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Abstract

Spotting a prey or a predator is crucial in the natural environment and relies on the ability to extract quickly pertinent visual
information. The experimental counterpart of this behavior is visual search (VS) where subjects have to identify a target
amongst several distractors. In difficult VS tasks, it has been found that the reaction time (RT) is influenced by salience
factors, such as the target-distractor similarity, and this finding is usually regarded as evidence for a guidance of attention by
preattentive mechanisms. However, the use of RT measurements, a parameter which depends on multiple factors, allows
only very indirect inferences about the underlying attentional mechanisms. The purpose of the present study was to
determine the influence of salience factors on attentional guidance during VS, by measuring directly attentional allocation.
We studied attention allocation by using a dual covert VS task in subjects who had 1) to detect a target amongst different
items and 2) to report letters briefly flashed inside those items at different delays. As predicted, we showed that parallel
processes guide attention towards the most relevant item by virtue of both goal-directed and stimulus-driven factors, and
we demonstrated that this attentional selection is a prerequisite for target detection. In addition, we show that when the
target is characterized by two features (conjunction VS), the goal-directed effects of both features are initially combined into
a unique salience value, but at a later stage, grouping phenomena interact with the salience computation, and lead to the
selection of a whole group of items. These results, in line with Guided Search Theory, show that efficient and rapid
preattentive processes guide attention towards the most salient item, allowing to reduce the number of attentional shifts
needed to find the target.
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Introduction

A rapid identification of pertinent stimuli is crucial in the

natural environment and this ability relies on a selection

mechanism known as spatial attention, which permits the

allocation of more neural resources to process behaviorally

significant elements. Our understanding of attentional mecha-

nisms mainly comes from studies using covert visual search (CVS)

tasks – where subjects have to detect a given target amongst

distractors, without performing eye movements. Two types of

CVS are classically distinguished: 1) efficient CVS in which the

reaction time (RT) remains constant irrespective of the number of

items, suggesting that visual information is processed in parallel,

and 2) inefficient CVS in which RT increases proportionally to the

number of items, a relationship known as the ‘‘set-size effect’’ and

classically regarded as evidence for a serial processing of visual

information. However, in inefficient CVS, the slope of the

regression line between RT and the number of CVS items

typically varies from 25 to 60 ms/item, leaving very little time to

process each item serially [1]. Moreover, estimates of the

attentional dwell time range between 200 and 400 ms, values

which are incompatible with the attentional shift time estimated

from the set-size slope [2,3]. This suggests that, besides serial

mechanisms, parallel mechanisms most likely contribute to visual

information processing in inefficient CVS [4,5]. The Guided

Search Theory (GST) proposed that the role of preattentive

parallel mechanisms in visual search is to guide attention on the

basis of the salience value assigned to each CVS item [5–7]; this

salience value is supposed to be assessed from both goal-directed

(or top-down) and stimulus-driven (or bottom-up) factors.

Importantly, the conclusion of most studies on CVS relied on

the interpretation of changes in RT and set-size slope in different

experimental conditions. However, because variations in RT may

be caused by different sensory, sensori-motor and motor factors, it

is always difficult to interpret them in terms of attention allocation.

Indeed, several recent studies have shown that it is possible to

explain the variation of performance as a function of set-size

during CVS without requiring serial attentional mechanisms (e.g.

see [8–10]). Therefore, in order to study thoroughly attentional

allocation during CVS, it is necessary to demonstrate a spatially

specific perceptual improvement during CVS, revealing the

attentional selection of one – or multiple – item(s).

Several studies have already used this approach. For example,

Maljkovic and Nakayama [11,12], were able to demonstrate, in a

pop-out visual search task, that attention systematically shifted

onto the target. These results were extended to inefficient CVS by

Nothdurft [13], who used the illusory line motion effect to probe

attentional allocation on the target. Kim & Cave [14], went a step
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further by studying the attentional allocation during CVS, not only

on the target, but also on distractors. These authors probed

attentional allocation by using both a dot detection task and a

letter detection task. This study showed, notably, that in

conjunction CVS, where two features (shape and color) define

the target, letters located inside items sharing one feature with the

target were detected more often, suggesting the existence of a

preferential selection of potentially pertinent items. However, in

this study, attentional guidance was affected by strong Gestalt

grouping mechanisms [15] making the interpretation of these

results in terms of attentional guidance difficult. Moreover, Kim &

Cave did not investigate the role of stimulus-driven salience,

known to play a central role in GST. Finally, in order to avoid

saccades towards the CVS items, Kim & Cave used very short

presentation times, and, consequently, the search process was most

likely conducted in visual memory instead of on visually available

stimuli [16].

The purpose of the present study was to extend the Kim & Cave

study in order to 1) determine the magnitude, and the timing of

the effect of both goal-directed and stimulus-driven salience

factors, 2) determine whether GST and/or grouping phenomena

are responsible for the preferential selection of items sharing a

feature with the target.

To address these issues, we conducted three experiments using a

dual CVS task, in which a letter detection task was used to probe

attention allocation during the performance of a difficult CVS

where the distractors could have different levels of resemblance

with the target. We used long presentation times to allow attention

to select visually available items and eye fixation was controlled

online during the task performance.

