidation reaction. As a result, parameters like the E-
factor, mass intensity (MI), and mass productivity were used to
gauge the greenness of the reaction or any process.16−19 With
waste being defined as “everything (except water) but the
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desired product”, the E-factor (eq 1) is the actual quantity of
waste produced for a given mass of product generated.16,20

Therefore, a higher E-factor value is an indication of more
waste and, consequently, greater negative environmental
impact. The ideal E-factor is zero, conforming to the first
principle of green chemistry: “It is better to prevent waste than
to treat or clean up waste after it is formed”.17,21 Conversely,
zero waste and more sustainable and environmentally friendly
processes are indicated by E-factor values that are closer to 0.
Thus, lower E-factors are positively correlated with cheaper
production costs, lower disposal costs for hazardous and toxic
waste, higher capacity utilization, and lower energy con-
sumption.17,21 Additionally, the E-factor range for solvent-free
reactions that just considered the synthesis phase was 0.1−4.0,
placing them in the waste production group for bulk
compounds.22 However, all of the reactants, that is, reagents,
solvents, catalysts, and any additional materials involved in the
reaction, are included in mass productivity (MP, eq 2). MP
represents the percentage of the intended product’s mass
relative to the overall mass of the reactants. An alternative
definition of it would be the reciprocal expressed as a
percentage of the mass intensity (MI). Mass intensity (MI),
which is defined as the mass of all components added, except
water, to the mass of the finished product, is connected to the
E-factor by way of eq 319,23

=E Factor
Total mass of waste

mass of desired product (1)

= × = ×MP (%)
mass of desired product 100

total mass of used materials
1

MI
100

(2)

= +EMI Factor 1 (3)

Mesoporous materials, in recent times, have seen a dramatic
increase in their application as a catalyst because of their
tenable structural characteristics, including surface area,
nanocrystalline walls, pore volume, and size. Mesostructured
ceria have drawn a lot of attention as heterogeneous catalysts
due to their excellent oxygen storage capacity (OSC) and
redox capabilities.24 The excellent catalytic activity of ceria for
all oxidation reactions was attributed to their high redox
property (Ce3+ // Ce4+) and oxygen lability in the lattice
structure.25 Among several other roles, cerium is utilized in
catalysis involving the dehydrogenation of alcohols.26 Recent
rising interest in sciences has found that doping can also
improve the catalytic activity of a catalyst. Jin et al.27 showed
that metal oxides doped on certain catalytic materials exhibited
improved catalytic activity. Significant studies have been
conducted on mesoporous transition-metal oxide materials,
which include group I−IV elements Nb, Ta, Y, Ti, Mo, W, Cr,
Zr, V, and Hf.28,29 Therefore, incorporating Zr4+ into ceria’s
catalyst crystalline lattice impacts the Ce3+ // Ce4+ redox
property and their oxygen storage capacity (OSC).30,31 To
achieve homogeneity and increase the OSC of the catalyst, an
appropriate preparation method is necessary. In this study, the
inverse surfactant micelle sol−gel method was used to prepare
ceria-zirconia (CeO2−ZrO2) of different catalyst loadings. The
surfactant species used is (poly(ethylene glycol)-block-poly-
(propylene glycol)-block-poly(ethylene glycol)) (P-123). This
method has several advantages: high selectivity, high mass and
activity recovery, elimination of solvent effects, simple
operation, cost-effectiveness, minimizing the effect of water

content, and usage of nontoxic substances.32 In another
development, technical advancements in the Fourth Industrial
Revolution have significantly led to drastic industrial changes.
These changes have innovatively incorporated computational
strategies into chemical reactions, thereby encouraging a more
effective and productive output and hence revealing an in-
depth ability to understand a fluid’s relationship in reactors.
Previous studies on the oxidation process, involving the
conversion of benzyl alcohol to benzaldehyde (Figure 1,
modified from Peŕez et al.33), have concentrated on the one
factor at a time (OFAT) method using traditional methods.

In addition to taking a lot of time, OFAT is unable to
forecast the intended optimum yield based on how the process
variables interact. Instead, new computational methods like
machine learning can help scientists save time and money by
testing thousands of conditions in a short space of time for a
better understanding of the complexity of chemical reactions.
The machine-learning methods reveal the relationship between
input variables and their interactive effects to predict an
output.34 Numerous studies have been reported on the
successful applicability of response surface methodology
(RSM), artificial neural network (ANN), and adaptive neuro-
fuzzy inference system (ANFIS)-based modeling in predicting
yields in chemical reactions. Rekhate and Shrivastava35 applied
RSM and ANN in forecasting the oxidation of acidic black azo
dye using O3, O3/UV, and O3/Fe(II) oxidation processes.
With the aid of a UV−vis spectrophotometer, the decoloriza-
tion process was ascertained in their investigation by
measuring the dye’s absorption wavelength. The potential
consequences of the O3, O3/UV, and O3/Fe(II) processes
were accurately anticipated by the RSM and ANN modeling
methods. In a statistical comparison, the group discovered that
the ANN forecasts were superior to those of RSM. Addition-
ally, Onu et al.36 successfully modeled the anaerobic digestion
process for biogas production using ANFIS, ANN, and RSM
models. Also, in a comparative study on photovoltaic power,
Jazayeri et al.37 used ANN modeling with the application of
Levenberg−Marquardt (LM) and Bayesian regularization
(BR) training methods. The power output (W) and irradiation
levels (W/m2) of the solar cells were used to evaluate
performance abilities. Longer training times were mitigated by
BR’s superior performance compared to LR.
The robust nature of these models made their usage

necessary. The utilization of RSM is based on its capacity to
minimize the number of experimental runs needed to assess
the impact of various variables and their combined effects on
the response. It has been widely used in a variety of chemical
processes, including the production of biodiesel and biogas.
ANN, on the other hand, has the capability to model and
simulate nonlinear and extremely complicated systems due to
its ability to employ learning algorithms to determine the
relationship between input and output variables. Furthermore,
ANFIS is regarded as a combination of neural networks and

Figure 1. Oxidation process for converting benzyl alcohol to
benzaldehyde.
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fuzzy systems and therefore possesses the synergistic benefits
of both techniques. From the literature review, no scientific
investigation has previously been published dealing with the
application of advanced modeling techniques like response
surface methodology (RSM), artificial neural network (ANN),
and adaptive neuro-fuzzy inference system (ANFIS) as
indicated in the graphical abstract to the oxidation process
for the conversion of benzyl alcohol to benzaldehyde. This
study is therefore the first of its kind focusing on using
advanced modeling techniques to simulate benzyl alcohol
oxidation to benzaldehyde. Hence, possible model limitations
encountered include model overfitting, the curse of dimension-
ality, interpretability problems with larger inputs, and difficulty
selecting the appropriate membership functions. Such
limitations were minimized with effective training protocols,
appropriate input parameters, minimum error between the
experimental and predicted values of the applicable models,
and good prediction accuracy.38,39 Thus, the primary goals of
this research are (i) to prepare and characterize the ceria-
zirconium catalyst using a novel inverse micelle method; (ii) to
model the percentage yield of benzaldehyde conversion using
machine-learning algorithms such as RSM, ANN, and ANFIS;
and (iii) to critically verify, with full insight, the prediction
capabilities of the three models using statistical analysis.

