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ABSTRACT: Polymer networks are widely used in applications,
and the formation of a network and its gel point can be predicted.
However, the effects of spatial and topological heterogeneity on the
resulting network structure and ultimately the mechanical
properties, are less understood. To address this challenge, we
generate in silico random networks of cross-linked polymer chains
with controlled spatial and topological defects. While all fully
reacted networks investigated in this study have the same number
of end-functionalized polymer strands and cross-linkers, we vary
the degree of spatial and topological heterogeneities systematically.
We find that spatially heterogeneous cross-linker distributions
result in a reduction in the network’s primary loops with increased
spatial heterogeneity, the opposite trend as observed in homogeneous networks. By performing molecular dynamics simulations, we
investigated the mechanical properties of the networks. Even though spatially heterogeneous networks have more elastically active
strands and cross-linkers, they break at lower extensions than the homogeneous networks and sustain slightly lower maximum
stresses. Their shear moduli are higher, i.e., stiffer, than theoretically predicted, and higher than their homogeneous gel counterparts.
Our results highlight that topological loop defects and spatial heterogeneities result in significantly different network structures and,
ultimately, different mechanical properties.
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1. INTRODUCTION
Polymer networks and gels1,2 find widespread applications as
both commodity materials and specialized functional materials
in biomedical applications,3 or stimulus-responsive materials.4

While various theories exist to describe the formation of these
networks,5−13 classical models often assume idealized con-
ditions and structures without accounting for topological
defects, e.g., loops, dangling ends, or spatial heterogeneities,
e.g., concentration fluctuations. In reality, factors such as
chemical composition variations, nonideal mixing, and
polymerization schemes,1,14−17 introduce complex heteroge-
neities that impact gelation and final network structure.17−19

Topological defects formed during cross-linking can actually
lead to spatial heterogeneities.20 However, characterizing
polymer networks experimentally, especially in terms of their
topology and spatial distribution, can be challenging, yet it is
essential for a fundamental understanding of network proper-
ties.21−23

While the effect of topological defects like dangling ends,
loops, and higher-order loops on the gel point has been
investigated recently,24−27 spatial heterogeneity is typically not
considered. Those studies24−26 have shown that topological
defects depend on polymer concentration and increases in loop
fraction led to increased gel points. Random networks usually

have lower moduli than expected from the targeted molecular
weight of their strands, which is commonly attributed to both
topological and spatial heterogeneities; however, the relative
contributions of each are not fully understood.23

Including both spatial and topological heterogeneities in
model network structure is important for accurate descriptions
of micro and nanogels.28,29 Additionally, the elasticity and
mechanical behavior of networks is inherently related to their
molecular network structure.30−33 While there are examples of
computational studies34,35 which explicitly study heterogeneity
effects; however, they did not determine the effect on the gel
point. While many computational studies16,36−39 incorporate
topological defects and potentially spatial variations by
employing reaction mechanisms to form gels, commonly, the
heterogeneous structure of the network is not explicitly
controlled or systematically investigated.
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In this work, we address this gap by modifying the efficient
random network algorithm by Gusev40,41 to explicitly include
both spatial concentration fluctuations and topological net-
work defects. By systematically investigating both spatial and
topological defects, this study aims to move toward a more
comprehensive understanding of the impact of defects on
network properties and their mechanical properties.
In the following, we will first describe the algorithm and

extension in Section 2. Then, in Section 3 we show that
spatially heterogeneous cross-linker distributions reduce
primary loop fractions. Despite having more active strands
and cross-linkers, spatially heterogeneous networks exhibit
lower extension at their break point, need fewer bonds to break
for failure, and have slightly lower maximum stresses. Their
shear moduli exceed affine network theory (ANT) predictions
and those of comparable homogeneous gels; i.e., they are stiffer
than expected. In Section 4, we conclude and provide an
outlook.

2. METHODS
The gels in this work were obtained by using a custom variation of the
random Gaussian network generation algorithm.40,41 In short, this
efficient algorithm creates large-scale polymer networks by sequen-
tially adding polymer strands, ignoring excluded volume effects. First,
the cross-linker positions are drawn from a random uniform
distribution. Next, strands are added sequentially to cross-linkers
with probability ζ and then reacted with a second cross-linker, again
with probability ζ. The second cross-linker is randomly selected from
the Gaussian distribution of distances of all of the available cross-
linkers from the first, already-reacted end. While this algorithm might
not entirely reflect the more random, stochastic nature of gel
formation in experiments, it allows the generation of realistic Gaussian
networks in an extremely computationally efficient manner. A
systematic investigation with statistical significance of the effects
described here is only possible with an efficient algorithm, as the
traditional molecular dynamics approach of modeling the cross-
linking reactions explicitly is too slow and lacks systematic control.

