
Demethylation of the Coding Region Triggers the
Activation of the Human Testis-Specific PDHA2 Gene in
Somatic Tissues
Ana Pinheiro1, Maria João Nunes1, Inês Milagre1, Elsa Rodrigues1,2, Maria João Silva1,2, Isabel Tavares de

Almeida1,2, Isabel Rivera1,2*

1 Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Lisbon, Portugal, 2 Department of Biochemistry and Human Biology, Faculty of Pharmacy,

University of Lisbon, Lisbon, Portugal

Abstract

Human PDHA2 is a testis-specific gene that codes for the E1a subunit of Pyruvate Dehydrogenase Complex (PDC), a crucial
enzyme system in cell energy metabolism. Since activation of the PDHA2 gene in somatic cells could be a new therapeutic
approach for PDC deficiency, we aimed to identify the regulatory mechanisms underlying the human PDHA2 gene
expression. Functional deletion studies revealed that the 2122 to 26 promoter region is indispensable for basal expression
of this TATA-less promoter, and suggested a role of an epigenetic program in the control of PDHA2 gene expression. Indeed,
treatment of SH-SY5Y cells with the hypomethylating agent 5-Aza-29-deoxycytidine (DAC) promoted the reactivation of the
PDHA2 gene, by inducing the recruitment of the RNA polymerase II to the proximal promoter region and the consequent
increase in PDHA2 mRNA levels. Bisulfite sequencing analysis revealed that DAC treatment induced a significant
demethylation of the CpG island II (nucleotides +197 to +460) in PDHA2 coding region, while the promoter region remained
highly methylated. Taken together with our previous results that show an in vivo correlation between PDHA2 expression
and the demethylation of the CpG island II in testis germ cells, the present results show that internal methylation of the
PDHA2 gene plays a part in its repression in somatic cells. In conclusion, our data support the novel finding that methylation
of the PDHA2 coding region can inhibit gene transcription. This represents a key mechanism for absence of PDHA2
expression in somatic cells and a target for PDC therapy.
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Introduction

Pyruvate dehydrogenase complex (PDC) is a mitochondrial

matrix enzyme system that catalyses the oxidative decarboxylation

of pyruvate to acetyl-CoA, a key metabolite for energy metabo-

lism. The rate-limiting component is the E1 enzyme, which is a

heterotetramer (a2b2). The a subunit, besides forming with the b
subunit the active and the cofactor binding sites, is also the target

for regulatory mechanisms governing global activity of PDC.

The E1a subunit can be encoded by two different genes: PDHA1

located on X chromosome and expressed in somatic tissues; and

PDHA2 an intronless gene located on chromosome 4 (Fig. 1). This

autosomal gene is repressed in all somatic tissues but actively

transcribed in post-meiotic germ cells where the X chromosome is

absent or inactive [1,2]. It was suggested that the translocation of

PDHA to the eutherian X chromosome, which is inactivated

during spermatogenesis, led to the evolution of this second testis-

specific locus by retroposition to an autosome [3].

Besides the potential of PDHA2 as a model for unraveling the

mechanisms that govern gene expression during spermatogenesis

[4], some authors also postulated that PDHA2 gene activation in

somatic cells could be an effective therapy for PDC deficiency [5],

an inborn error of metabolism mainly caused by mutations in

PDHA1 gene [6].

The amount of published work on PDHA2 gene regulation is

scarce and the studies performed relied on the mouse orthologue,

Pdha2 [4,7,8,9,10]. However, it is believed that the regulatory

mechanisms that control these orthologous genes are different,

once there is no gross homology between their promoters, which

seem to have evolved from different retroposons [11].

Datta and collaborators publish the first and, to our knowledge,

unique study on human PDHA2 gene regulation [5]. They isolated

and characterized approximately 800 nucleotides of the PDHA2

promoter region, identified the location of the transcription start

site and performed functional studies that suggested the existence

of multiple regulatory elements. More importantly, these authors

proposed that the PDHA2 tissue-specific expression could be

modulated by mechanisms, such as DNA methylation, that would

limit PDHA2 expression to spermatogenic cells.

Indeed, DNA methylation is a widely known epigenetic

mechanism that plays a central role in the selective expression of

particular genes in different tissues. The methylation of cytosine

residues acts as a negative regulator of transcription by three

potential mechanisms: direct interference with the binding of
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specific transcription factors to promoters, direct binding of

specific transcriptional repressors and alteration of the chromatin

structure [12]. DNA methylation can be inhibited by 5-Aza-29-

deoxycytidine (DAC), a potent inhibitor of DNA methyltransferase

(DNMT) activity, through the irreversible binding of DNMTs to

DAC substituted DNA [13].