2. EXPERIMENTAL SECTION
2.1. Materials. All chemicals purchased were of reagent

grade and were used as received. Cerium(III) nitrate
hexahydrate [Ce (NO3)3·6H2O], zirconium(IV) butoxide [Zr
(OC4H9)4], Pluronic P-123, tert-butyl hydroperoxide (TBHP)
(70% in water), and decane (99%) were bought from Sigma-
Aldrich. Rochelle Chemicals (South Africa) provided 70%
concentrated nitric acid (HNO3).
2.2. Method for the Preparation of Mesoporous

Cerium Oxide (Ceria). The procedural preparation of CeO2
was derived from the existing literature32,40 P-123 surfactant (5
g, 8.2 × 10−4 mol) was mixed in 1-butanol (56 g, 0.75 mol)
and HNO3 (8 g, 0.128 mol), which is contained in a 150 mL
beaker. Cerium(III) nitrate hexahydrate salt (Ce(NO3)3·
6H2O) (10 g, 0.023 mol) was added to the prepared solution
and agitated with magnetic stirring to dissolve it. The solution
was agitated all night to create a gel. After that, it was dried for
15 h at 60 °C in an oven. It was subsequently dried for 4 h at
120 °C. The obtained powder, which was yellow, was cleaned
with ethanol and centrifuged multiple times at 3500 rpm until
a clear supernatant was observed. It was then dried for a whole
night at 70 °C in a vacuum oven. The powder that resulted was
heated in air at 150 °C for 12 h, 250 °C for 4 h, 350 °C for 3 h,
450 °C for 2 h, 550 °C for 1 h, and 600 °C for 1 h. Each time
the sample was heated, it was allowed to cool.
2.3. Method for the Preparation of Mesoporous

Zirconia. Mesoporous zirconia (ZrO2) was prepared as stated
in the literature.32,40 P-123 surfactant (5 g, 8.2 × 10−4 mol)
was mixed in 1-butanol (56 g, 69 mL, 0.75 mol) and HNO3 (8
g, 6 mL, 0.128 mol), which was contained in a 150 mL beaker.
Zirconium butoxide (10 g, 0.026 mol) was then added and
dissolved in the prepared solution at RT under a magnetic
stirrer. The resulting transparent gel was dried for 4 h at 120
°C in the oven. After dividing the resulting greenish film/
powder into three samples, it was immediately heated under air
for 4 h at 450°, 3 h at 550°, and 1 h at 600°, all at the rate of 2
°C per minute. The hybrid ceria-zirconia was created using a
different synthesis.

2.4. Preparation of Hybrid Ceria-Zirconia by the
Inverse Micelle Method. 1-Butanol was combined with P-
123 and nitric acid (which served as a water source) in a mass
percentage ratio of 85:12:3. Consequently, a 150 mL beaker
was filled with a mixture of 1-butanol (85 g, 1.15 mol), P-123
surfactant (12 g, 0.21 × 10−2 mol), and HNO3 (3 g, 0.05 mol).
Since there is a 2:1 ratio of salt to P-123, 24 g of zirconium
butoxide and 24 g of cerium nitrate were added to the mixture
and continually agitated overnight to ensure adequate
homogeneity. The resulting gel was dried for 15 h at 80 °C
in an oven. The resulting solid was dried for 3 h at 120 °C.
After being ground into a fine powder and cleaning with
ethanol, the resulting particles were left to dry overnight at 70
°C in a vacuum oven. The obtained powder, which was yellow,
was subjected to baking cycles as in CeO2. The catalysts are
represented as CexZr1−xO2 (x = 0, 0.2, 0.5, 0.8, and 1).
2.5. Catalyst Characterization. Using a sorption device

called Micromeritics ASAP 2460 and the Brunauer−Emmett−
Teller (BET) method, nitrogen sorption measurements were
performed on the catalyst. Before the trials, the materials must
be degassed for 18 h at 90 °C. The materials were subjected to
X-ray diffraction (XRD) investigations using a diffractometer
Rigaku MiniFlex-600 with Cu Kα radiation (λ = 0.1541 nm) to
produce an XRD diffractogram at room temperature. Both
low- and wide-angle diffraction patterns were observed at step
rates of 0.015°/min and 0.1°/min, respectively. Using a J-J
2100F with a speed-up voltage of 200 kV, transmission
electron microscopy (TEM) analysis was carried out for the
morphology study. An Agor Turbo carbon coater was used to
carbon-coat fresh samples on an aluminum stub for elemental
composition analysis, which was then performed using
scanning electron microscopy (SEM) equipment, equipped
with an energy-dispersive X-ray spectroscopy (EDX) analysis
system at a high voltage of 20 kV.
2.6. Catalytic Activities of Benzyl Alcohol Oxidation.

Two-neck round-bottom flasks, each holding 25 mL of benzyl
alcohol, were used for the catalytic oxidation process. The
flasks were equipped with a reflux condenser and thermometer.
The reaction was carried out by combining 0.15 g of catalyst
(Ce0.8Zr0.2O2), 30 mmol of benzyl alcohol, and 45 mmol of
TBHP as the oxidizing agent. The formed mixture temperature
was raised to 90 °C for 4 h while being vigorously stirred under
reflux at 450 rpm. At several points, a portion of the mixture
was pipetted and rapidly diluted with dichloromethane. After
filtering, the diluted material was sent to a GC vial for
quantification. The analysis was conducted using GC gas
equipment, equipped with an FID, a capillary column, and N2
as the carrier gas. The temperature of the FID was 370 °C, and
the injection port was 200 °C. The following equations (eqs 4
and 5) illustrate how the yield/conversion and selectivity were
determined using the FID data.

=

×

benzyl alcohol
benzyl alcohol

Yield
change in substrate concentration

initial substrate concentration

100% (4)

=

×

benzaldehyde
Selectivity

con. of product
total concentration of all products formed

100% (5)

2.7. Design of Experiment (DOE). 7.1. RSM Using the
CCD for Benzyl Alcohol Oxidization. The design of the
experiment (DOE) process was used to examine the impact of
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different input variables on the oxidation of benzyl alcohol to
the benzaldehyde product from an aqueous solution. DOE is
an optimization technique used to enhance process perform-
ances by examining the relationships between various input
variable combinations and how these combinations affect the
response of the process. This makes it possible to identify the
most crucial input factors.41 Response surface methodology
(RSM) is an optimization tool used to optimize multiple input
variables to achieve the optimal conditions of the variables
whose interactions can offer maximum or minimum response
within the region of interest.42 RSM has several drawbacks,
including its inability to predict results from systems that
operate outside of its research scope, its unsuitability for
extremely nonlinear systems, and its reliance on the potentially
false assumption that there is a quadratic relationship between
variables and responses. Despite these shortcomings, RSM is
still a useful technique for optimization across a range of
sectors. It is capable of generating a mathematical and
statistical model that can be used to describe the reaction
process.43,44 Among different design types of RSM, CCD is the
most popularly utilized. Their usage is because they make it
possible to fully fit a second-order polynomial model to the
data, thereby enabling the capturing of nonlinear relationships
between the input factors and the output response. Addition-
ally, it provides enough information to allow curvature analysis
and the estimation of the main effects and their interactions.45

Numerous practical studies have demonstrated that, in most
cases, the optimum region may be satisfied with the quadratic
model (or a higher-order polynomial).46 Nonetheless, assess-
ments of the link between input variables and responses can be
made graphically using the response surface.47 Hence, this
experiment was designed using the central composite
experimental design (CCD). In accordance with CCD, the
minimum number of experiments required to effectively study
the responses of any given input variables is given by the
design equation (N) of eq 648,49

= + +N k2 2 Nok (6)

where k is the number of input factors and No is the center
point.
However, the design consists of 2k factorial factors, which

define the number of factorial points, enhanced by 2k axial
factors, which were chosen at a distance of α from the design
center,42 and center factors, which help reduce the
experimental error, as some experimental repetitions are
necessary.48,50 In addition, the factorial points showed equal
variations between the low and high values (+1 and −1), while
the axial points were chosen to be (α = ±1.68) to ensure that
the orthogonality and rotatability of each independent variable
are measured at five levels of (−α, −1, 0, 1, +α).36,51−56
Therefore, based on what we want to achieve, the range of
values, actual and coded, were inputted into the statistical tool
in such a way that their minima, central, and maxima values
take the values of (−α, 0, and +α) (Table 1). The differences
in axial points for each level divided by four give the
incrementing value for each independent variable. Conse-
quently, a total of 20 minimum experimental runs were
designed, conducted, and systematized in a factorial design
(eight factorial points, six axial points, and six center points).
The experimental runs were randomized to eliminate system-
atic error. A second-order polynomial regression model,
centered on a quadratic equation, with the response (Y),

which is associated with the independent variables (eq 7), was
utilized to fit the model during multiple regression analysis.