In order to enable molecular dynamics simulations with the fully
reacted networks, as obtained by this algorithm, all strands must be
placed into the system as explicit bead−spring chains. We use
Brownian bridges42 to draw each strand position in between the
chosen cross-linker positions. All systems in this study contained Np =
2000 end-reactive strands of length M = 100 with Ncr = 1000 cross-
linkers with a functionality f = 4, i.e., at perfect stoichiometric balance.
For all networks, a high conversion rate of ζ = 0.99 was used; i.e.,
almost all chains will be cross-linked to a cluster since the probability
of reacting to each end is 99%. All networks were made by iterating
over all Np = 2000 end-reactive strands.

Control over the topological defects and spatial heterogeneities in
this algorithm can be achieved by multiple different means. Here, we
investigate two distinct ways, first, homogeneously changing the
overall density of the system40,41,43 as done previously, and second,
changing the initial spatial distribution of cross-linkers. Lowering the
overall density keeps the gel spatially homogeneous and increases the
fraction of topological defects, e.g., loops.

For the uniform systems, the primary loop fraction (i.e., polymer
strands with both ends connected to the same cross-linker) was varied
from approximately 0.11 to 0.3 by changing the box size from 80σ ×
80σ × 80σ up to 120σ × 120σ × 120σ, where σ is a bead diameter and
sets the unit of length. Consequently, the overall number density of
cross-links changed from ρ = 0.0006σ−3 to ρ = 0.002σ−3. As the
density of cross-linkers and strands increases, the probability of loop
formation decreases, since it is more likely to find a different available
cross-linker within the required distance.

The second method of introducing defects is loosely inspired by ref
34 and has not been used with this algorithm before. Here, the overall
density of cross-linkers is kept constant (Ncr = 1000 cross-linkers in a

box of size 100σ × 100σ × 100σ), while the cross-linker distribution is
changed from a random uniform distribution to a more and more
heterogeneous distribution with larger spatial density variations.
While this distribution can take any form, we used ten small spherical
regions with approximately a radius of 3σ, where we increased the
local cross-linker number density from the average value to up to
approximately 0.5σ−3 (most heterogeneous case) in addition to the
uniform background distribution. The background density was
consequently reduced down to approximately 0.00044σ−3 to keep
the overall number density of cross-links constant. Details of the code
for the cross-linker distribution and local density histograms are
described in the Supporting Information. In the spatially heteroge-
neous networks, the second virial coefficient as derived from the
cross-linker pair correlation distribution is negative, and the monomer
density distribution is broader but not bimodal. In the homogeneous
networks, the second virial coefficient is slightly positive. Other forms
of spatial heterogeneity will be interesting to investigate in the future.
Typical snapshots of the resulting networks are shown in Figure 1.
Here, we show two networks with very different structural properties.
One is spatially homogeneous with about 30% primary loop chains,
and the other one has only 13% loop chains but is spatially
heterogeneous with denser regions.

We modeled each strand with M = 100 WCA44−46 beads
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with standard parameters σ = 1.0, ϵ = 1.0 and rcut = 21/6σ. All beads
were linked by standard FENE bonds
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with parameters R0 = 1.5σ and K = 30ϵ/σ2. For the deformation, we
implemented breakable quartic bonds of shape

U r k r r r r( ) ( ) ( )cutquartic
3

1= (3)

with parameters k = 7497.7427ϵ/σ4, rcut = 1.3σ, and r1 =
0.85866σ.47,48 These parameters are chosen such that the minimum
position is the same as that in Ufene. The bond and pair interactions
are plotted in the Supporting Information. All gels obtained with the
algorithms described above have the same number of cross-linkers
and strands, so the properties are directly comparable.