Recently, we have demonstrated an in vivo correlation between

an increase in PDHA2 mRNA levels and the demethylation of a

CpG island in its coding region [14], which is a strong evidence for

a role of DNA methylation in the epigenetic control of the human

PDHA2 gene. In this study we show that inhibition of DNMTs

with DAC reactivates PDHA2 gene expression in SH-SY5Y cells,

in a demethylation-dependent manner.

Results

PDHA2 promoter constructs display basal activity in
human somatic cell lines

Human PDHA2 gene expression is restricted to post-meiotic

germ cells [2] suggesting the absence of positive modulating factors

and/or the presence of repressors in somatic tissues. However, the

lack of suitable human spermatogenic germ cell lines makes it

difficult to easily elucidate the regulatory mechanisms involved

upon PDHA2 expression.

In order to evaluate the regions important for transcriptional

modulation and, more precisely, to define the regions putatively

involved in the repression of PDHA2 gene in somatic cells, several

deletion promoter constructs were generated (Fig. 2), and their

ability to direct expression of the reporter luciferase gene was

analyzed after transient transfection in different somatic cell lines.

Accordingly, the various PDHA2 reporter plasmids and the

parental pGL2-Basic vector were transfected into HeLa (cervix

adenocarcinoma), NT2 (human teratocarcinoma) and SH-SY5Y

(human neuroblastoma) cells, which do not normally express

PDHA2 mRNA.

Surprisingly, PDHA2 reporter constructs displayed high lucifer-

ase activities in all three somatic cell lines (Fig. 2). Significant

differences were found between the luciferase activities of the

several constructs, in HeLa (ANOVA one-way test: F = 20.29,

df = 10, p,0.001), NT2 (ANOVA one-way test: F = 26.01,

df = 10, p,0.001), and SH-SY5Y (ANOVA one-way test:

F = 48.89, df = 10, p,0.001) cells. However, post hoc comparisons

only revealed significant differences between the luciferase

activities of the empty pGL2-Basic and all the other reporter

constructs (Tukey HSD p,0.001).

These results firstly show that the region between nucleotides

2122 and 26 seems to contain all the sequences necessary to

drive transcription initiation, and thus most probably correspond-

ing to the basal proximal promoter. Secondly, the fact that PDHA2

promoter reporter constructs present high luciferase activity in

somatic cell lines where the PDHA2 mRNA cannot be detected,

and that there are no significant differences between the luciferase

activities of the different deletion constructs, suggest an important

role of epigenetic modifications in the regulation PDHA2 tissue-

specific expression.

In vitro methylation prevents PDHA2 promoter constructs
activity

To evaluate the role of DNA methylation on the activity of the

PDHA2 proximal promoter, we performed an in vitro methylation

assay using SssI methylase (Fig. 3A). The results revealed that the

PDHA2 proximal promoter activity was completely abolished after

in vitro methylation (Fig. 3B). Moreover, since we had previously

demonstrated an in vivo inverted correlation between methylation

of a CpG island localized in the coding region (see CpG II in Fig. 1)

and the PDHA2 mRNA levels [14], we wanted to assess if the

presence of a methylated CpG island II region could further

decrease PDHA2 construct’s luciferase activity. Nevertheless, since

there were already no significant differences between the luciferase

activity of the 296.pGL2 construct and of the empty pGL2.Basic

vector (Fig. 3B and 3C), the inclusion of the CpG II region did not

result in a further decrease in promoter activity.

These results indeed show that methylation plays an important

repressive role upon PDHA2 gene expression.

Activation of PDHA2 expression in somatic cells after
treatment with epigenetic drugs

To further investigate the role of epigenetic mechanisms upon

PDHA2 gene regulation, we treated SH-SY5Y cells, where this

gene is not normally expressed, with a potent inhibitor of the de

novo methylation (DAC) and with a pharmacological inhibitor of

histone deacetylases (TSA).

PDHA2 expression was quantified by real-time PCR (qPCR)

and the results revealed that after treatment with 5 mM DAC for

96 h or 120 h, there is a significant increase of PDHA2 mRNA,

when compared with untreated cells (ANOVA one-way test:

F = 27.84, df = 3, p,0.001; Tukey HSD for unequal N p,0.001)

(Fig. 4A).