= + + + +
= = = =

Y x x x xo
i

k

i i
i

k

ii ii
i

k

j

k

ij i j
1 1

2

1 1 (7)

where Y represents the responses; k is the total number of
independent variables; β is the intercept; i, ii, and ij with β
represent the linear coefficient, quadratic coefficient, and
interaction coefficient, respectively; xi and xj indicate the
coded levels for independent variables; and ε is the statistical
error.57,58

For further research, analysis of variance (ANOVA) was
employed to evaluate the statistical significance of the
components with respect to their contribution to the response
values. ANOVA reveals any significant mismatch between the
experimental data and the predicted data.59 The model’s
acceptability was assessed using the F-value, the adequate
precision value, P-values of the ANOVA, and the coefficient of
regression (R2). A lack-of-fit test was employed to evaluate the
predictive models’ suitability. In addition, the predicted error
sum of squares (PRESS) is further used to evaluate the
proposed quadratic model. Lower PRESS and higher R2 with a
large enough precision larger than 4 are indicators of a superior
predictive model. However, the process optimization of the
oxidation parameters using CCD−RSM followed six important
steps. (1) Identifying the independent variables with their
factorial and axial points: Three independent parameters were
identified. They are the catalyst amount (A) (0.1−0.2 g
reaction), temperature (B) (60−120 °C), and reaction time
(C) (2−6 h) with constant 30 mmol of benzyl alcohol, 45
mmol of TBHP oxidizing agent, and rigorous refluxing of 450
rpm. (2) Possible experimental design using a central
composite experimental design: In this research, 20 exper-
imental trial runs were designed using the statistical software
Design-Experts, Version-13. The CCD matrix consists of eight
factorial points, six axial points, and six numbers of repetition.
The remaining steps are (3) performing experiments as per
design to obtain results; (4) recording the data from
experimentation; (5) acquiring ANOVA results, computing
the coefficients, and fitting the model equation; and (6)
acquiring the optimal conditions.

2.7.2. Artificial Neural Network (ANN) Modeling. In
contrast to RSM, ANN could generate an output by combining
uncontrollable components.60 It can be characterized as a tool
that mimics the organizational principles of the human brain.
However, a typical ANN topology consists of three layers: an
input layer, a hidden layer, and an output layer.38 The hidden
layers link the inputs with the output layer and contain
computational nodes called neurons.61 These artificial neurons
are regarded as strongly coupled processing units, having a
summing junction and transfer functions. After processing the

Table 1. Independent Variables and Their Coding Levels for
the Design of the RSM Experiment

ranges & levels

codes & parameters
−α

(−1.68) −1 0 +1
+α

(+1.68)

A: catalyst amount
(grams)

0.1 0.125 0.150 0.175 0.2

B: temperature (°C) 60 75 90 105 120
C: time (hours) 2 3 4 5 6
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signals from the input layer, a transfer function is used by the
last hidden layer to transmit the processed data as an
approximate output signal.62 The term “network architecture”
is used to refer to the pattern of interconnectivity among
various neurons inside the artificial neural network (ANN)
structure.61 An essential part of designing the model is to
determine how many neurons are in the hidden layer. The
ANN model for the oxidation of benzyl alcohol was simulated
using the neural network of MATLAB R2018b. The model was
developed using a nonlinear relationship between the process
input variables and the experimental benzaldehyde oxidation
yield. A feed-forward propagation with a multilayered
perception neural network is employed to forecast the
outcome. However, 20 data sets that were used in the RSM
were also utilized to ensure adequate modeling. Through trial
and error, the optimal number of neurons for the hidden layer
was determined, minimizing the error between the predicted
and experimental values. This measure was implemented to
prevent overfitting that is associated with either a big or small
number of neurons.38 The data set of the experimental yield is
divided into a training data set, a testing data set, and a
validation data set. The first step in the simulation process is
network training, in which 70% of the training data sets were
utilized to develop the relationship between the input and
output functions. The rest 30% of the data set was subdivided
into 15% testing data (used to check the overfitting of the
data) and 15% validation data (used to check the error in the
developed model). Therefore, the ANN model architecture
employed in this study was 3−21−1, which corresponds to
three input variables, 21 neurons in the hidden layer, and one
output variable as shown in Figure 2b. To determine the
degree of connection between the independent factors and the
dependent component and to gauge the predictability of the
ANN, the mean square error and the correlation coefficient
were employed as performance checks.36

2.7.3. Adaptive Neuro-Fuzzy Inference System (ANFIS).
ANFIS is a potent technique that essentially combines the best
capabilities of fuzzy logic with artificial neural networks
(ANNs). Hence, it provides a synergetic effect that
incorporates the advantages of both systems in linear and
nonlinear processes.63 Generally, there is a prediction that
ANFIS modeling is good when the number of input variables is
not more than five.64 If ANFIS inputs exceed five, the
computational time and rule numbers will increase, so ANFIS
will not be able to model the output with respect to the
inputs.65 As such, in this study, the number of input variables
was three, including “catalyst amount, reaction time, and
reaction temperature”, thus supporting the model’s application.
The ANFIS model for the oxidation of benzyl alcohol was
simulated using the fuzzy logic toolbox of MATLAB R2018b.
This model is based on the Takagi−Sugeno inference system,
which is governed by the IF-THEN rule.66−68 As in ANN
modeling, the ANFIS modeling process includes three
categories: training, testing, and validation. Therefore, the
training, testing, and validation stages are structured to have
70, 15, and 15% data sets of the experimental benzyl aldehyde
yield. Before training, the data set is normalized to be in the
range between 0 and +1 to decrease their range and increase
the precision of the findings.64 After the normalization process,
the data became ready for the training process. Figure 2a
depicts the ANFIS network architecture for the prediction of
benzaldehyde yield, and it is equivalent to the first-order
Sugeno-type inference system.66 This architecture is structured

into five layers, whose functions are fuzzification, multi-
plication, normalization, defuzzification, and summation. The
first layer of the model, fuzzification, contains the input
variables and their membership functions (MFs). MF permits
tuning as a measure to improve computation accuracy with a
minimum error.69,70 To simulate the data sets for optimal
ANFIS model prediction and fuzzy inference system (FIS)
generation, grid partitioning with an input number of
membership functions (MFs = 3, 3, and 3) as well as input
and output membership functions of types of “trimf” and
“constant”, respectively, was selected, and the hybrid
optimization method was used to train the FIS with an error
tolerance of zero.71