In Experiment 1, we determined the influence of goal-directed,

stimulus-driven and spatial factors on attentional allocation during

an inefficient feature CVS task in which subjects had to detect a

vertically oriented item displayed amongst distractors of various,

non-vertical orientations. Letters were also displayed inside these

items at different intervals with respect to VS items onset (see

Fig. 1). The influence of goal-directed salience factors was

determined by analyzing the letter detection probability in each

CVS item as a function of similarity with the target. We predicted

that letters located either inside the target or inside items

resembling the target, should be detected more often. To study

the influence of stimulus-driven factors, we also analyzed the effect

of orientation contrast, i.e. the difference in orientation between

neighboring items, and our prediction was that letter detection

should be better for greater orientation differences between

adjacent items. Finally, we investigated the potential effect of

spatial location of the CVS items on attentional allocation by

analyzing letter detection as a function of their position in the

display, since it has been suggested that letters located in the

inferior hemifield should be detected more often [17,18].

Whereas Experiment 1 will allow us to investigate attentional

allocation during CVS, it cannot help us to determine whether

attentional selection of the target is a consequence of, or a

prerequisite for, the target detection. To address this issue, in

Experiment 2, we used the same dual task as in Experiment 1 but

the duration of the CVS item presentation was changed across

trials and the letters were always flashed at the end of the trial. We

predicted that if attention selection is critical to target detection,

there should be a tight correlation between letter detection

performance in the target and target detection probability.

Specifically, we expected to find that target detection should be

at chance level in the absence of attentional selection (i.e. 0% letter

detection) and that the slope of the target detection function should

link minimal and maximal performance levels of both variables.

Finally, in Experiment 3, we used conjunction search to assess

the role of grouping phenomena in the selection of the items

sharing a feature with the target. Kim & Cave [14] showed that, in

conjunction search tasks where the target was defined by color and

shape, subjects tended to detect more often the letters that were

displayed inside items that shared one feature (either color or

shape) with the target than in the other distractors. The first

interpretation of these results, in line with GST, assumes that each

feature (color and shape in this case) is encoded into a separate

feature map, where the activity induced by each item depends on

its resemblance with the target with respect to this feature. Then,

the two feature maps corresponding to color and shape are added

together to lead to a global activation map. The items that do not

share any feature with the target will induce the minimum

activation in this map, the items sharing one target feature will

induce intermediate activation, and the target will generate the

maximum activation, resulting from the addition of the maximum

activation values in the two feature maps. The second interpre-

tation of the Kim & Cave results is that color and shape, being in

this case both very easily discriminable (green versus red and

squares versus circles) induce strong gestalt grouping effects

[15,19,20]. Therefore, the group of items sharing one target

feature would be selected as a whole, and the target would be

searched only in this group [21,22]. To distinguish between these

two hypotheses, we studied attentional allocation during a

conjunction CVS (orientation and color), where three different

levels of orientation difference between target and distractors were

used (see Fig. 3). Again, a letter detection task was used to probe

attention during the CVS task, as in Experiments 1 and 2. In order

to induce grouping effects, we used only two easily discriminable

color levels. Our predictions were that, if GST is correct, the

salience effect of color and orientation should have an independent

(or additive) effect on letter detection, whereas if the grouping

hypothesis is correct, we should find an interaction between both

effects: orientation should affect detection probability of the letters

in the items sharing the target color, whereas items with the non-

target color should be all excluded from the search process, and

hence, their selection probability should not be affected by their

orientation [21].

Additionally, to have a more precise idea of the timing of these

effects, we modified the letter display, allowing us to monitor

attentional allocation with a higher temporal resolution. To

achieve this increased resolution, instead of displaying a letter

Figure 1. Experimental design of Experiment 1. A fixation point
was displayed for 1500 ms, followed by the presentation of 7 CVS items.
The target was the circle with a vertical line. After a variable delay, the
mask displayed inside each CVS item was replaced, for 60 ms, by letters.
Eight hundred ms after the onset of the CVS item display, CVS items
were replaced by black disks flashed for 200 ms.
doi:10.1371/journal.pone.0002219.g001
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inside all VS items at the same time, a single letter was displayed in

a given item at a given time, and this letter was moved and

changed every 45 ms.

Materials and Methods

Experiment 1
Subjects. Twelve healthy subjects (21–25 years old), with

normal, or corrected to normal, vision participated in Experiment

1; all subjects were native French speakers. All experimental

procedures were approved by the Ethics Committee of the

Université catholique de Louvain, and subjects gave their written

informed consent.

Task. In this experiment, we used a probe paradigm [14] in

which subjects had to report the presence, or absence, of a target

displayed amongst 7 items arranged in a circle around a central

fixation point (see Fig. 1). In addition, subjects had to identify

letters flashed for 60 ms inside each CVS item, at different

stimulus onset asynchronies (SOAs) with respect to the onset of the

CVS item presentation. The rationale behind this paradigm is that

the letter detection probability should be higher at positions where

attention is located, allowing us to infer a posteriori attentional

allocation in both space and time.

Before each experiment, subjects were trained in the CVS task

alone, then on the letter identification task alone and finally they

practiced the dual task. At the end of the training session, a

staircase procedure was used to adjust the contrast of the CVS

items against the background in order to make sure that all

subjects achieved a performance of 70 % of correct trials in the

CVS task. The final contrast obtained was, on average, equal to 70

%. The gray level-luminance function of the screen was obtained

with a psychophysical method of gamma correction (Bordier C. &

Knoblauch K., personal communication).