Since it is generally accepted that DAC and TSA synergistically

affect gene expression, by a mechanism that depends on promoter

demethylation induced by DAC and subsequent reinforcement by

histone acetylation induced by TSA, we also treated SH-SY5Y

with TSA for 24 h, and with DAC for 96 h prior to a 24 h

treatment with TSA. Incubation with 0.25 mM TSA for 24 h did

not significantly affect PDHA2 mRNA levels. Moreover, pretreat-

ment with DAC for 96 h, prior to the 24 h TSA treatment, did not

further increase the observed PDHA2 mRNA accumulation with

DAC treatment only (Fig. 4B).

Figure 1. Schematic representation of the PDHA2 gene showing the localization of the 2 CpG islands (CpG I and CpG II), the
transcriptional start site and the putative Sp1 binding site.
doi:10.1371/journal.pone.0038076.g001

Somatic Activation of Testis-Specific PDHA2 Gene
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In order to corroborate the fact that DAC treatment induces a

derepression of PDHA2 gene transcription, we analyzed the

recruitment of RNA polymerase II (RNA pol II) to this gene by

chromatin immunoprecipitation. We have designed three sets of

primers, one targeting the promoter region (+1 bp), another

targeting a distal upstream region (210 kb) and a third one

targeting the CpG island II (+385 pb). Our results showed that we

could only detect RNA pol II binding to the +1 bp region after

DAC treatment (Student’s t-test, p,0.001), which most likely

triggers the observed increase in PDHA2 gene transcription (Fig. 5).

Interestingly, we could not detect the occupancy of the putative Sp

binding site, by the Sp1 transcription factor (Fig. 5), as previously

suggested by Datta and co-workers [5]. Furthermore, we

investigated the possible recruitment of the elongation marker

H3K36me3 to the gene body, but the results showed no

occupancy of the targeted region.

These data demonstrate that PDHA2 gene transcription was

reactivated by DAC treatment in SH-SY5Y cells, suggesting that

DNA demethylation may play a pivotal role in PDHA2 tissue-

specific expression.

DAC induces demethylation of PDHA2 coding region
In order to confirm that DAC can induce the reactivation of

PDHA2 expression in SH-SY5Y cells, in a demethylation

dependent manner, we analyzed the methylation status of PDHA2

gene body by sodium bisulfite sequencing analysis.

Since we have previously shown that the PDHA2 gene contains

two CpG islands, one located in the promoter region (nucleotides

2128 to +73) and the other located in the coding region

(nucleotides +197 to + 460) [14], we have analyzed the

methylation patterns of both CpG islands. In accordance with

our previous results, we observed that the CpG island I, located in

the promoter region, is fully methylated in untreated SH-SY5Y

cells, and seems to be insensitive to DAC, since it remains

methylated after treatment with this drug (Fig. 6A). Effectively, its

CpG sites remained fully methylated not only after DAC

treatment, but after TSA and DAC plus TSA treatment, as well.

Interestingly, the analysis of the CpG island II, located in the

coding region, showed significant demethylation after treatment

with DAC (Table S1) (Fig. 6A and 6B); TSA alone had no effect,

but after pre-treatment with DAC, the demethylation level of this

exonic CpG island seems to be slightly increased, which is

particularly significant in the CpG sites +410 and +492 (Tukey for

unequal N, p,0.01) (Fig. 6B).

Recently, several potential alternative transcription start sites

were identified in PDHA2 gene [15]. These are located in the

coding region encompassing the CpG island II. Therefore, one

could hypothesize that demethylation of the PDHA2 CpG island II

Figure 2. Functional deletion analysis of the human PDHA2 gene promoter. Progressive 59 deletion constructs were transiently transfected
into HeLa, NT2 and SH-SY5Y cell lines. Transfections were carried out using 0.5 mg of the PDHA2 reporter constructs or the empty pGL2 vector.
Normalized luciferase activities were expressed as mean values 6 SEM of duplicates for a minimum of three experiments (*p,0.001).
doi:10.1371/journal.pone.0038076.g002

Somatic Activation of Testis-Specific PDHA2 Gene
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corresponds to the demethylation of alternative promoters that

control transcription of truncated PDHA2 transcripts. Indeed, as

the qPCR assay used a TaqMan probe hybridizing to the 39UTR

of the PDHA2 mRNA, the presence of eventual shorter truncated

transcripts could not be discarded. Accordingly, we further

analyzed PDHA2 expression by conventional RT-PCR with a set

of specific primers designed to amplify the 59 region of the full-

length transcript (nucleotides 227 to +432). We detected the

expected amplification product with 459 bp only in DAC-treated

cells, which proves that DAC promotes the transcription of a full-

length PDHA2 transcript (Fig. 7).