2.7.4. Assessment of the Developed Models. Error
statistical analysis is a viable method used for the assessment
of the models. Seven standard error statistical functions as
provided in the Supporting Information of equations (eqs S1−
S6) were used for comparing the applicability of the developed
models. They include mean squared error (MSE), root-mean-
square error (RMSE), mean absolute percentage error
(MAPE), mean relative percent deviation (MRPD), hybrid
fractional error function (HYBRID), Marquardt’s percent
standard error dev. (MPSED), and coefficient of determination
(R2). Exceptional model performance is achieved in the
structure when the MSE and RMSE approach 0 and the R2
value approaches 1. In addition, a comparison plot displaying
the three models would be used to show the deviations of the
model-output predictions from the experimental output.
2.8. Reusability of Catalysts. The ability of heteroge-

neous catalysts to be recycled for reuse represents one of their

Figure 2. (a) ANFIS structure for benzaldehyde production showing
five inputs and one output parameter. (b) Model architecture of the
ANN (3:21:1).
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primary advantages. The reusability of the Ce0.8Zr0.2O2 catalyst
synthesized by the inverse micelle method was investigated for
three conservative cycles under ideal optimal conditions, which
included 0.16 g of catalyst, 94.5 °C for the reacting
temperature, with 30 mmol of benzyl alcohol, 45 mmol of
TBHP oxidizing agent, and rigorous refluxing of 450 rpm after
4.2 h of reaction time. To be employed again in another
reaction cycle, the catalyst must be washed after each run,
dried, and calcined at 450 °C for 12 h.

3. RESULTS AND DISCUSSION
3.1. Characterization of the Catalyst. 3.1.1. XRD

Analysis. The crystallinity of the obtained ceria-zirconia
catalyst (CexZr1−xO2) was tested with an XRD instrument.
Pure mesoporous ceria (CeO2) (JCPDS card 49-1642) exhibit
peaks that are characteristically indicative of a cubic fluorite
structure, as shown in Figure 3a. As the dosage of zirconia rose,
the intensity of the diffraction peaks became more significant.
Hence, the characteristic of a cubic fluorite structure was also
seen in mixed cerium nanoparticles (CexZr1−xO2). These
distinct peaks corresponded to (111), (200), (220), (311),
(222), and (400) planes, respectively, at 2θ = 28.5, 33.0, 47.5,
56.4, 59.1, and 69.4°. Consequently, the persistency of the
fluorite structure in the mixed catalyst is responsible for its
enhanced oxygen storage capacity (ORC).72 Conversely, a
tetragonal-shaped peak is seen at 2θ = 30.7°, 35.6° (200),
50.9°, 60.5°, and 63.1° for both pure zirconium (ZrO2) and
mixed cerium nanoparticles (Ce0.2Zr0.8O2). This peak corre-
sponds to the planes (111), (220), (311), (220), (311), and
(222). Furthermore, the positions and intensities of the
generated peaks match the structure of the cubic fluorite
described by Faqeeh et al.73 The observed phase disparity in
the prepared composite suggested the successful formation of
cerium cubic crystals in the structure of ZrO2. The diffracto-
gram of the mixed catalyst indicated that smaller Zr4+ species
were appropriately incorporated into the larger crystal
framework of CeO2. Therefore, the structural changes of the
cubic fluorite lattice, which improves thermal stability,
resistance to sintering, and oxygen storage capacity, are caused

by the insertion of smaller zirconia cations into the ceria crystal
lattice.

3.1.2. TGA Analysis. In another development, TGA was
conducted on the as-synthesized ceria-zirconia catalyst
(CexZr1−xO2) to study its transformational behavior as heat
flows into its structure. The TGA curve, as seen in Figure 3b,
demonstrates two stepwise decompositions: a considerable
weight depreciation between 140 and 179 °C and a slow
weight loss from 200 to 600 °C. The considerable weight loss
may be due to the evaporation or elimination of strongly
adsorbed amounts of water molecules. Thereafter is the region
where minimal weight loss is observed. This characteristic
indicates thermal stability, implying that the substance will
maintain its stability at elevated temperatures. Therefore,
residual volatiles, the oxygen loss from CeO2 at high
temperatures, and the burning and oxidation of nitrogen
compounds, likely from the incomplete combustion of the
cerium precursor, can be blamed for the mass loss in
general.74−76

3.1.3. BET Analysis. The specific surface area (SSA) and
pore structure of the synthesized ceria-zirconia solid solutions
at 450 °C were investigated using a BET measurement, as
shown in Table 2. Compared to pure zirconia or pure ceria, the
generated ceria-zirconia solid solutions showed comparatively
large specific surface area values (101−165 m2/g) and high
total pore volumes (0.10−0.12 cm3/g). As a result,
Ce0.8Zr0.2O2’s surface area increases when CeO2 is modified
with Zr, reaching a maximum value of 165 m2 g−1 as opposed
to CeO2’s 117 m2 g−1. The largest SSA of Ce0.8Zr0.2O2
nanostructures could be attributed to their smallest crystallite
size (4.42 nm), the good distribution of the active metal
nanoparticles, and their strong coupling effect with the oxide
support.77 The surface mesostructured enhancement of pure
ceria following the incorporation of zirconium into its lattice
structure can significantly alter the catalytic efficiency of the
mixed mesoporous materials. A comparable pattern was
noticed in the structure, where the ceria-zirconium catalyst
synthesized with the largest specific surface area (84 m2 g−1)
also had the smallest average crystallite size (8.2 ± 0.4 nm).78

Figure 3. (a) XRD patterns of mesoporous CexZr1−xO2 calcined at 450 °C. (b) Thermogravimetric analysis (TGA) curves of mesoporous
CexZr1−xO2 materials calcined at 450 °C.

Table 2. Physicochemical Properties of Mesoporous Catalysts Calcined at 450 °C

samples surface area (m2 g−1) pore diameter (nm) pore volume (cm3 g−1) crystallite size (nm) total basicity × 102 (mmol CO2 g−1)

1. CeO2 117 5.10 0.12 7.65 62
2. Ce0.8Zr0.2O2 165 8.23 0.27 4.42 125
3. ZrO2 101 3.17 0.10 8.02 52
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Therefore, it seems that adding metal particles to a material’s
microporosity improves its surface area. On the other hand, the
porosity of the as-synthesized catalyst (Ce0.8Zr0.2O2) was
investigated using nitrogen adsorption−desorption isotherms.
The obtained hysteresis loop as shown in Figure 4 is a classical

type IV adsorption−desorption isotherm, which is character-
istic of mesoporous materials.79 As can be seen, the evolution
of the hysteresis loop increases in the adsorption region at a
relatively higher pressure (P/P0). Therefore, it is comparable
to type III isotherms with a type-H3 hysteresis loop. This is an
indication of mesoporous structures that are moderately
organized and contain aggregates of nonrigid nanopar-
ticles.80,81

