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Purpose of review

The purpose of this study is to provide an update on the role HDL apolipoprotein A-I plays in reducing the
risk of cardiovascular disease (CVD) and how it relates to reverse cholesterol transport (RCT).

Recent findings

Despite numerous studies showing that plasma HDL cholesterol concentrations are correlated with a reduced
risk of CVD, pharmacologic elevation of HDL has not shown any beneficial effects to date. In contrast, studies
correlating the measure of an individual’s plasma cholesterol efflux capacity show greater promise as a tool
for assessing CVD risk. Although ATP-binding cassette transporter 1-mediated lipidation of apoA-I is
considered the principal source of plasma HDL, it represents only one side of the RCT pathway. Equally
important is the second half of the RCT pathway in which the liver scavenger receptor class B1 selectively
removes HDL cholesteryl esters for excretion. The combined action of the two enzyme systems is reflected in
the overall steady-state concentration of plasma HDL cholesterol. For example, reduced ATP-binding cassette
transporter 1-mediated production of nascent HDL lowers plasma HDL concentration, just as an increase in
cholesteryl ester uptake by scavenger receptor class B1 reduces HDL levels. Thus, the complexity of
intravascular HDL metabolism suggests that steady-state plasma HDL concentrations do not provide adequate
information regarding an individual’s HDL quality or function. Herein, we describe a new player, procollagen
C-endopeptidase enhancer 2, which shows atheroprotective function and influences both sides of RCT by
enhancing production and catabolism of HDL cholesteryl esters.

Summary

The discovery of a new molecule, procollagen C-endopeptidase enhancer 2, implicated in the regulation of
HDL cholesteryl ester concentrations suggests that the extracellular matrix and the proteins that regulate its
function represent a new and as yet unexplored realm of HDL cholesterol metabolism.
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INTRODUCTION

For over 40 years, it has been assumed that higher
plasma levels of HDL cholesterol are associated with
a reduced risk for cardiovascular disease (CVD) [1].
This belief is based on HDL’s repeatedly docu-
mented role in reverse cholesterol transport
(RCT), although detailed mechanisms explaining
how HDL protects against cholesterol accumulation
in the artery wall remain controversial. Compound-
ing this, recent attempts to pharmacologically
increase HDL levels have not led to increased benefit
[2], suggesting that HDL concentration does not
accurately reflect HDL function. Leading the focus
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KEY POINTS

� HDL is the intermediary between several proteins that
are essential components of the RCT pathway
responsible for whole body cholesterol homeostasis.
The ‘meaning’ of reduced CVD risk relative to plasma
HDL concentration is being re-evaluated with regard to
the mechanism(s) that reduces risk.

� It is the metabolic interaction between all RCT
components that contributes to reducing the risk for
CVD. PCPE2 is an essential component of RCT that
contributes to its function, however, as the newest
member of what has been heretofore regarded as a
well understood pathway, highlights what is not known
about the mechanism of RCT.

� CUB domains like those found in PCPE2 bind proteins
such as apoA-I. The NTR tail anchors PCPE2 to
glycosaminoglycans of the ECM and helps position it to
deliver CUB-bound apoA-I to SR-B1.

PCPE2 and HDL-cholesteryl ester uptake Sorci-Thomas et al.
on HDL function, two studies show that the effi-
ciency of cholesterol efflux to LDL-depleted plasma
[3] correlates with reduced risk for CVD in humans
[4,5

&&

]. In these studies, cholesterol efflux was mostly
mediated by the ATP-binding cassette transporter
A1 (ABCA1) and correlated with the concentration
of lipid-poor preb HDL particles [3]. How this rare
cholesterol-depleted HDL particle is continuously
generated from mature HDL at the artery wall is
not entirely understood [6,7,8

&&

,9,10], leaving this
and other important questions unanswered.
BODY

HDL concentration, reverse cholesterol
transport and atherosclerosis
Several thorough reviews of cholesterol efflux, RCT
and atherosclerosis have been published over the last
several years [11–13]. In this review, we will empha-
size recent studies into the role of the newly discov-
ered player, procollagen C-endopeptidase enhancer
2 (PCPE2), which resides in the extracellular matrix
(ECM) and plays a role in both RCT and atherosclero-
sis. Given that steady-state plasma HDL concen-
trations do not provide sufficient information on
either cholesterol efflux capacity or overall HDL
function, it follows that other factors that impart
atheroprotective function should be examined
whether they reside on the HDL particle or enable
optimal processing of HDL’s cholesterol cargo.