These results are consistent with our previous work [14], and

strongly suggest that PDHA2 reactivation in somatic cells proceeds

via a mechanism independent of promoter demethylation, most

probably dependent on demethylation of the coding region.

Discussion

PDHA2 gene activation in somatic tissues has been postulated as

a conceptual therapy for PDC deficiencies caused by PDHA1 gene

mutations [5,16]. Accordingly, it is crucial to understand the

mechanisms controlling human PDHA2 tissue-specific expression,

namely what factors are responsible for the silencing of this gene in

somatic tissues, and its activation in spermatogenic ones (diploid

and haploid germ cells). However, the lack of a suitable cell line to

study the regulatory mechanisms underlying PDHA2 gene

expression has hampered this elucidation for a long time.

The first step towards understanding the regulation of a

particular gene is the identification of regulatory elements and

factors involved in basal expression. Accordingly, our studies

began by the functional analysis of human PDHA2 promoter. The

results showed that PDHA2 promoter-directed transcription of the

luciferase reporter gene occurred in cultured somatic cells (HeLa,

NT2 and SH-SY5Y), where PDHA2 mRNA is undetectable.

Deletion analysis further revealed that the region spanning from

2122 to 26 is indispensable for basal expression of this TATA-

less promoter. Moreover, and in each cell line, no significant

differences were found among the reporter gene activities driven

by all the other PDHA2 deletion promoter constructs. Addition-

ally, each construct displayed comparable reporter activities in the

three different somatic cell lines.

These observations suggested that the mechanisms involved in

the repression of PDHA2 expression in somatic cells are not

operative when the core promoter or the 59 flanking region are

transiently transfected into somatic cells. Moreover, these results

corroborated the previous transactivation experiments described

by Datta and colleagues [5], who also observed PDHA2 promoter-

directed transcription in human hepatocellular carcinoma cells.

However, we could not replicate their results concerning the

Figure 3. In vitro methylation with SssI methylase abrogates PDHA2 promoter constructs activity. Constructs, either methylated or mock-
methylated, were transiently transfected into SH-SY5Y cell line. Transfections were carried out using 0.5 mg of the PDHA2 reporter constructs or the
empty pGL2 vector. Normalized luciferase activities were expressed as mean values 6 SEM of duplicates for a minimum of three experiments
(*p,0.001). (A) Control of the methylation reaction by digestion with the methylation-sensitive endonuclease HpaII. (B) Methylation of PDHA2
constructs prevents proximal promoter activity. (C) No significant decrease in the luciferase activity was observed in the PDHA2 construct including
the CpG II region (CpGs.pGL2).
doi:10.1371/journal.pone.0038076.g003
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Figure 4. DAC increases PDHA2 mRNA levels in SH-SY5Y cells. Real-time PCR analysis of PDHA2 steady-state mRNA transcript levels in SH-
SY5Y cells treated with 5 mM DAC for the indicated time points (A), and with 5 mM DAC for 96 h and/or 0.25 mM TSA for 24 h (B). Values were
normalized to the internal standard b-actin. Data represent means 6 SEM of at least three independent experiments and was expressed as pg of
PDHA2 mRNA per ng of b-actin mRNA (* p,0.001; 1 p,0.01).
doi:10.1371/journal.pone.0038076.g004

Figure 5. Recruitment of RNA pol II to the human PDHA2 gene. Chromatin from SH-SY5Y was prepared at 72 hours after treatment with 5 mM
DAC and precipitated with antibodies directed against IgG, Sp1 and RNA pol II. After DNA recovery, the precipitates were evaluated by real-time PCR
as described in Experimental Procedures. Results are expressed as fold change over IgG and represent means of at least three independent
experiments 6 SEM (* p,0.001).
doi:10.1371/journal.pone.0038076.g005

Somatic Activation of Testis-Specific PDHA2 Gene
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detection of several enhancer and repressor elements, because no

significant differences in luciferase reporter activities were detected

between the various deletion constructs. Additionally, the same

authors suggested the existence of a putative Sp responsive

element that would be important for Sp1-dependent transcription

initiation [5]. However, our chromatin immunoprecipitation

assays did not demonstrate any binding of Sp1 transcription

factors to the proximal promoter of the PDHA2 gene.

Additionally, and more importantly, our observation that

PDHA2 promoter reporter constructs presented high luciferase

activity in all somatic cell lines, where the PDHA2 mRNA cannot

be detected, reinforces the idea that PDHA2 tissue-specific

expression may be under strict control of epigenetic mechanisms

of regulation. Furthermore, in vitro methylation of PDHA2

promoter constructs with SssI methylase resulted in a complete

abrogation of luciferase activity.