At the beginning of each trial, a fixation point was presented at

the center of a computer screen situated at a distance of 55 cm, in

front of the subjects; the subjects had to fixate this point

throughout the task. The eye position was monitored using an

electro-oculogram and trials were interrupted, and repeated,

whenever subjects broke fixation. After a 1500 ms delay, seven

grey circles (1.8 degrees wide) were displayed equidistantly at an

eccentricity of 4 deg. These CVS items were filled with a white

noise mask and had a small bar attached to them, that could be

either vertical (target) or oriented at 30, 60 or 90 degrees from the

vertical (distractors). The target was present in 50 % of the trials

and at least two distractors of each type were present in each trial.

After a variable SOA (50, 300, 500 or 700 ms), the masks

displayed inside the circles were replaced by letters (1.1 degree

wide) which were flashed for 60 ms and then replaced by a new

mask. In a given trial, every letter was different. Eight hundred ms

after the onset of CVS item presentation, all items were replaced

by black disks displayed for 200 ms.

Subjects were instructed to press, as fast as possible, the « one »

key of the numeral pad of a computer keyboard to indicate that

the target was present or the « three » key to indicate it was absent;

then they had to type on the keyboard, without any time

constraint, the letters they identified inside the CVS items.

Subjects then triggered the next trial by pressing the space bar.

The experiment was divided in 5 blocks of 160 trials each.

Control task A: letter detection only. In order to

determine whether the effects we observed in the main

experiment were specific to CVS, and not to the letter detection

task, a control experiment was performed under the same

experimental conditions as in Experiment 1, except that subjects

(n = 10) were only asked to report as many letters as possible

without taking notice of the CVS items.

Control task B: target detection only. This second control

experiment was identical to the main experiment (Experiment 1)

except that subjects (n = 7) only had to report the presence, or

absence, of the CVS target, without paying attention to the letters.

In this experiment, the number of CVS items was either 4 or 8 in

order to allow us to determine the difficulty of the CVS task and to

estimate the ‘‘set-size effect’’.

Data analysis. A goal-directed salience value, varying from 4

to 1, was assigned to each CVS item depending on its similarity

with the target, 4 being attributed to the target and 1 to the most

dissimilar distractor. In addition, an orientation contrast index was

calculated for each CVS item by computing the sum of the

differences between the orientation of the bar attached to the item

and its two neighbors. For example, an item with a 30u oriented

bar (salience value: 3) surrounded by the target (salience: 4) and by

an item with a 90u oriented bar (salience: 1) had an orientation

contrast index of 3 (|324|+|321|).

Statistical analysis. We used ANOVAs on repeated

measurements (RM ANOVA) for most statistical analyses. In

order to achieve normality, percentages of detection were arcsine-

root transformed, a transformation appropriate for data that lie

between an upper and lower bound [23]. When data distribution

of probability differed from normality, a non-parametric ANOVA

on ranks test was performed.

Experiment 2
Eight subjects (20–29 years old) participated in Experiment 2,

which was exactly the same as Experiment 1 except that 1) the

duration of the CVS item presentation varied from trials to trials,

and 2) we used a different masking stimulus, the digit 8, which has

proved to be more efficient as a mask in a letter identification task

(see Fig. 2) [24]. The duration of the CVS item presentation was

determined for each subject at the beginning of the experimental

session by means of a staircase procedure adjusted to obtain 50, 75

or 90% of correct responses in the CVS task, while the contrast

was kept constant (70%). In this staircase procedure, subjects had

to perform the CVS task only, without reporting the letters

displayed inside the CVS items. The duration of CVS items

presentation was then adjusted to these three values in the main

experiment and the three display durations were counterbalanced

across trials. In addition, also in contrast to Experiment 1, the

letters were always flashed during the last 50 ms of the CVS item

presentation. Then, all stimuli were replaced by a mask: the letters

were masked with a figure-eight and the CVS items were masked

with circles with 12 bars attached every 30u, from 0u to 330u. One,

two or no target could be displayed, these three conditions being

equally probable (33% each). In the foregoing analyses, we only

considered trials where one or no target was displayed. The

response keys used to indicate that the target was present or absent

were the same as in Experiment 1. The subjects were not informed

that two targets could appear simultaneously in some trials and the

response required in these cases was the same as when only one

target was detected. As in Experiment 1, subjects had also to type

the detected letters, with no temporal constraint and the next trial

was triggered by pressing the space bar. In this experiment, eye

movements were monitored by using an infrared camera (Thomas

Recording).

Experiment 3
Eight subjects participated in Experiment 3. The task was, as in

Experiments 1 and 2, to detect the presence of the target (50%

probability), as quickly as possible, and to report as many letters as

Attentional Guidance in CVS
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possible. Eye position was controlled by means of an infrared

eyetracker and trials were interrupted, and repeated, whenever

subjects broke fixation. In this task, three blue and three yellow

isoluminant circles were displayed on the screen, at fixed

eccentricity (4u). The orientation of the bar attached to them

was 0u, 20u or 40u from the vertical. The target was defined as the

blue circle with a vertically oriented bar. In target present trials,

each item of a given color had a different orientation. In target

absent trials, two items with the target color had a 20u orientation.