Accessory proteins, cholesterol efflux and
nascent HDL production
Several reports suggest that accessory proteins
located on the plasma membrane assist in ABCA1-
0957-9672 Copyright � 2015 Wolters Kluwer Health, Inc. All rights rese
mediated assembly of nascent HDL (nHDL) [14–19],
where nHDL represents the product(s) of lipid-poor
apoA-I’s interaction with ABCA1 [20]. Many years
ago, it was discovered that newly synthesized apoA-I
contained a hexapeptide pro-segment as well as a
signal peptide (prepeptide). The presegment was
removed at the time of synthesis, but the pro-seg-
ment was removed during secretion [21–23]. Over 9
years since the pro-apoA-I sequence was described,
many questions about this process have been
answered [24–29]. It is now known that the removal
of the pro-peptide stimulates the rate of apoA-I
intracellular translocation and that bone morpho-
genetic protein 1 (BMP1) cleaves the apoA-I pro-
peptide [17,24] at the surface of the cell affecting the
rate of lipidation in vitro, and thus the production
rate of nHDL.

The enzyme that cleaves apoA-I’s propeptide,
BMP1, is an astacin metalloprotease with diverse
substrates including ECM proteins and antagonists
of the transforming growth factorb (TGFb) super-
family [30,31]. It is best known for cleaving C-ter-
minal propeptides from procollagen precursors.
This cleavage is essential for self-assembly of mature
collagen monomers into fibrils within the ECM
[32,33]. Also involved in this process is the enhancer
protein, procollagen proteinase enhancer protein 1
or PCPE1 (PCOLCE gene). This protein stimulates
the procollagen C-proteinase activity of BMP1 [34].
PCPE2 (PCOLCE2 gene) is related to PCPE1 sharing
43% amino acid identity with similar domain struc-
ture, but having markedly different glycosylation
than PCPE1, and assisting BMP1 in modifying
collagen [35,36]. However, the tissue distribution
of the PCPEs is somewhat different with PCPE2 more
highly expressed in heart, aorta and adipose, while
PCPE1 shows a wider expression pattern. Both are
glycoproteins having two Complement C1r/C1s,
Uegf, Bmp1 (CUB) domains (Complement C1r/
C1s, Uegf, Bmp1) separated by a short linker region,
with each domain containing a b-sandwich fold
that mediates a variety of protein–protein inter-
actions [37–41]. The CUB domains have a homo-
logous Ca2þ-binding site that mediates ionic
interactions between protein partners [38], similar
to that described for the LDL receptor family [42,43].
PCPE2 also has a netrin-like (NTR) domain
[32,33,44,45] that binds cell surface heparan sul-
phate proteoglycans (HSPGs) anchoring it to the
ECM. Once believed to inhibit BMP1, the NTR
region is now known to stimulate enhancer activity
in the presence of HSPG [33]. From these studies, it
appears that PCPE2 binds to HSPG in the ECM and
then through one or both of its CUB domains coor-
dinates the enzymatic activity of BMP1 whether it be
that of procollagen or the six amino acids from
rved. www.co-lipidology.com 421
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proApoA-I. In addition to these functions, several
recent reports link PCPE2 as a contributor to dis-
orders characterized by fibrosis of the pancreas [46],
as well as to TGF-b1 stimulation of human amniotic
fluid derived mesenchymal cells [47], arachidonic
acid abundance in red blood cells [48

&

] and collagen
accumulation associated with chronic pressure over-
load in mouse heart [49].
Procollagen C-endopeptidase protein 2,
nascent HDL formation and cholesterol efflux

To explore the relationship between PCPE2 and
nHDL formation, Zhu et al. [50] investigated the
binding interactions between PCPE2, BMP1 and
proapoA-I using surface plasmon resonance (SPR)
and selective immunoprecipitation. Their studies
showed that PCPE2 forms a high-affinity complex
with apoA-I and BMP1 and more importantly that
PCPE2 serves as a cofactor reducing the Kd. This
study provided strong biophysical support for the
notion that PCPE2 plays a role in propeptide cleav-
age. In addition, clinical studies show significant
correlations between PCPE2 polymorphisms and
HDL [51], suggesting that PCPE2 may have other
significant physiologic consequences from its inter-
actions with apoA-I.