Our next approach was to further explore the involvement of

epigenetics, namely DNA methylation and/or histone modifica-

tions, on the regulation of PDHA2 gene expression. The results

showed that treatment of SH-SY5Y cell cultures with DAC

induced PDHA2 derepression with a concomitant accumulation of

PDHA2 transcript. On the other hand, inhibition of histone

deacetylation did not elicit any induction of PDHA2 expression,

nor did it potentiate the DAC effect.

Moreover, the accumulation of the PDHA2 mRNA after DAC

treatment was correlated with an enrichment of RNA pol II at the

PDHA2 proximal promoter (+1 bp region), which likely triggers

the observed increase in PDHA2 mRNA levels. The fact that

treatment with DAC alone elicited a significant effect upon

PDHA2 gene expression suggests that changes associated with

methylation are sufficient to drive transcription initiation of this

testis-specific gene in somatic cells.

Once proved that DAC was able to induce PDHA2 gene

expression in cultured somatic cells, it would be important to

investigate the methylation status of this gene, before and after

treatment with the demethylating drug, in order to assure that

demethylation was underlying PDHA2 transcription. Our results

demonstrated that DAC promoted a relevant demethylation of

PDHA2 coding region, which was fully methylated before

treatment. However, the promoter CpG island I remained fully

methylated, suggesting its insensibility to demethylation, at least by

DAC treatment in the tested conditions. These findings corrob-

orate our previous reported results, where we observed that

PDHA2 expressing tissues (i.e spermatogenic cells) presented the

Figure 6. DNA methylation status of the human PDHA2 gene after sodium bisulfite PCR sequencing. A) Sample chromatograms
obtained for both PDHA2 CpG Islands, before and after treatment with 5 mM DAC; B) DNA methylation status of CpG sites in the CpG island II located
in the coding region of PDHA2 gene, before and after treatment with 5 mM DAC for 96 h and/or 0.25 mM TSA for 24 h. Results represent means of at
least three independent experiments 6 SEM (* p,0.05; { p,0.01; 1 p,0.001 by Tukey HSD for unequal N test).
doi:10.1371/journal.pone.0038076.g006
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coding region completely demethylated, while non-expressing

tissues displayed it fully methylated [14].

Moreover, these results also correlate with our recent finding

concerning a family displaying PDHA2 gene expression in somatic

tissues [17], an interesting case that may configure the previously

referred long dreamed therapy for PDC deficiency, i.e. the somatic

activation of PDHA2 expression. The results obtained either then

by in-vivo or now by ex-vivo experiments are overlapping; actually,

both methylation analyses revealed a correlation between

demethylation of the coding region and PDHA2 derepression.

Moreover, and interestingly, the level of demethylation in the

coding region is very similar in samples derived from the cultured

cells treated with DAC and from the family individuals.

However, Yamashita and colleagues [15] recently identified

multiple transcriptional start sites downstream of the canonical one

(+248, +253 and +269), which are located precisely within the

CpG island II region (nucleotides +197 to +460). Accordingly, this

region could eventually harbor alternative promoter that would

trigger the transcription of truncated PDHA2 mRNAs. However,

our RT-PCR results clearly show that DAC induces transcription

of full-length transcripts. These data are corroborated by the

significant enrichment of RNA pol II at the proximal promoter.

Taken together, our results confirm that methylation of the

coding region is a key point in somatic cell silencing of PDHA2

gene. Actually, DNA methylation appears to be particularly

suitable for the regulation of germ line-specific genes, and this is

probably related to the global demethylation process that occurs

during the development of spermatogenic cells, which may

provide the mechanism by which these germ line-specific genes

are demethylated [18,19]. And, despite the fact that DNA

methylation does not seem to be the primary control mechanism

regulating the programmed expression of most tissue-specific

genes resulting in tissue differentiation, there are several examples

that indicate that DNA methylation can serve as the primary

control mechanism for the expression of a number of germ line-

specific genes [20,21,22].

Although the expression of previously referred genes proceeds

via a promoter methylation-dependent mechanism, we also can

find in the literature some references to human genes that are

regulated by methylation of the coding region, namely mono-

carboxylate transporter MCT3 [23]. Another particular interest-

ing example is the mouse Tact1/Actl7 gene [24], which is also

intronless and testis-specific, like the PDHA2 gene.