One ASCII sign was displayed inside each VS item but, in only

one item, this sign was a letter; in the other VS items, the signs

were irrelevant (‘&’, ‘%’, etc…). At every frame change (i.e. every

45 ms), the relevant letter and two irrelevant signs were changed;

the new relevant letter was flashed at another location (see Fig. 3).

The duration of the CVS items display was 810 ms, corresponding

to 18 frame changes. The letter was displayed in each VS item in a

pseudo-randomized order so that, in a given trial, a different

relevant sign appeared three times inside each VS item (n = 6),

with a variable delay between each presentation. In the analyses,

in order to have a sufficient number of trials in each condition, we

grouped adjacent letter onset times by pairs, yielding 9 different

letter onset time values (1–45 ms, 90–135 ms, 180–225 ms, …).

An additional control experiment was conducted in which the

display was exactly the same, but subjects only had to report the

letters.

Results

Experiment 1
General performance. We first found that the CVS task

used in the present study was inefficient. The control task B (see

Methods) showed that RTs increased as a function of the number

of CVS items (2-way ANOVA RM : F = 8.12, p = 0.029) and were

larger when the target was absent than when present (F = 10.19,

p = 0.019). The difference between RT in the 8-items CVS task

(median6interquartile interval (IQI) : 13786673 ms for target

absent and 8636666 ms for target present) and the 4-items CVS

task (11726590 ms for target absent and 8056555 ms for target

present) was 976237 ms (median6IQI) for target absent trials and

696109 ms for target present trials. This corresponds to a mean

increase of 20 ms per item, a value compatible with the magnitude

of set-size effects classically reported in the literature for inefficient

CVS tasks [1].

In the main experiment (Experiment 1), we found that the

number of detected letters increased with SOA. On average, 0.8,

0.97, 1.18, 1.39 letters were reported for 50, 300, 500 and 700 ms

SOAs , respectively. Median RT in the CVS task was 1190 ms

(IQI = 282 ms, n = 12) and longer SOAs for letter display, were

associated with longer RTs in the CVS task. This finding can be

explained if we assume that the processing of the letters and their

storage in memory occurred during the preparation of the motor

response of the CVS task, leading to an interference. For the CVS

task, when the target was present, we found 75.2613.6% of HITS

(correct detection of the target) and 24.8613.6% of MISSES

(failure to detect the target when present); when the target was

absent, we observed 81.0613.6% of CORRECT REJECTIONS

(correct rejection of target presence) and 19.0613.6% of FALSE

ALARMS (detection of the target while absent).

Influence of goal-directed salience on attentional

allocation. We first investigated the influence of the goal-

directed salience factor (similarity with the target) on the

probability to detect letters inside CVS items. For all types of

responses (HITS, MISSES, CORRECT REJECTIONS and

FALSE ALARMS), we found that the target-distractor similarity

significantly influenced letter detection probability (main effect: F

ranged from 5 to 280, all p,0.02). For HIT responses, the

probability to detect a letter was higher when flashed inside the

target (post-hoc: all p,0.0001) and, to a lesser extent, inside level 3

distractors, i.e. the most resembling distractors (post-hoc: p = 0.03,

Fig. 4A). For MISS responses, the letter detection rate was higher

in the level 3 distractors than in the target (post-hoc: p = 0.008).

When the target was absent (CORRECT REJECTION and

FALSE ALARM), letters flashed inside the level 3 distractors were

more likely to be detected than those flashed inside level 2 and 1

distractors (post-hoc: all p,0.0001, Fig. 4B).

In addition, we investigated the influence of the SOA (delay

between the presentation of CVS items and the letter display) on

the probability of letter detection. For HIT trials, we found a

significant interaction between TARGET-DISTRACTOR SIMILARITY and

SOA (F = 49,90, p,0.0001). This interaction can be explained by

the fact that, although the detection rate of letters flashed inside

the distractors was not influenced by the SOA, the detection rate

of letters flashed inside the target increased with the SOA (post-

hoc: all p,0.0001, Fig. 5). It is noteworthy that, even for SOA as

short as 50 ms, the detection rate of letters flashed inside the target

was already significantly higher than for letters flashed inside

distractors.

Figure 2. Experimental design of Experiment 2. Only the case
where two targets were displayed simultaneously is illustrated here.
Compared to Experiment 1, the CVS items display duration was variable
(50%, 75% and 90% correct response in CVS), and letters were always
displayed during the last 50 ms of the trial.
doi:10.1371/journal.pone.0002219.g002

Figure 3. Experimental design of Experiment 3. The target was
the blue circle with a vertical line. Every 45 ms, a different letter was
displayed in a different location (surrounded by dotted circles, not
shown on actual display). All other items contained irrelevant signs.
doi:10.1371/journal.pone.0002219.g003
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In order to determine whether these effects were actually goal-

directed, we conducted a control experiment where subjects only

had to detect the letters, without paying attention to the CVS

items (control task A, see Methods). In this task, we failed to found

an influence of the TARGET-DISTRACTOR SIMILARITY on the letter

detection (F = .03, p = .99).