This model represents polymer chains in an athermal solvent. After
the replacement, some beads might overlap since the original
algorithm does not include excluded volume effects. To remove any
overlaps, we performed a FIRE minimization49 and equilibrated the
resulting configurations with a Langevin thermostat at T = 1.0ϵ/kB
with a time step of δt = 0.005 for 2500τ. An additional NpT at p ≈ 0
ensemble equilibration was performed for 25000τ after that, which led
to moderate swelling of the networks. These simulations were

Figure 1. Snapshots of representative equilibrated fully reacted
network configurations, where the left shows the most dilute
homogeneous case and the right is the most heterogeneous case,
with ρh values of 1.74 (hom.) and 3.45 (het.). Strands are shown as
blue lines, and cross-linkers are shown as larger beads where the color
corresponds to the spatial dense region they belong to.
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performed with FENE bonds to avoid the accidental degradation of
the network by bond breaking. This implicit solvent swelling ratio is
shown in the Supporting Information. All molecular dynamics
simulations were performed using the open-source package
HOOMD-blue v350 with a tree neighbor list51 for computational
efficiency in spatially sparse systems. Once equilibrated, the bond
potentials were swapped out for the quartic bonds, and the gels were
deformed, either with a simple shear or extensional box deformation.
We monitored bond breaking and measured the resulting relaxation
and stress−strain curves.

3. RESULTS AND DISCUSSION
To compare different networks, we used a normalized
maximum density order parameter, given by

1h
max

av

=
(4)

where ρav is the overall average monomer density in the
system, and ρmax is the maximum monomer density observed
in any small 6σ × 6σ × 6σ region of the system. Full-density
histograms are displayed in the Supporting Information. This
normalized maximum density ρh would be equal to zero for a
perfectly homogeneous gel with zero density fluctuations and is
increasing as the spatial heterogeneity increases. The maximum
observed densities were in the range 0.319σ−3 to 0.895σ−3,
with average monomer densities of 0.116σ−3 to 0.393σ−3.
However, this order parameter does not capture the
distribution or exact morphology of the spatial heterogeneity.
As shown in Figure 2, increasing the spatial heterogeneity

(i.e. local density fluctuations) in the homogeneous networks is
correlated with an increase in topological defects, e.g. primary
loops 1, strands where both ends are connected to the same
cross-linker. However, explicit spatial heterogeneity (i.e. dense
clusters) in the system decreased the fraction of loop defects.
This opposite trend to the homogeneous system can be
rationalized by the fact that in the dense regions, it is
significantly more likely to find a suitable other cross-linker to
connect to, reducing the overall loop defects. At the same time,
few key connections in the more dilute regions of the network
still need to be established to form a gel.
Topological defects also include higher-order loops, e.g.,

secondary loops, where two polymer strands are connected to
the same two cross-linkers, or tertiary loops, where three
strands connect the same three cross-linkers.33 Figure 3
displays the fraction of these higher-order loop defects, e.g.,
secondary 2, tertiary 3, and quaternary 4 loops. All topological
defects follow the same trend as the primary loop fraction, and
their respective amounts decrease as their order increases.

There are also some differences in the topological defects
between the gel and the sol components of the system.
Generally, the gel makes up 90% or more of the system. The
sol in the heterogeneous networks had more first and second-
order loops and less higher-order loops. In the homogeneous
gels, the sol had more first-order loops and less higher-order
loops. The fraction of truly fully cross-linked cross-linkers nf is
also shown, where first-order loops and dangling ends are not
counted toward the degree of cross-linking, since they do not
lead to connections to the surrounding network. Interestingly,
the trend of nf with heterogeneity ρh is different for the
homogeneous and heterogeneous networks, in the homoge-
neous networks nf decreases with ρh, and in the heterogeneous
gels, it increases. The reason for this trend is that
heterogeneous networks overall have fewer loop defects as ρh
increases. The sol for all networks had less truly fully cross-
linked cross-linkers, where first-order loops 1 and dangling
ends do not count toward being fully cross-linked.
The phantom modulus can be calculated by considering that

each chain is an ideal elastic spring of stiffness ∝ N−1.
Replacing each strand with an ideal spring, the ground state
can be determined numerically by applying a simultaneous
energy balance on all cross-linkers26,40 using FIRE49 energy
minimization. Representative examples of the resulting
minimized networks are shown in Figure 4. From these
reduced network structures, it is straightforward to calculate
the topological factor Γ, and elastically active strands μeff and
cross-linkers νeff by using the following definitions
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In addition to Γ, the energy minimization also allowed the
determination of νeff, the number of elastically effective (active)
strands per unit volume, which are the ones that retain a length
larger than zero after energy minimization, meaning they
carried the load in the network. The number density μeff of the
elastically effective cross-links is then defined as the ones that
connect at least two elastically effective strands.
As shown in Figure 5, spatially heterogeneous networks tend

to have more elastically active strands μeff and cross-linkers νeff,
despite having a lower topological factor Γ. This indicates that
there are more individual strands Ri in the heterogeneous
networks that have a nonzero length after minimization, but
the overall sum of their lengths is still lower than in the
homogeneous networks. In the Supporting Information, we
show the distribution of minimized strand lengths.
From these topological quantities, moduli from various