Indeed, it has already been described that methylation of the

coding region, per se, can control gene expression by preventing

promoter activity at the level of the chromatin structure. Indeed,

CpG methylation induces a local repressive chromatin structure,

mediated by the binding of methyl-CpG binding domain (MBD)

proteins which recruit other proteins including sin3A and histone

deacetylase; when a sufficient amount of CpGs is methylated, this

repression is transmissible in cis, spreading for several hundred

base pairs [25,26,27]. Accordingly, more or less distant methylated

sequences, like the PDHA2 coding region, can promote gene

repression. Interestingly, and as stated by Nan and co-workers, this

type of repression is greater if the promoter itself is methylated

[28], which is the case of PDHA2 promoter.

Furthermore, it has also been postulated that methylation of the

coding region can inhibit gene expression by interfering with the

elongation step rather than with transcription initiation, by causing

RNA pol II to pause or to prematurely terminate [29,30].

Moreover, the inhibitory effect upon elongation is prominent

when methylation occurs near the start codon [31].

Based on this hypothesis, we attempted to explore elongation of

PDHA2 transcription by chromatin immunoprecipitation assays.

The results did not show any particular differences in the

chromatin recovered before and after DAC treatment, namely

when using the elongation marker H3K36me3. A recent report

has shown a clear correlation between H3K36me3 marking and

transcriptional activity in intron-containing genes; however, in

intronless genes H3K36me3 is detected at much lower levels

irrespective of expression levels [32]. Indeed, there are other

examples showing that transcriptional elongation is differently

controlled in intronless genes when compared to longer intron-

containing genes [33]. Accordingly, because PDHA2 gene lacks

introns, different approaches need to be designed.

In summary, we hypothesize that PDHA2 gene belongs not only

to a restricted group of germ line-specific genes that use DNA

methylation as a primary silencing mechanism, but to a unique

subset of those genes whose expression is regulated by the

methylation status of the coding region. Furthermore, these new

insights on the regulatory mechanism underlying PDHA2 tissue-

specific expression may open potential therapeutic avenues for

PDC deficiency caused by PDHA1 mutations.

Materials and Methods

Cloning the human PDHA2 gene
Two different fragments of the human PDHA2 gene (GenBank

ID: M86808) were cloned in pCRH4Blunt-TOPOH vector

(Invitrogen Corporation, Carlsbad, CA, USA) after PCR ampli-

fication with PlatinumH Pfx Polymerase (Invitrogen) of genomic

DNA isolated from circulating lymphocytes of a healthy individ-

ual. The first fragment harboring the PDHA2 promoter region

Figure 7. DAC activates a full-length PDHA2 transcript.
Conventional RT-PCR analysis, using primers hybridizing to the 59
region, was used for detection of PDHA2 transcripts. (1) SH-SY5Y cells
before treatment. (2) SH-SY5Y cells after treatment with 5 mM DAC. (3)
Negative control – no biological sample. (4) Positive control – mature
spermatozoa sample. (M) HyperLadder II (Bioline, London, UK).
doi:10.1371/journal.pone.0038076.g007
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(nucleotides 2980 to 26) was amplified using the primers

pPDHA2-975 bp and pPDHA2-R listed in Table 1. The second

fragment designed to harbor both CpG islands of PDHA2 gene

(2274 to +487) was amplified with pPDHA2-269 bp and

PDHA2.CpGs-R primers (Table 1). The recombinant plasmids

were sequenced by primer walking and named pPDHA2-TOPO

and PDHA2.CpGs-TOPO, respectively. For sequence number-

ing, nucleotide +1 was assigned to the adenosine of the initiation

translation codon ATG.

PDHA2 promoter reporter constructs
Several different fragments derived from the human PDHA2

promoter region were subcloned into the luciferase expression

vector pGL2-Basic vector (Promega Corporation, Madison, WI

USA). We used the pPDHA2-TOPO plasmid as a template to

amplify fragments of different lengths, using different forward

primers and a reverse primer, which contains a XhoI overhang site,

listed in Table 1. The PCR products, amplified with the

PlatinumH Pfx Polymerase (Invitrogen), were subcloned in the

pGL2 reporter plasmid into SmaI/XhoI sites generating plasmids

975.pGL2 (2980 to 26), 833.pGL2 (2838 to 26), 695.pGL2

(2700 to 26), 591.pGL2 (2596 to 26), 506.pGL2 (2511 to 26),

436.pGL2 (2441 to 26), 349.pGL2 (2354 to 26), 269.pGL2

(2274 to 26), and 196.pGL2 (2201 to 26). The pPDHA2-

TOPO recombinant was also digested with enzymes MslI/XhoI

and the 117 bp fragment was subcloned in the pGL2 reporter

plasmid generating the 117.pGL2 recombinant (2122 to 26).