Influence of stimulus-driven factors and spatial location

on attentional allocation. We then investigated the influence

of a stimulus-driven salience factor (the local orientation contrast)

on the target and letter detection rates. Orientation contrast was

computed for each item by estimating its dissimilarity with its two

neighbors (see Methods). As shown in Figure 6, the letter detection

probability increased proportionally with the local orientation

contrast (ANOVA on Ranks, chi-square = 52.81, p,0.001; post-

hoc: all pairwise multiple comparisons significant except contrast 6

vs 5). However, it may be argued that this effect was due to the

higher detection rate of letters displayed inside the target because,

on average, the target had a higher orientation contrast value than

the distractors. In order to rule out this hypothesis, we performed

the same analysis after removing all letters detected inside the

target and we found identical results i.e. an increased detection

probability of letters as a function of the local orientation contrast

(ANOVA on ranks, chi-square = 39.07, p,0.001, Fig. 6). In

addition to the effect on letter detection, we found that the local

orientation contrast also influenced the target detection probability

(RM ANOVA F = 5.26, p = 0.001). However, this effect was

essentially due to a lower detection rate of the target when

surrounded by two distractors very similar to the target (post-hoc:

p,0.001).

As far as the effect of spatial location on attentional allocation

was concerned, we found a significant effect of the item position in

the display on both the target (F = 6.32, p,0.0001) and letter

detection (F = 18.3, p,0.0001) rates; namely a higher detection

rate was observed for CVS items and letters located near the

horizontal meridian (Figure 7).

In order to determine whether the effect of orientation contrast

and spatial location on letter detection probability was specific to

CVS, we analyzed letter detection performance in the control task

A, where subjects were only asked to report letters without

performing the CVS task. We confirmed a significant effect of

position (F = 2.36, p = .045) with the same preference for

horizontal positions as in Experiment 1, but we failed to find an

effect of the orientation contrast (F = 1.04, p = .40). This finding

indicates that the CVS items have to be processed in order to

induce a local orientation contrast effect, suggesting that the

stimulus-driven effect of the orientation contrast is influenced by

the task at hand. In contrast, the significant effect of position for

the letter detection performed alone was expected since, if

attentional allocation probability depends on spatial location, it

will affect stimulus detection irrespective of the nature of the

stimulus to be detected.

Experiment 2
The results of Experiment 2 confirmed those of Experiment 1,

i.e. we replicated the effect of target-distractor similarity

(p,0.0001, F = 17.15), of position (p = 0.036, F = 2.51) and of

orientation contrast (p = 0.012, F = 4.63) on letter detection

probability.

Relation between attention allocation on the target and

target detection. Experiment 2 was designed to allow us to

determine the relationship between attention allocation and target

detection since in this task, the letter detection can only occur at

the very end of the search process. The relationship between the

Figure 4. Effect of target-distractor similarity on letter
detection performance. A. Main effect of target-distractor similarity
on ‘‘target present’’ trials for HIT (left) and MISS (right) trials. In the HIT
trials, letters located inside the target were more likely to be detected
than other letters, whereas this effect was reversed in the MISS trials. In
both types of trials, letters located in level 3 distractors were more often
detected than those located in level 2 and level 1 distractors (*: p,0.01;
**: p,0.001; ***: p,0.0001). Y axis: percentage of letter detection. X
axis: target-distractor similarity varying from 4 (target) to 1 (most
dissimilar distractor). Error bars correspond to standard errors. B. Main
effect of target-distractor similarity on ‘‘target absent’’ trials for REJECT
(left) and FALSE ALARM (right) trials. In both types of trials, letters
located in level 3 distractors were more likely detected than those
located in level 2 and level 1 distractors. Same conventions as in A.
doi:10.1371/journal.pone.0002219.g004

Figure 5. Target-distractor similarity - SOA interaction for HIT
trials. The benefit of letter detection inside the target for HIT trials was
already significant for a 50 ms SOA and it increased monotonically with
the SOA. The detection probability is represented on the Y-axis, SOAs
on the X-axis.
doi:10.1371/journal.pone.0002219.g005
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display duration and subject performance is illustrated in Figure 8.

For the CVS task, the better performance associated with longer

display presentation was mainly due to a decrease in FALSE

ALARM rate (RM ANOVA with FALSE ALARM rate in

function of CVS items display duration condition: p,0.0001,

F = 52.74) rather than to an increase in HIT responses (RM

ANOVA: p = 0.35, F = 1.13). This indicates that, when the display

was presented for a short period of time, the subjects favored the

‘‘target-present’’ responses and that the opposite was true for

longer display durations. This bias was estimated by the C value,

based on signal detection theory. We found a significant decrease

of the C value as the duration of display presentation decreased (C

VALUE 6 DISPLAY DURATION, RM ANOVA: p,0.0001, F = 23.81).

Because of this bias, in the following analysis, we used the

percentage of correct trials for both ‘‘target-present’’ and ‘‘target-

absent’’ trials as a measure of the performance; this measure is

almost proportional to d’ (R = 0.97) in the range of values used,

and is more appropriate for the present analysis, given the fact that

we compute its correlation to another performance value

measured in percentage, thus having a more comparable

distribution.

We found a strong correlation between the percentage of

correct trials in the CVS (CORR_CVS) and the percentage of

detected letters flashed inside the target (TARG_LET) (R = 0.82,

p,0.0001; see Figure 9). This suggests that, whatever the display

duration, the CVS performance was always proportional to the

percentage of letter detected inside the target. Moreover, the

regression coefficients (0.49 for the intercept and 0.51 for the slope)

indicate that when the CVS task is performed at random (50% of

correct trials) the letter detection rate in the target is 0%, and that

a 100% performance in the CVS task is accompanied by a 100%

of letter detection in the target, confirming our hypothesis.