3.1.4. TEM, EDX, and SEM Analyses. To gain an
understanding of the morphology and particle size distribution
of the high-efficiency catalyst (Ce0.8Zr0.2O2), TEM analysis was
conducted. Figure 5a shows the TEM image of the catalyst
calcined at 450 °C. As can be seen from Figure 5a, the catalyst
displays uniformly distributed, spherically shaped nanoparticles
formed by agglomeration. The catalyst’s TEM image is
morphologically consistent with the one that Cao and
colleagues79 acquired when examining CO oxidation using a
synthetic Ce0.8Zr0.2O2 catalyst. Conversely, Figure 5b displays
the SEM image of the catalyst (Ce0.8Zr0.2O2), synthesized by
the inverse micelle method. The imagery shows that the
nanoparticles are agglomerated and porous, conforming to
TEM analysis. Inhomogeneous structures were also observed
in the imagery, and this is a common phenomenon observed in
solid solutions over time. Hence, the growth in the crystal size
of ceria-zirconia can be explained using the Ostwald ripening
phenomenon, whereby the smaller crystal species will diffuse to
larger crystals, allowing the larger crystals to grow at the
expense of the smaller ones.82,83 Additionally, Figure 5c
represents the EDX elemental analysis attesting to the purity of
the synthesized catalyst, thereby supporting the XRD pattern,
which displays a lack of an impurity signal. The EDX spectral
analysis confirms the presence of cerium, carbon, oxygen, and
zirconium with atomic weight percentages of 48.7, 21.8, 16.7,
and 12.8 wt %, respectively. The presence of carbon on the
catalyst surface was from the sample preparation carbon coater.
The average particle size of the catalyst as displayed in the

particle size distribution histogram (Figure 5d) is 24.5 ± 1.7
nm, and this is in good agreement with the XRD result.
3.2. Influence of Operating Parameters Using Three-

Dimensional (3D) RSM Plots. The benefit of using RSM is
that it can be used to create a 3D response plot that helps
identify how interactions between process factors affect the
process outcome. Each plot illustrates the impact of two
variables while holding the others constant.
Figure 6a surface plot shows an increment in benzyl alcohol

conversion from 88.5 to 98.6% at a lower reaction temperature
of 75 °C when the catalyst amount is increased from 0.125 to
0.155 g. This increase could be attributed to the availability of
more active locations on the surface of the catalyst. It was
observed that a further increase in the mass of the catalyst to
0.175 g results in a slight decrease of the benzaldehyde yield to
95.1%. The decrease in benzaldehyde yields may be due to the
excess catalyst, which increases the resistance to mass transfer,
causing a decrease in the reactant mobility toward the active
sites. Too many catalysts that are in excess can develop the
selectivity of benzoic acid.84

Figure 6b showcases the combined effect of the mass of the
catalyst (Ce0.8Zr0.2O2) on the yield with respect to reaction
time. However, in the absence of a catalyst, conversion to
benzaldehyde was sluggish with respect to reaction time.
Selectivity for benzoic acid increases with a decrease in
benzaldehyde formation. However, an increase in the mass of
the catalyst from 0.125 to 0.155 g at 75 °C resulted in a slight
increase in the yield of benzaldehyde from 88.5 to 97.5%. An
excess amount of catalyst increases the selectivity of benzoic
acid, and this was attributed to the fact that the excess catalyst
containing active Lewis acid sites can accelerate further the
oxidation of benzaldehyde into benzoic acid.85 Similar trends
were observed by Choudhary et al.,86 who concluded that
benzyl alcohol oxidation is a heterogeneous reaction.
On the other hand, Figure 6c displays the combined effect of

reaction temperature with time on the yield of benzaldehyde.
However, when the temperature of the reaction mixture rises,
the molecules’ kinetic energy increases, increasing the output
of benzaldehyde. The figure reveals that the yield will decrease
slightly from 98.6 to 92.1% with respect to the time when the
reacting mixer is heated to 90 °C and then raised to 105 °C. As
a result, at elevated temperatures, the yield of benzaldehyde
drops with respect to an increase in reaction time. Hence,
heating the reacting mixtures to 90 °C for 4 h gives the
maximum yield of 98.6%. The yield of benzaldehyde drops
with increasing temperature and reaction time after 4 h of
reaction. However, different loadings of ZrO2 into the lattice
structure of CeO2 were prepared originally. The catalyst
Ce0.8Zr0.2O2 was used throughout this experiment. This is
because Ce0.8Zr0.2O2 produces the maximum benzaldehyde
yield for 4 h, after which it decreases slightly. The breakdown
of TBHP appears to be the catalyst’s first activity in the benzyl
alcohol oxidation. As a result, extremely reactive atomic oxygen
species were created, which caused benzyl alcohol to be
oxidized into benzaldehyde. The catalytic activity of the ceria
lattice for the oxidation of benzyl alcohol is greatly increased
upon the addition of the zirconia molecule.

3.2.1. ANOVA and RSM Analyses. The experiments
performed with the central composite design of RSM were
to examine how the independent variable affected the benzyl
alcohol oxidation efficiency corresponding to the benzaldehyde
yield. The yield of the oxidation process, as a response
function, and the complete factorial design matrix for the

Figure 4. Isotherm profile of the mesoporous Ce0.8Zr0.2O2 calcined at
450 °C.
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experimental runs using CCD-RSM are shown in Table S1.
However, Table 3 displays the results of the analysis of
variance (ANOVA) for benzyl alcohol oxidation. The F and p-
values (probability value) of the variables were used to define
the significance and magnitude of the model coefficient terms.
Using a 95% confidence level, as the foundation for evaluating
the significance of the oxidation process, p-values of more than
or equal to 0.05 are considered insignificant; otherwise, they
are considered significant.87,88 The linear terms A (amount of
catalyst), B (reaction temperature), and C (reaction time), the
collaborating terms of AB and BC; and the pure quadratic
terms A2, B2, and C2 are designated as significant. On the other
hand, the model term AC was statistically insignificant. As a
result, the developed model with the elimination of the
insignificant term was reduced, and this helped improve and
simplify it. Hence, eq 8 represents the quadratic polynomial
model equation generated for benzyl alcohol oxidation with
respect to the input variables, excluding the nonsignificant
term. In general, a low P-value of <0.0001 was observed with
the model, and this indicates model significance.

= + × + ×
+ × × + ×

× × ×

A B
C AB BC

A B C

Yield 98.0294 0.71925 1.3493
0.939248 0.5125 0.6375

1.27669 2.28431 2.779292 2 2

(8)

where A, B, and C represent catalyst amount, reaction
temperature, and reaction time, respectively.
Furthermore, Ahmadi et al.89 stated that lower P-values

(<0.05) and higher F-values are characteristic of a highly
significant model. Therefore, the ANOVA result of Table 3
indicates that the model is highly significant, as evidenced by
the high F-value of 87.72 and the lower p-value of less than
0.0001. However, the purpose of the derived formula (eq 8) is
to calculate the yield efficiency of benzaldehyde generation by
the oxidation process of converting benzyl alcohol with TBHP.
Finding the factors’ respective impacts can be accomplished by
comparing their factor coefficients. Model terms with a positive
coefficient demonstrated a synergistic effect, whereas one with
a negative coefficient demonstrated an antagonistic effect.43

This means that the oxidation of benzyl alcohol to
benzaldehyde is favored by an increase in the model terms
with positive signs.
Also, a high coefficient of determination (R2) guarantees

that the second-order quadratic model fits the experimental
data well, hence confirming its reliability. In addition, a very
strong R2 of the experimental and predicted values indicates a
well-fitted design matrix. The fit statistics of benzyl alcohol
oxidation of Table 4 indicate a high R2 value of 0.9875,
adjusted R2 of 0.9762, and a predicted R2 of 0.9320 for the
model. The R2-adjusted value is close to R2. Statistically, the

Figure 5. (a, b) TEM and SEM images of Ce0.8Zr0.2O2 calcined at 450 °C. (c) EDX of Ce0.8Zr0.2O2 calcined at 450 °C. (d) Particle size distribution
of the SEM image.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c02174
ACS Omega 2024, 9, 34464−34481