An ultimate PDHA2 reporter construct was subcloned into the

pGL2-Basic vector, using as template the PDHA2.CpGs-TOPO

plasmid. This reporter construct was named CpGs.pGL2 and

harbored both CpGs islands present in PDHA2 gene.

In vitro methylation of PDHA2 constructs
M.SssI was used to methylate the CpG dinucleotides of the

PDHA2 gene/luciferase reporter constructs or the pGL2 basic

vector, based on the protocol of the manufacturer (New England

Biolabs, Beverly, MA). Mock reactions were carried out in parallel

without adding the methylase. The samples were then incubated

with methylation-sensitive restriction enzyme HpaII, followed by

agarose gel electrophoresis. Complete methylation of the CpG

sites of the constructs was verified by protection of the methylated

DNA from digestion by this enzyme. Methylated and mock-

treated plasmids were purified with a QIAquick gel extraction kit

(Qiagen, Hilden, Germany) and used for reporter gene analyses

after transient transfection in somatic cell lines.

Transactivation studies
The basal promoter activity of the different reporter plasmids

was assayed by measuring the luciferase activity after transient

transfection in HeLa, SH-SY5Y and Ntera2/clone D1 (NT2) cell

lines.

To minimize variations in transfection efficiency, replicates

were transfected in single batch suspension with FuGENEH HD

(Roche Diagnostics GmbH, Penzberg, Germany) according to the

manufacturer’s instructions. Plates containing 200,000 cells were

co-transfected with 0.5 mg of the reporter plasmid together with an

expression plasmid containing the b-galactosidase gene-coding

region (pSV40-bGAL). Cells were inoculated in 24-well plates and

maintained for 48 h. These cells were harvested and lysed in

reporter lysis buffer (Promega). Cell extracts were assayed for

luciferase and b-galactosidase activity (b-Gal Reporter Gene

Assay, Roche), which was used to normalize the results. All

experiments were performed at least three times in duplicate well.

Cell cultures and treatments
SH-SY5Y (human neuroblastoma, ATCC CRL-2266) cell line

was maintained in low glucose Dulbecco’s modified Eagle’s

medium (Sigma-Aldrich Inc., St. Louis, MO, USA), while HeLa

(human cervix adenocarcinoma, ATCC CCL-2) and NT2 (human

teratocarcinoma, ATCC CRL-1973) cell lines were cultured in

high glucose Dulbecco’s modified Eagle’s medium (Sigma). All

media were supplemented with 10% heat inactivated fetal bovine

serum (Biochrom AG, Berlin, Germany), 2 mM L-glutamine

(Sigma), 100 units/mL penicillin and 100 mg/mL streptomycin

(Sigma), with the exception of NT2 culture medium that was

supplemented with 4 mM L-glutamine. All cell cultures were

carried out at 37uC in humidified 5% CO2.

Dose response assays of 5-Aza-29-deoxycytidine (DAC) and

Trichostatin A (TSA) were performed as stated in Milagre and

collaborators (2008) [34]. Subsequently, cells were treated with

5 mM DAC and 0.25 mM TSA for the indicated periods (or vehicle

as control) and every 24 hours the medium was changed.

RNA isolation and qPCR for PDHA2 expression analysis
Total RNA was prepared from all cells, treated and untreated,

using the RNeasyH Mini Kit (Qiagen) and contamination by

genomic DNA was eliminated from each RNA sample by pre-

treatment with DNase I using RNase-free DNase Set (Qiagen).

Total RNA was reverse transcribed using the Reverse

Transcription System A3500 Kit (Promega) with random primers

following the manufacturer’s instructions.

First strand DNA (1 mg) was used as template for quantitative

real-time PCR with an ABI PRISM 7300 sequence detection

system (Applied Biosystems). The cycling conditions were 95uC/

10 min followed by 40 cycles of 95uC/15 sec and 60uC/1 min. It

was used the TaqManH Gene Expression Assay - ID:

Hs01043024_s1 (Applied Biosystems) for specific detection of

PDHA2 mRNA, and the TaqManH b-actin Control Reagents as

endogenous control (Applied Biosystems). In every reaction we

used the TaqManH Gene Expression Master Mix (Applied

Biosystems) following enclosed instructions. Each sample was

assayed in triplicate and results show a minimum of three

independent experiments. Transcript levels were normalized to b-

actin and expressed in pg PDHA2 mRNA per ng of b-actin

mRNA.

Table 1. Sequence of oligonucleotides used in the human
PDHA2 gene cloning.