However, we must be cautious while interpreting this correlation

because the difference in performance between subjects and the

display duration can be considered as hidden variables. To remove

the effect of these variables from the regression between

CORR_CVS and TARG_LET, we computed a multiple

regression with CORR_CVS as dependent variable and TARG_

LET and CVS display duration as independent variables with

subjects being included as dummy variables. The partial

correlation between CORR_CVS and TARG_LET remained

highly significant (R = 0.67, p = 0.0003). The slope of the

regression was still 0.5860.14 (b6SE) indicating that a 1%

increase in letter detection performance corresponds to a .5%

increase in CVS performance, like in the previous analysis. This

shows that even when considering only the variations of

TARG_LET and CORR_CVS which are not predicted by the

display duration or the difference in performance between

subjects, a comparable correlation is observed. These results

suggest that the detection of the target never occurred if attention

was not allocated on the target and that, when attention was

allocated on the target, as shown by the letter detection, the target

was always detected.

To corroborate this conclusion, we analyzed trials where the

target was not detected (MISS trials). If the above conclusion is

correct, in MISS trials, letters should not be detected more often

inside the target than inside the distractors. Indeed, we found that

in MISS trials, the percentage of detection of letters flashed inside

the target was not different from the percentage of detection in

distractors (one-way RM ANOVA, p = 0.59, F = 0.65;

20.10611.01% (mean6SD), and 19.8369.19%, 17.0664.94%

and 19.3567.37% for level 3, 2 and 1 distractors, respectively).

Since in Experiment 2, no processing of CVS items could occur

after the letter detection, because the letters were always flashed

during the last 50 ms of the CVS items display, this finding

indicates that when the target was present but undetected,

attention was not located on the target.

Experiment 3
On average, subjects reported 1.7260.64 letters (mean6SD,

n = 8) per trial. The median RT was 1332 ms with an IQI of

Figure 7. Effect of position. Radial plot showing the proportion of
objects detected in each position on the display for visual search
(green) and letter detection (orange) in the dual task. CVS items and
letters located on the horizontal meridian were detected more often.
Item positions on the graph correspond to the positions in the display
as seen by subjects.
doi:10.1371/journal.pone.0002219.g007

Figure 6. Effect of local orientation contrast on letter detection
probability. The letter detection rate increased proportionally with
the orientation contrast. Contrast level is represented on the X-axis and
percentage of detection on the Y-axis. Error bars correspond to
standard errors.
doi:10.1371/journal.pone.0002219.g006
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908 ms for ‘‘target present’’ trials and 1344 ms (IQI : 865 ms) for

‘‘target absent’’ trials. We computed a three-way RM ANOVA

with COLOR and ORIENTATION of the circles, and letter onset TIME as

independent variables, and letter detection probability as depen-

dent variable (see Fig. 10 A). We found that the letter detection

rate increased with the onset TIME (F = 2.88, p = 0.009), except for

the last onset time (765–810 ms), which was associated with a

decreased letter detection rate. This last effect can probably be

explained by the influence of the masks displayed at the end of

each trial. The main effects of ORIENTATION (F = 44.88, p,0.0001)

and COLOR (F = 24.58, p = 0.002) were significant, confirming the

results from Kim & Cave, and replicating the goal-directed

salience effect we found in the feature visual search task

(Experiment 1): letters displayed in items with the same color, or

the same orientation as the target, were better detected.

The TIME – ORIENTATION and TIME – COLOR interactions were not

significant (p.0.1). The ORIENTATION – COLOR interaction

(F = 7.27, p = 0.007) was significant, showing that the orientation

affected the letter detection probability for items sharing the target

color only, suggesting the existence of grouping phenomena.

However, the significant triple interaction (F = 1.82, p = 0.037, see

Fig. 10 A.) indicated that this effect depended on time. While the

effect of orientation for items sharing the target color clearly

increased with time, the preference for the item sharing the target

orientation, but with the non-target color, was only present for

early letter onset times and disappeared for onset times beyond

360 ms. These very interesting effects unfortunately did not reach

significance in Post-Hoc tests. As a consequence, in order to clarify

the effect of early versus late delays, we computed a two-way RM

ANOVA with orientation and color as independent variables for

letters appearing either early (1–315 ms) or late (360 ms to

675 ms). Longer letter onset times (720–765 ms) were discarded

from this analysis, because of the strong decrease in global letter

detection performance at these delays. For EARLY delays, the

orientation-color interaction was not significant at all (F = .69,

p = 0.52, see Fig. 10 B.), whereas it was significant for LATE delays

(F = 26.72, p,0.0001, see Fig. 10 C.). This suggests that, at the

beginning of the search, both color and orientation affect

attentional guidance, and their effect are independent or

combined additively, as predicted by GST. However, for longer

delays, all items with the non-target color are excluded from the

search process, irrespectively of their orientation, whereas the

selection probability of the items that share the target color

continue to depend strongly on their orientation. This finding can

be regarded as evidence for the existence of grouping phenomena.