PCPE2 was originally a candidate gene for glau-
coma [52], but now best known for its relationship
with HDL concentrations in three independent
population cohorts [50,51,53]. Associations in these
studies were modest, but led investigators to carry
out studies in PCPE2-/- mice [54], which revealed
elevated concentrations of enlarged HDL particles.
In addition, Francone et al. [53] showed that apo B
depleted plasma from PCPE2-/- mice was defective in
its ability to mediate in-vitro cholesterol efflux via
ABCA1 and when combined with their enlarged
HDL led to the hypothesis that HDL particles were
dysfunctional. These seminal studies provided the
first critical proof-of-concept data showing that
PCPE2 plays a pivotal role in HDL metabolism. More
recent support for the role of PCPE2 in HDL metab-
olism comes from genome-wide association studies
showing that PCPE2 is a significant modulator of
hepatic apoA-I secretion [55].
Procollagen C-endopeptidase protein 2,
atherosclerosis and HDL cholesteryl ester
catabolism

Intrigued by the paradoxical observations of Fran-
cone et al. [53], Pollard et al. [56] investigated
whether the higher concentration of enlarged
HDL associated with the loss of PCPE2 was athero-
genic or atheroprotective. To do this, they crossed
422 www.co-lipidology.com
PCPE2-/- with LDLr-/- mice to obtain LDLr-/- PCPE2-/-

mice. After feeding LDLr-/-, PCPE2-/- and LDLr-/- mice
a Western diet for 12 weeks, the aortic root was
examined for neutral lipid and immune cell con-
tent. Interestingly, LDLr-/- PCPE2-/- mice had a
greater extent of aortic root neutral lipid and
CD68þ accumulation than did LDLr-/- mice.
Furthermore, these mice showed a similar extent
of neutral lipid staining and immune cell accumu-
lation as LDLr-/- ApoA-I-/- mice that possess no HDL
apoA-I. Taken together, this suggested that in the
absence of PCPE2, the increased levels of enlarged
HDL were completely dysfunctional, showing for
the first time that PCPE2, an extracellular matrix
associated protein, confers atheroprotective func-
tion to HDL particles in vivo.

To explore the basis for the increased concen-
trations of enlarged HDL, catabolic studies were
conducted using HDL isolated from both diet-fed
LDLr-/- PCPE2-/- and LDLr-/- mice. The plasma decay
of 125-I apoA-I labelled HDL was monitored as a
function of time and found to be delayed in LDLr-/-

PCPE2-/- compared with LDLr-/- mice, regardless of
the source of HDL particles. These studies suggested
that PCPE2 was acting at the level of the tissues/cells
and not by virtue of the HDL particle or its cargo. To
examine the effect of reduced HDL catabolism on
RCT, [3H]-cholesterol loaded J774 cells were intra-
peritoneal injection injected into mice and their
appearance in plasma and faeces monitored. Mice
lacking PCPE2-/- showed significant attenuation of
RCT [56], suggesting that liver scavenger receptor
class B1 (SR-B1) may be impaired.

In mice, increased HDL size and concentration is
a hallmark of SR-B1 deficiency [57,58]. Hepatic-
specific SR-B1 deficient mice show greater aortic
lesion formation and reduced macrophage to liver
RCT [59], despite higher HDL concentrations. As
reported in genetically modified mice, humans with
genetic variants in SR-B1 show a reduced capacity to
efflux cholesteryl ester, which leads to greater HDL
plasma concentrations and a greater risk for CVD
[60,61

&&

,62
&&

,63]. The PCPE2-deficient mice showed
a macrophage to faecal RCT rate significantly lower
than control LDLr-/- mice and similar to that
reported for SR-BI knockout mice. Interestingly, this
lower rate occurred despite a two-fold higher level of
SR-BI protein in the livers of LDLr-/-, PCPE2-/- mice
[56], prompting a closer look at how PCPE2 might
influence SR-BI function.