34471

https://pubs.acs.org/doi/suppl/10.1021/acsomega.4c02174/suppl_file/ao4c02174_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02174?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02174?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02174?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02174?fig=fig5&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c02174?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


difference between predicted R2 and adjusted R2 should be less
than 0.2.90,91 As can be observed, the difference between the
predicted R2 and the adjusted R2 was 0.0442, and this indicates
that the model fits the experimental data and may be used for
interpolation with reliability. Adequate precision ratio is a
measurement of the signal-to-noise ratio, and a considered
value greater than or equal to 4 is always desirable.92 A value of
24.777 obtained in this analysis suggested adequate model
efficacy.93 On the other hand, a comparatively low coefficient
of variance (CV) value of 0.5751% was obtained. This implies
good reliability and precision of the runs. It also shows that the
model was highly functional, reproducible, and dependable.94

From the lack-of-fit test results of Table 5, the lack-of-fit p-
value obtained is 0.2862, and this is more than 0.05, which is
an indication that the model’s lack of fit is insignificant, i.e.,
data fit well with the model. Therefore, a nonsignificant lack-
of-fit indicates that the model and the experimental data points
have a good match and are complementary. The p-value
(0.2862) is greater than the significance level (0.05), indicating
that there is no lack of fit in the model. Consequently,
benzaldehyde yield was significantly predicted by the quadratic
model using the input variables.
To validate the model’s accuracy and adequacy, residual

analysis was performed95 and presented in the diagnostic plots
as shown in the Supporting Information of Figure S1a−c.

Figure 6. (a) Effect of catalyst amount. (b) Effect of catalyst amount and time. (c) Effect of temperature on benzaldehyde yield.

Table 3. ANOVA Fit of Benzyl Alcohol Oxidation Using the CCD-RSM Model

source sum of squares df mean square F-value p-value

model 229,24 9 25,47 87,72 <0.0001 significant
A-cat. loading 7,06 1 7,06 24,33 0,0006
B-temp 24,86 1 24,86 85,63 <0.0001
C-time 12,05 1 12,05 41,49 <0.0001
AB 2,10 1 2,10 7,24 0,0227
AC 0,0313 1 0,0313 0,1076 0,7496
BC 3,25 1 3,25 11,20 0,0074
A2 23,49 1 23,49 80,90 <0.0001
B2 75,20 1 75,20 258,99 <0.0001
C2 111,32 1 111,32 383,38 <0.0001

residual 2,90 10 0,2904
lack of fit 1,83 5 0,3661 1,71 0,2862 not significant
pure error 1,07 5 0,2147

cor total 232,14 19
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However, deviations between the experimental responses and
predicted values are known as residuals. The normal plot of
residuals (externally Studentized residual against normal %
probability), as indicated in Figure S1a, was appropriate for
outlier detection and showed good conformance because the
formed line was linear. Additionally, Figure S1b shows the
graphical plot of the experimental and predicted response
values for benzyl alcohol oxidation. This plot (Figure S1b)
fitted well with linear regression, indicating that the model was
adequate in describing the experimental terms. About the line
of unit slope, it was observed that all data were logically spaced
and close to one another. This excellent relationship validates
the significance of the model as demonstrated by the
orderliness between the expected and experimental data.96

On the other hand, the residual plot vs run number is
displayed in Figure S1c. The random residual plot confirms
that all data points fall within acceptable bounds. None of the
points were standing away from the red threshold, which is
considered to be outside the limit of the model expect-
ations.97,98 This behavior also demonstrates the model’s
validity and accuracy. Based on the diagnostic plots of residual
analysis, one can judge that the developed quadratic model
captures the correlation between the responses and process
variables successfully.
The perturbation plot as indicated in the Supporting

Information of Figure S2 was utilized to compare the effect
of all of the parameters, affecting the oxidation process of
benzyl alcohol on a single plot.99 Plotting was done to evaluate
the response behavior resulting from the departure from the
center point. In addition, the perturbation plot reflects the
yield’s departure from the reference point due to the
independent variables. In this study, the reference points
taken into consideration for the perturbation plot were 0.15 g
of catalyst amount, 90 °C for the reaction temperature, and 4 h
of reaction time. However, in the perturbation plot, the higher
the sensitivity of the response toward the factor, the steeper the
slope.100 Based on this interpretation, from the perturbation
plot, it was evident that B (reaction temperature) mostly

affected the oxidation process, followed by factor C (reaction
time) and then A (mass of the catalyst). Hence, selective
benzaldehyde response was highly sensitized by the perturba-
tion plot for a better understanding of the effect of the
independent variables.
To find the optimum conditions for benzaldehyde yield, a

numerical optimization process was conducted by permitting
the criteria of all of the independent variables to be in range to
maximize the yield. The Ramp plot for desirability analysis as
presented in Figure S3 was employed to approximate the best
predicted possibilities for the maximum response.52 As
indicated in the ramp’s desirability plot, the optimal value of
each parameter is shown by a red dot. The optimization of the
process variables based on their response goal varies, from a
desirable function (DF) of 0 (undesirable) to 1 (desirable). A
DF of 1 indicates the response reaches its goal, while a 0
indicates that one or more data sets are beyond the specified
bounds. The desirability function value obtained for the
optimum yield of benzaldehyde was found to be 98% when
0.16 g of catalyst, 94 °C reaction temperature, and under 4.2 h
of reaction time were used at constant 30 mmol of benzyl
alcohol, constant 45 mmol of TBHP oxidizing agent, and
rigorous refluxing of 450 rpm. The desirability of 0.98 means
that the oxidation process achieved its goal. Hence, it can be
concluded that the optimal reaction parameters for the
oxidization reaction of benzyl alcohol over ceria-zirconium
(Ce0.8Zr0.2O2) were 0.16 g of catalyst, 94 °C reaction
temperature, and under 4.2 h of reaction time with constant
30 mmol of benzyl alcohol, 45 mmol of TBHP oxidizing agent,
and rigorous refluxing of 450 rpm.
3.3. Artificial Neural Network (ANN) Modeling.

MATLAB R2018b was utilized to conduct the ANN
machine-learning model of benzyl alcohol oxidation to
benzaldehyde yield. The output parameter was predicted by
the feed-forward network using the Levenberg−Marquardt
algorithm approach. Figure 2b shows the constructed and
simulated ANN architecture consisting of three input neurons
(representing independent parameters), 21 hidden neurons,
and one output cell (representing the output value) called
responses. The experimental output from 20 data sets was used
to train the ANN, which then predicted the output for
additional inputs. Three portions of data sets were created: 14
for training, 3 for validation, and 3 for testing. The coefficient
of determination (R2) values for testing, validation, and
training as indicated in the ANN regression plot of Figure 7
were 0.96939, 0.92407, and 0.99808. These values showed that
the benzaldehyde yield as predicted by the ANN model and
the experimental data correlated strongly. Additionally, the
total model plot of Figure 7 indicated a correlation coefficient
(R2) of 0.96775, demonstrating that the projected yield
successfully tracked the experimental data. Excellent findings
are shown in the four plots, with an R2 value greater than 0.92.
As a result, the correlation coefficients for each set of data were

Table 4. Fit Statistics of Benzyl Alcohol Oxidation

source of variation regression

sum of squares 229.24
degrees of freedom 9
mean square 25.47
F-value 87.72
P-value <0.0001
R2 0.9875
adjusted R2 0.9762
predicted R2 0.9320
adeq precision 24.777
std. dev. 0.5389
mean 93.70
C.V.% 0.5751