Oligonucleotides Sequence (59R39)

pPDHA2 – R TCACGGAGTGCTGTAGATGGCTCGAGCCG

pPDHA2 – 975 bp TGGAAACCTGCTGAAGACATT

pPDHA2 – 833 bp AAGGAAAAGTGGAATGTCACAAA

pPDHA2 – 695 bp ATACATTTTCCCTCCCCACT

pPDHA2 – 591 bp GTTAACGTGCGTGTGCTTGT

pPDHA2 – 506 bp GGCACATTATGGAGCAGGAT

pPDHA2 – 436 bp TGGTAGGAAGAAATACCTTTGGA

pPDHA2 – 349 bp TTGTCGGGAAAGCTTGAGAT

pPDHA2 – 269 bp GCGATTAGGATGCCCTGTAG

pPDHA2 – 196 bp GGCAGGCACTGTACAAATCA

PDHA2.CpGs – R CGGCTCGAGCCATTGCCCCCATAGAAGT

doi:10.1371/journal.pone.0038076.t001
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Additionally, we analyzed PDHA2 mRNA by conventional RT-

PCR analysis with a gene specific set of primers, designed to

amplify the 59 region of the transcript: the forward primer 59-

TGCCATCTACAGCACTCCGT-39 hybridizing to nucleotides

227 to 28 and the reverse primer 59-AGCA-

CAACCTCCTCTTCTTCC-39 hybridizing to nucleotides +412

to +432. The 459 pb product was amplified with SYBR green

Master Mix in an ABI 7300 sequence detection system (Applied

Biosystems) and visualized by agarose gel electrophoresis.

Genomic DNA isolation and bisulfite sequencing for
PDHA2 methylation analysis

Genomic DNA was isolated from treated and untreated cells

using a salting-out method (CitogeneH DNA Blood Kit – Citomed,

Lisbon, Portugal).

The number and distribution of scattered CpG sites and CpG

islands of PDHA2 gene has been previously analyzed [14] using the

online program MethPrimer, available at www.urogene.org/

methprimer, which defines CpG islands as sequences longer than

200 bp, with a calculated CG composition .50% and an

observed to expected CpG ratio of .0.6 [35].

Bisulfite PCR sequencing was carried out using the EpiTectH
Bisulfite Kit (Qiagen) and CpG islands were amplified by PCR

using the specific primers and the conditions previously described

[14].

The reaction products were purified by MinEluteH PCR

Purification Kit (Qiagen) and sequenced in both directions by

primer walking with ABI Prism BigDye Terminator Cycle

Sequencing Ready Reaction Kits, in an ABI PRISM 310 Genetic

Analyzer (Applied Biosystems, Foster City, CA, USA).

Chromatin immunoprecipitation assay
Chromatin immunoprecipitation assays were performed as

described previously [36]. Briefly, chromatin isolated from cell

cultures was immunoprecipitated using the following antibodies:

anti RNA pol II clone CTD4H8 (#05-623, Millipore, Bedford,

MA, USA), H3K36me3 (#ab9050, Abcam, Cambridge, UK), Sp1

(PEP 2) X (#SC-59X, Santa Cruz Biotechnology, Inc., Santa

Cruz, CA, USA) and normal rabbit immunoglobulin (#X0903,

DakoCytomation, Denmark). The recovered DNA was analyzed

by quantitative real-time PCR with SYBR green Master Mix in an

ABI 7300 sequence detection system (Applied Biosystems). The

qPCRs were performed using primers designed to cover three

different regions of the PDHA2 gene: the proximal promoter

region (+1 bp) 59-GGCAGGCACTGTACAAATCA-39 (forward)

and 59-CAGTGCACACGGGTGATAGA-39 (reverse); the CpG

island II region (+385 bp) 59-GGGCTCATGGTGTGTGCTAT-

39 (forward) and 59-AGCACAACCTCCTCTTCTTCC-39(re-

verse); and a distal upstream region (210 Kb) 59-GCATGG-

CAGGACTTCTCTC-39 (forward) and 59-TTACAGG-

CAATGCTTG ACCA-39 (reverse).

Statistical analysis
Statistical analysis was performed using the Student’s t-test and

the ANOVA one-way test with the Tukey Honestly Significant

Differences (HSD) post-hoc test, the Tukey HSD for unequal N

(Spjotvoll/Stoline test). All analyses were performed using the

STATISTICA (data analysis software system), version 7.1

StatSoft, Inc. (Tulsa, OK, USA; 2006). A value of p,0.05 was

considered significant.

Supporting Information

Table S1 Statistical analysis of PDHA2 gene methyla-
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