To imagine how PCPE2 might influence SR-BI
function, an understanding of SR-B1 structure, is
necessary. Details of SR-B1’s conformation have
been inferred by analogy to the structure of LIMP-2
[64], although a much needed NMR structure nears
completion [65

&

]. What is known, SR-B1’s N- and
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C-terminal domains span the plasma membrane [66],
while the heavily N-glycosylated central region loops
out into the extracellular matrix wherein it interacts
with HDL particles. The exact mechanism explaining
how and where SR-BI selectively removes HDL cho-
lesteryl ester and in the process releasing lipid-poor
apoA-I remains to be fully explained [67,68

&

]. How-
ever, mounting evidence suggests that SR-B1
achieves selective cholesteryl ester uptake following
oligomerization [69,70], while the cytoplasmic
C-terminal region of SR-B1 bound to Na(þ)/H(þ)
exchange regulatory cofactor NHE-RF3 protein
encoded by the PDZK1 gene, a four PDZ domain
containing adaptor protein, confers localization [71].

To understand how PCPE2, an enhancer protein
found in the ECM, might influence SR-B1 function,
Pollard et al. [56] overexpressed PCPE2 in Chinese
hamster ovary cells and measured a two-fold
increase in the uptake of HDL 3H-cholesteryl oleyl
ether. In these studies, SR-B1 protein levels were
unchanged but a shift to a higher fluorescence
intensity was noted, suggesting that the presence
of PCPE2 on the cell surface may induce confor-
mational shift(s) in the extracellular loop region of
SR-B1 corresponding to amino acids 38–440 either
through direct protein–protein interaction or by
enhancing SR-B1 oligomerization on the membrane
surface.
Integrin Sphingomylein Cholesterol

SR-BI

HDL
Collagen fiber

C

FIGURE 1. The role of procollagen C-endopeptidase protein 2
extracellular matrix through heparin sulphate proteoglycans. One
B1 (SR-BI) cholesteryl ester uptake suggests that PCPE2 binds to p
lipoprotein particle promoting the removal of HDL cholesteryl este

0957-9672 Copyright � 2015 Wolters Kluwer Health, Inc. All rights rese
Model of PCPE2 influence on SR-BI function
and physiological implications
SR-BI belongs to the scavenger receptor protein
family of which there are at least eight classes
[72]. Using accumulated information, it is believed
that class B receptors form multimolecular com-
plexes or signalosomes in which they mediate chap-
erone functions and ligand internalization, despite
the absence of discernable signalling motifs. Several
different approaches have shown that SR-BI
employs its PDZ-interaction domain and the C-ter-
minal transmembrane domain for HDL-initiated
signalling [73], which involves cholesterol sensing.
Thus, the physiological implications of SR-BI medi-
ated HDL signalling have been implicated in a
variety of systems related to the maintenance of
haematopoietic stem cell [74

&

] and lymphocyte cho-
lesterol homeostasis [75], which could play an
important role in the development of atherosclero-
sis. To better understand how an extracellular
matrix localized collagen processing enhancer
protein impacts SR-BI function, a hypothetical
model shown in Fig. 1 is described. PCPE2 binds
to HSPGs, which are found in the extracellular
matrix. One or both CUB domains found in PCPE2
bind to HDL apoA-I and assist in localizing or alter-
ing particle stability assisting in the movement of
HDL cholesteryl ester to SR-BI for selective uptake.
ABCA1

Lipid Raft

holesteryl
ester

PCPE2 Heparin sulfate
proteoglycans

(PCPE2) in reverse cholesterol transport. PCPE2 binds to the
hypothesis of how PCPE2 stimulates scavenger receptor class

lasma HDL thereby inducing conformational changes to the
r.
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Lipid-poor apoA-I is then released by PCPE2 and it is
either remodelled [76] or can bind ABCA1 and
initiate the formation of nHDL particles.
CONCLUSION

The identification of a new player in the RCT path-
way underscores the lack of understanding of HDL
cholesteryl ester homeostasis in atherosclerosis.
Because RCT and HDL play a pivotal role in choles-
terol homeostasis and modulating atherosclerosis,
increased attention to mechanistic details will yield
new information for predicting risk and eventually
show how to pharmacologically control the devel-
opment of CVD.
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