Table 5. Lack of Fit Tests

source sum of squares df mean square F-value P-value

linear 187.09 11 17.01 79.23 <0.0001
2FI 181.71 8 22.71 105.81 <0.0001
quadratic 1.83 5 0.3661 1.71 0.2862 suggested
cubic 0.0469 1 0.0469 0.2184 0.6599 aliased
pure error 1.07 5 0.2147
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close to 1, indicating that the fit was appropriate. Another
conclusion that might be drawn is that the neural network
model’s architecture produces good linearity with the desired
values. Specifically, for the training and overall data sets, where
the objectives were almost identical to the network outputs,
the drawn line of best fit is almost on the 45° line. As a result,
the oxidation reaction of benzyl alcohol to benzaldehyde could
be adequately described by the artificial neural network output
response. However, the performance plot, as seen in Figure
S4a, with four epoch iterations was utilized to assess how
reliable the neural network’s training procedure was. Based on
this model, the best validation performance was recorded at
epoch 2, with a value of 4.8321, where the characteristics of the
test set error and validation set error are similar. This is
consistent with the results of Yadav et al.101 obtained during
the prediction of solar radiation using the ANN model. On the
other hand, the error histogram plot of the discrepancies
between target and forecast values may be found in Figure S4b.
The network’s performances are further verified using this
graphic. Given that the error histogram displays the differences
between the targeted and predicted values, the errors could be
negative.102 Training data is represented by the blue bar,
validation data by the green bar, and testing data by the red
bar. On the graph, bins represent the number of vertical bars.
The number of samples from the data set that fall into a
specific bin is shown on the Y-axis. The resulting histogram
clearly shows outliers or areas of the data where the fit is
noticeably poorer than the rest of the data. However, the zero-
error value, which is located on the X-axis, is what the zero-
error line alludes to. With reference to this plot, the feed-
forward model has a bin at 0.07488 that corresponds to the
zero-error point.
3.4. Adaptive Neuro-Fuzzy Inference System (ANFIS)

Modeling. The ANFIS model was successfully implemented
using the hybrid learning approach with a toolbox called

MATLAB R2018b. The model is configured with three input
parameters (the catalyst amount, the reaction temperature, and
the reaction time) and an output that is regarded as the
benzaldehyde yield. The grid partition employed is the fuzzy
interference system (FIS) with the Sugeno architecture, as
represented in the Supporting Information in Figure S5a. To
generate a fuzzy logic for the 20 data sets, three MFs were
assigned to each element of the input variables. A triangular-
shaped (trimf) membership function (MF) was selected in the
grid partition check for the modeling. The choice of triangular
MF is because it produced the best results. Similarly, linear MF
provides a better performance prediction. The output MF
types of “constant” were chosen to create a more precise model
for the FIS. With a 0% error tolerance, 200 epochs of iteration
were used to train the FIS data set as shown in the ANFIS
distribution plot for the trained data set (Figure S5b). The
dotted and asterisk points denote the predicted and actual
values. After two epochs of training with triangular MF, an
RMSE error of magnitude 0.231661 was attained. This
confirms that the fuzzy network was a good fit for simulating
the oxidation of benzyl alcohol to aldehyde over a ceria-
zirconium catalyst. Generally, the attributes of the obtained
ANFIS model are showcased in Table 6.
Also, presented in Figure S6a−c are the ANFIS 3D surface

plots illustrating the impact of two-factor interactions on the %
yield of benzaldehyde. The benzyl alcohol oxidation to
benzaldehyde was shown to peak with the maximum yield,
for 4 h of reaction time, after which the yield decreases. As
indicated in the optimization rule viewer plot of Figure S6d, an
optimum benzaldehyde yield of 98% was recorded under the
operating conditions of catalyst amount (0.15 g), reaction time
(4 h), and reacting temperature (90 °C), with all of the other
factors remaining constant. This clearly indicated that the
results obtained through the ANFIS model were in good
agreement with the RSM model.

Figure 7. ANN regression plots for (a) training, (b) validation, (c) testing, and (d) overall oxidation process.
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3.5. Comparison Performance between RSM ANN
and ANFIS Model. Using performance indicators like R, R2,
and adjusted R2 of the models and statistical error functions
such as MSE, RSME, MAPE, MRPD, HYBRID, and MPSED,
the efficiencies of the developed models (ANFIS, ANN, and
RSM), in predicting the oxidation of benzyl alcohol to
benzaldehyde, were evaluated. It can be observed from the
parity plot of Figure 8 that ANFIS, RSM, and ANN recorded
high values of R, which were 0.99769, 0.99372, and 0.96775.
To achieve a good correlation and quality fit between the
experimental and predicted values, the R value should be very
close to unity. In addition, high R2 and adjusted R2 values for
ANFIS, RSM, and ANN which were also obtained from the
parity plot were (0.99538 and 0.99512), (0.98748 and
0.98679), and (0.93653 and 0.93301) respectively. All
obtained R2 values were higher than 0.93. This is an indication
that more than 93% of the predicted data set fits within the line
of best fit and is relatively close to the experimental values.
However, the observed high values of R, R2, and adjusted R2
are indicative of the good fit of the models.103 For a model to
be adjudged reliable and acceptable, its R2 value must be
greater than 0.8.36,53 Consequently, the adjusted R2 was used
to check the overestimation of the R2. The obtained adjusted
R2 values were sufficiently very close to R2, which further
validated the correctness and accuracy of the predicted
models.104 However, ANFIS has the highest R and R2 value
and therefore gives a better correlation and prediction than
RSM and ANN.
Furthermore, the model residual values that were calculated

by taking the basic difference between the experimental data
and the model’s predictions as indicated in the Supporting
Information Table S2 were used to compare model efficiencies.
In the majority of the experimental runs, all three models
produced modest residuals. The greatest negative and positive
residues of (−0.89698) and (3.80074) were found under the
ANN model. A low range of residual fluctuations, dispersed
along the horizontal x-axis, indicates a better performance.
ANFIS and RSM appeared to be the most suitable models due
to their limited residual fluctuation along the x-axis (Figure
9a). However, it is crucial to note that ANN is the least
accurate, as indicated by its high residual deviations,
particularly in run number 13.
Also, the equations as presented in the Supporting

Information (eqs S1−S6) were used to statistically calculate
the error functions and were utilized to quantify and compare
the efficiencies of the developed models. Their overall
comparison is summarized in Table 7. Low magnitude in
error values indicates better predictive capacity.105 MSE, which
is a measure of how close a fitted line is to a data point, was

determined for the three models. In addition, the RMSE,
which is the square root of the MSE, was also calculated. As
observed from Table 7, the values obtained for both MSE and
RMSE for ANFIS, RSM, and ANN were (0.05367, 0.23166),
(0.14528, 0.38116), and (0.86779, 0.93155). These values
were low, supporting the good fit of the models. On the other
hand, MAPE, MRPD, HYBRID, and MPSED measure the
accuracy and precision of a model.106 Their obtained values for
ANFIS, RSM, and ANN were (0.00588, 0.00286, 0.00337, and
0.00000001735), (0.01889, 0.00775, 0.00912, and
0.00000002855), and (0.02183, 0.04659, 0.05448, and
0.00000009864) as presented in Table 7. These values are
also low, indicating the reliability and predictive accuracy of
the three models. Considering the statistical results obtained in
this work, the ANN model was the least efficient in terms of
precision and accuracy in estimating the benzaldehyde yield,
while the ANFIS model was better than the ANN model. The
structure where the error value approaches zero (0) and the
superlative R2-value is near 1 is the acceptable exceptional

Table 6. ANFIS Information Used in This Study

ANFIS parameters

membership function type Sugeno
output membership function linear
number of nodes 78
number of linear parameters 27
number of nonlinear parameters 27
total number of parameters 54
number of training data pairs 20
number of fuzzy rules 27
ANFIS training completed at epoch 2
minimal training RMSE = 0.231661

Figure 8. Parity plot between experimental and predicted values of
(a) RSM, (b) ANN, and (c) ANFIS.
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model performance.53 Therefore, the error analysis revealed
the superiority of ANFIS at simulating the oxidation process of
benzyl alcohol to benzaldehyde over RSM and ANN
techniques. The actual experimental values as well as the
predicted values of benzaldehyde yield for the three models
were plotted against the run numbers (Figure 9b). It can be
seen from the figure that the ANN model was the least
accurate, which is corroborated by its very high MRPD of 4.7%
(Table 7).