We could not run the same analysis for target absent trials because

the design was not balanced. Indeed, the color-orientation

combination corresponding to the target never occurred.

Discussion

In the present study, we demonstrate that, during a CVS task,

very fast parallel processes guide attention towards the item with

the highest saliency, as estimated from goal-directed (target-

distractor similarity) and stimulus-driven (orientation contrast)

factors, but also from spatial location. We also show that this

guidance of attention towards the target is a prerequisite for target

detection. Finally, we demonstrate a critical role of grouping

phenomena in the later stage of conjunction search processes.

Influence of goal-directed salience on attentional
allocation

The finding that the letter detection probability increased as a

function of target-distractor similarity indicates that goal-directed

salience factors play a crucial role in attention guidance during

inefficient CVS. Indeed, the fact that letters displayed inside the

target and in the most resembling distractors were more likely to

be detected suggests that a given goal-directed salience value,

proportional to target-distractor similarity, was assigned to each

CVS item. It is noteworthy that, whereas this goal-directed

salience factor was feature-based (dependent on verticality), the

effect we measured only relies on spatial attention, namely, the

letter was detected because of its inclusion in the spotlight directed

on the target location. Our results are in agreement with the

existence of a guidance mechanism of spatial attention by features

but cannot be interpreted in terms of location-independent global

feature-based selection. In addition, we showed that this attention

Figure 9. Correlation between the percentage of correct trials
and percentage of detection of the letter in the target. Each dot
represents data from one subject for one display duration. Note that
the left extremity of the regression line (blue circle) corresponds to 50%
correct responses in the CVS task and 0% of letter detection in the
target and that the right extremity (red circle) corresponds to 100%
correct response in the CVS task and 100% of letter detection in the
target.
doi:10.1371/journal.pone.0002219.g009

Figure 8. CVS performance as a function of display duration.
Percentage of correct trials in CVS (cyan) and mean CVS items display
duration (green) for each of the three duration conditions.
doi:10.1371/journal.pone.0002219.g008
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guidance acts very rapidly, since letters in the target were already

selected preferentially in the 50 ms SOA condition.

Role of stimulus-driven salience in attentional

allocation. The present study also demonstrates the critical

influence of a stimulus-driven salience factor, the local orientation

contrast, in the letter detection task. The local orientation contrast

was defined as the orientation difference between a given CVS

item and its two neighbors and we found that the greater this

orientation difference, the higher the letter detection rate. This

finding contrasts with previous studies showing that distractors

with a high stimulus-driven salience have no effect on CVS

performance [25,26], a result regarded as evidence for an

influence of top-down factors preventing the capture of attention

by distractors. However, this discrepancy may be explained if we

assume that the stimulus-driven salience factors used in those

studies were irrelevant, whereas in the present task, the orientation

is a target-defining feature that subjects need to process. This

hypothesis about the necessity of relevance, with respect to the task

at hand, of the feature defining stimulus-driven salience, is

supported by the finding that when subjects were asked to

report letters without performing the CVS task (see control task A),

this feature-contrast effect was no longer observed.

Effect of spatial location on attentional allocation. The

role of spatial location on attentional allocation in inefficient CVS

was also evidenced in the present study. We found a higher

detection rate for both the target and letters when located along

the horizontal meridian. Since the stimulus eccentricity was 4u, it

could be argued that this preference for stimuli located along the

horizontal meridian was due to a higher visual acuity along the

horizontal axis and not by an attentional effect [27,28]. However,

current knowledge on visual acuity anisotropies does not support

this hypothesis. Indeed, for example, Beirne et al. [29], only found

very small differences between visual acuity along the horizontal

and vertical meridians for an eccentricity of 10u and this difference

is probably even smaller at an eccentricity of 4u. Therefore, it is

unlikely that the acuity variation could explain the large benefit in

detection performance we found for letters located near the

horizontal meridian. Finally, whereas Carrasco et al. [30], using a

cueing paradigm, failed to find evidence that cued attention can

affect the shape of the performance fields, suggesting instead an

influence of visual constraints on the performance field, another

study [31] has reported a performance anisotropy comparable to

the one found in the present study, supporting an attentional

origin for this effect. Altogether, those results suggest that the

influence of spatial location that we observed in the present study

is most likely due to a higher probability of allocating attention

along the horizontal meridian. This bias could either be related to

the probabilistic structure of the natural environment and/or

correspond to a consequence of our reading and writing expertise.

Finally, it is noteworthy that, in contrast to previous studies

showing a better attentional resolution in the lower than in the

upper visual hemifield [17,18], we failed to find such a vertical

asymmetry. However, a vertical asymmetry has been exclusively

observed in crowding and tracking paradigms, suggesting that it

may not be an invariant feature of attention which can be

generalized to all CVS tasks.

Although the influence of both spatial location and orientation

contrast on CVS performance is unquestionable in the present

study, the behavioral benefit of these factors remains puzzling.