3.6. Proposed Mechanism for the Selective Oxidation
of Benzyl Alcohol and Its Greenness. Although the
mechanism is still a matter of discussion, Figure 10 illustrates
the proposed mechanism. The catalyst having an abundance of
oxygen, cerium, and zirconium species [Mn+] may activate the
TBHP oxidant, which would then selectively oxidize benzyl
alcohol to benzaldehyde.107 The release of the TBHP proton
to the solution by protonation was made possible by the
coordination of each molecule of TBPH on the catalyst
surface. With the proton being picked by the oxygen atom in
the alcohol, the tert-butyl radicals act like nucleophiles
attacking the catalyst. The active site on the catalyst would
respond by binding the tert-butyl radical and under high
concentrations of alcohol, and the majority of the metal site
will be coordinated, forming an intermediate “metal alcohol-
ate”. A metal hydride shift would occur in this metal alcoholate
species, producing a metal-hydride intermediate and the
benzaldehyde product.108,109 Both the hydride shift and the
breakdown of the metal alcoholate link will occur asynchro-
nously but in unison. Compared to the breaking of the metal
alcoholate bond, the hydride shift would proceed more quickly.
The rapid oxidation of the metal hydride by oxygen to produce
water while regenerating the original metallic site will be the
last stage.

Figure 9. (a) Residual plot of RSM, ANN, and ANFIS model. (b) Comparison of experimental yield for benzaldehyde production with those
predicted by RSM, ANN, and ANFIS.

Table 7. Statistical Error Analysis of the ANFIS, ANN, and
RSM Models, Associated with the Comparison Plot

results

error function ANN RSM ANFIS

1. MSE 0.86779 0.14528 0.05367
2. RMSE 0.93155 0.38116 0.23166
3. MAPE 0.021830 0.01889 0.00588
4. MRPD (%) 4.658500 0.77500 0.28600
5. HYBRID 0.05448 0.00912 0.00337
6. MPSED 9.864 6 × 10−6 2.8552 × 10−8 1.73532 × 10−8

7. R 0.96775 0.99372 0.99769
8. R2 0.93653 0.98748 0.99538
9. adj. R2 0.93301 0.98679 0.99512

Figure 10. Mechanism of selective oxidation of benzyl alcohol over the Ce0.8Zr0.2O2 catalyst.
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Furthermore, a chemical reaction can be gauged green using
sustainable green metrics parameters like mass productivity
(MP), mass intensity (MI), and environmental factor (E-
factor). These green parameters were determined for the
production of benzaldehyde, and Table S3 in the Supporting
Information shows their relevant values. MP, MI, and E-factor
should all be low in a typical green reaction, indicating that the
designed protocol is both extremely cost-effective and
environmentally benign.110 As can be observed, the model
reaction produced an E-factor of 1.57, an MI-value of 2.57, and
an MP-value of 38%, all very desirable results for environ-
mentally friendly and sustainable organic synthesis.

4. REUSABILITY ANALYSIS
In the reusability experiment of benzyl alcohol oxidation with
the TBHP oxidant using optimal conditions, the catalyst was
recovered after each use, cleaned, and dried in the oven before
being recalcined at 450 °C for 12 h to be utilized again in a
fresh reaction cycle. Figure 11 displays comparative graphics

that indicate the catalyst reutilization capability for three
consecutive tests. It was shown that following the catalyst’s
three consecutive uses, the benzaldehyde yield stays above
60%, decreasing from 98.04 to 79.05%.111−113 The reduction
in the efficiency of the catalyst reuse can be attributed to either
catalyst leaching or the loss of active sites on the catalyst
surface.

5. FUTURE PERSPECTIVE AND CONCLUSIONS
This study mainly focused only on experimental investigations
and the optimization of the benzyl alcohol oxidation process
employing three input factors while keeping the refluxing speed
and the quantity of oxidant utilized constant. Future research
should consider varying the five components as well as the
potential of process optimization and prediction. Although
optimal parameters are crucial for industries to scale up,
scalability may be limited by factors including reactor design,
material cost, scale-up deadlines, etc. Additionally, the
literature reveals other investigations that selectively produce
benzaldehyde using different oxidants and heterogeneous
catalyst types without the application of machine learning. As
a result, a great deal of research and development is yet to be
done with respect to mathematical modeling and application of
optimization tools in benzaldehyde production. Therefore, it
will be interesting to continue developing, assessing, and

contrasting various models in relation to the optimization and
prediction of benzaldehyde yield.
On the other hand, using the inverse micelle method to

synthesize mesoporous ceria-zirconium catalyst (Ce0.8Zr0.2O2),
and TBHP as the oxygen donor, was successful in evaluating
the percentage yield of benzaldehyde from benzyl alcohol
oxidation under ideal reaction conditions. The selected
oxidation parameters of benzyl alcohol conversion with
TBHP were examined and evaluated to determine the
maximum percentage yield of benzaldehyde. The prepared
mesoporous ceria-zirconium was found to be an efficient,
stable, and reusable catalyst for the oxidation of benzyl alcohol.
The introduction of zirconium species into the lattice structure
of the cerium support resulted in enhanced catalytic activity.
The response of the oxidation process with input parameters
was designed and optimized using the RSM, ANN, and ANFIS
models. For optimal oxidation efficiency, the ideal values of
three process parameters were estimated. The three models
that were examined were found to be competent in the
selective production of benzaldehyde percentage yield. With a
higher coefficient of determination value (R2) of 0.99538, the
ANFIS model demonstrated that its predictions outperform
that of RSM and the ANN model, which has (R2) values of
0.98748 and 0.93653. Additional analyses were performed
using the RSM and ANFIS 3D-model plots, illustrating the
interacting effects with independent variables. A statistical
comparison of the models shows that good performance is
indicated by lower error values for MSE, MRPD, HYBRID,
MPSED, MAPE, RMSE, and MAPE. With the indicated lower
MSE values, ANFIS (0.05367) followed by RSM (0.1452) is
statistically more reliable in maximizing and forecasting the
oxidation parameters of benzyl alcohol using TBHP. The
ANFIS model’s negligible residual errors demonstrated how
closely the experimental data approximated their predicted
values. In addition, the green chemistry matrix calculations for
the reaction showed lower values of E-factor (1.57), MI (2.57),
and MP (38%), which are highly desirable for green and
sustainable reactions.
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ANFIS adaptive neuro-fuzzy inference system
TBHP tert-butyl hydroperoxide
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ORC oxygen release capacity
OSC oxygen storage capacity
P-123 (poly(ethylene glycol)-block-poly(propylene glycol)-

block-poly(ethylene glycol))
OFAT one factor at a time factor
LM Levenberg−Marquardt
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FID flame ionization detector
CCD central composite design
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MF membership functions
F-value Fisher distribution value
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df degree of freedom
XRD X-ray diffraction
BET Brunauer−Emmett−Teller
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