Indeed, whereas goal-directed salience factors are directly related

to the cognitive context of the task at hand, local orientation

contrast and spatial location are ineffective to help locating the

target. In Guided Search Theory, Wolfe and colleagues [5]

suggested that stimulus-driven factors are automatically included

Figure 10. Effect of color and orientation of the CVS items on
letter detection performance. A. Triple interaction ORIENTATION – COLOR

– LETTER ONSET TIME with letter detection performance as dependent
variable. The Y-axis represents letter detection probability and the X-
axis, letter-onset times with 90 ms intervals. The left and right graphs
are for yellow (non target color) and blue (target color) items
respectively. Color code is for orientation. The more saturated color
corresponds to vertical (target orientation), the gray color corresponds
to the most dissimilar distractor orientation, and the intermediate color
is for the most similar distractor orientation. B. ORIENTATION – COLOR

Interaction for early delays. The Y-axis represents letter detection
probability, the X-axis the orientation of the items and the color code
identifies the color of the item. C. ORIENTATION – COLOR Interaction for late
delays. Same convention as in B.
doi:10.1371/journal.pone.0002219.g010
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into the activation map, and hence, influence attention guidance

irrespective of the task at hand. The behavioral significance of

these salience factors could be revealed in more ecological

situations where it may be pertinent to pay attention to high-

contrast objects and to objects located along the horizontal

meridian. The role of these factors in the construction of the

salience map could thus be deeply rooted into the probabilistic

structure of the visual world.
Relationship between attentional selection and target

detection. Regarding the question as to whether target selection

follows or precedes target detection, we showed in Experiment 2,

that the correlation between target detection rate and letter

detection rate in the target was perfectly linear. Moreover, the

regression showed that minimal (chance level) and maximal

(100%) performance in target detection corresponded to 0% and

100% performance in letter detection rate in the target. This

suggests that attentional selection is a prerequisite for target

detection. Indeed, if target selection followed target detection, and

that a better detection of the letter in the target was a consequence

of a post-detection shift of attention on the target, we should have

found instances, for short display duration, where the target was

detected but the display ended before the attentional shift could

occur. In this case, the subjects would have failed to detect the

letter flashed inside the target and the regression line represented

in Figure 9 should have been shifted upward. In addition, the

finding that the goal-directed salience exerted a strong effect on

attention allocation in trials where the target was missed and, in

Experiment 1, when no target was present, is also in contradiction

with the hypothesis that attention selection only follows target

detection.
Grouping phenomena. In Experiment 3, we found that the

goal-directed effects of orientation and color are initially combined

in a global activation map but that later on, during the CVS

processing, the interaction becomes more complex: non-target

color items are excluded from the search process, irrespectively of

their orientation. We interpret these results as supporting the

existence of a two-stage process: first, salience is initially computed

from the addition of feature maps, as predicted by Guided Search

Theory, and then grouping effects are involved at a later stage,

after a 360 ms delay in our Experiment.

This long delay could appear surprising, given the fact that

perceptual grouping has been reported for very short display

durations [32]. However, it has been shown that different

mechanisms of perceptual grouping occur at different stages of

visual processing: while early grouping depends on retinal color

similarity, surface color similarity would be involved for grouping

at long durations [33]. It is likely that this latter mechanism could

be responsible for the grouping effect we observed in our task.

Several previous studies argued for a central role of grouping

processes in conjunction CVS [15,19–22]. In the present study, we

showed for the first time that such grouping phenomena are

involved at a late stage in the visual search process.

Conclusions

The present results are consistent with the existence of a

neuronal salience map [34] where different hills of activity, one for

each stimulus position, are weighted by both goal-directed [35]

and stimulus-driven salience factors, and by spatial location. This

salience map is used subsequently to guide attention. The

existence of parallel mechanisms of attentional guidance in CVS

could explain the apparent discrepancy between the slope values

of the regression line between RT and item number (‘‘set-size

effect’’), and the minimum time required to shift attention [36].

Indeed, this preattentive salience computation could make CVS

more efficient by reducing the number of attentional shifts needed

to find the target, leading therefore to a shorter processing time for

each additional item. Other phenomena, like perceptual grouping,

are also involved later, to increase further the efficiency of the

search process, by selecting a whole group of pertinent items at

once.

Additionally, the present results show that target detection

always follows attentional selection. Consequently, this suggests

that target detection never occurs in the absence of attentional

selection. An interesting study has already addressed this question

in dual tasks involving a central and a peripheral concurrent

discrimination tasks [37]. Performance in the peripheral discrim-

ination task was compared when performed together with the

central discrimination task and when performed alone. In the dual

task condition, attention was supposed to be focused on the central

discrimination task, whereas in the single task condition, attention

was able to select the peripheral target. This study showed that the

detection performance in the peripheral task when attention was

focused on the central task depended on the nature of the stimuli

used: some discrimination tasks, even very complex, were left

almost unaltered by the retrieval of attention, while other tasks,

seemingly simple, were much impaired in the absence of attention.

Along the same line, Joseph et al. [38] asked their subjects to

perform a pop-out task and were able to demonstrate that a

concurrent attention-demanding task (rapid serial visual presenta-

tion task) strongly altered performance in the CVS task, suggesting

that even pop-out CVS tasks depend on the availability of

attention. However, Van Rullen et al. [39] showed that targets

that do not trigger pop-out could be discriminated from distractors

with attention occupied elsewhere and that, conversely, certain

pop out CVS tasks need undivided attention to be performed.

Altogether, these different studies suggest that the dichotomy

between attention-demanding and not attention-demanding CVS

tasks might differ from the classic efficient (pop-out) versus

inefficient CVS tasks and this question would require further

experiments.
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