theories can be derived as52 GANT = ΓνkT for the ANT, GANM
= νkT for the classical affine network model (ANM), and GPNM
= (1−2/f)νkT for the phantom network theory. These moduli
are shown in Figure 6. To independently determine the
modulus of the networks numerically, we applied a simple
shear deformation of γ = 0.2 to the fully reacted, equilibrated,
and swollen gels in a MD simulation and measured the
relaxation of the corresponding off-diagonal stress component
τxy. After the initial decay, the steady-state value can be used to
determine the modulus as Gnum = τxy/γ. This numerical result
is plotted along with the theory estimates in Figure 6.
The homogeneous networks with topological defects

followed the predictions of the ANT GANT, even though the
networks contain defects and are swollen. This highlights the

Figure 2. Primary loop fraction 1 in the fully formed homogeneous
(blue) and heterogeneous (red) networks as a function of ρh. Each
point is an average of 30 independent runs and the error bars indicate
the standard error of the mean.
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fact that the numerical measurement did estimate the near-
equilibrium modulus. Previous work40,53 also found good
agreement of GANT and Gnum. The topological factor Γ,
therefore, does contain many of the nonideal effects caused by
the topological defects. However, the spatially heterogeneous
networks containing dense clusters did not follow any
theoretical prediction. For the lowest spatial heterogeneity,
the numerically determined modulus agrees with GANT but
quickly departed from that prediction. For the higher spatial
heterogeneity, ρh values, Gnum approaches GPNM. Interestingly,

the heterogeneous networks have higher shear moduli than the
homogeneous gels, with some spatial heterogeneity. Addition-
ally, the modulus of the heterogeneous networks is increasing
with ρh, whereas all theories predict either a constant or a
decreasing modulus. This trend is similar to the trend observed
in ref 54. where they compared moduli as a function of density.
This observation can be rationalized by the fact that the
spatially heterogeneous network can be viewed as an effectively
less dense gel, with small highly cross-linked dense regions.
These dense regions did contribute more than theoretically
expected by GANT to the elasticity, which led to an increased
stiffness.
To investigate the mechanical behavior further, we

performed extensional deformations of the fully reacted and
equilibrated gels using MD simulations with breakable quartic
bonds. The resulting stress−strain curves are displayed in
Figure 7. Derived from these stress−strain curves, the
maximum stress and maximum extension the gel networks
exhibit were similar for both spatially and topologically
defective networks, as shown in Figure 8. The maximum
stress τmax (the peak value in the stress−strain curve) decayed
with increasing ρh for both network types, and the maximum
extension λmax (highest extension before the network breaks
completely) decreased almost linearly with ρh. Both of these
trends are expected, meaning all gels sustained less stress and
broke earlier as ρh increased. The extension at which the
maximum occurs, λ at τmax, first increases with ρh, but then
decreases for a high ρh. Additionally, there are noticeable small
differences: both λmax and λ at τmax are slightly lower for the
spatially heterogeneous networks.
Overall, the numerical moduli and deformation results led to

the conclusion that even though spatially heterogeneous

Figure 3. First-, second-, third-, and fourth-order loop fractions i, and fraction of truly fully cross-linked cross-linker n4 in the sol and the gel as a
function of ρh for homogeneous (blue, light blue) and heterogeneous (red, orange) fully reacted networks. The black lines indicate the values in the
entire system. Each point is an average of 30 independent runs.

Figure 4. Representative snapshots of minimized fully reacted
network structures of the systems with the highest respective
heterogeneity ρh of 1.74 (hom.) and 3.45 (het.), where only the
elastically effective strands are shown as straight connections in light
blue. Note that the isolated cross-linkers are not unreacted, but are
bonded by noneffective strands. Dense regions in these minimized
structures contain many cross-linkers. The left shows the most dilute
homogeneous case, and the right snapshot shows the most
heterogeneous case.

Figure 5. Elastically active cross-linkers μeff, elastically active strands
νeff, and topological factor Γ, as a function of ρh for homogeneous
(blue) and heterogeneous (red) systems. The theoretical values for
νeff and μeff are 1 and 2/f respectively. Each point is an average of 30
independent fully reacted networks and the error bars indicate the
standard error of the mean.

Figure 6. Moduli for homogeneous (blue) and heterogeneous (red)
networks. Lines show results for affine network theory (ANT), affine
network model (ANM), and phantom network theory (PNM).
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networks had fewer topological defects, they were less strong,
i.e., slightly lower maximum stress and lower maximal
extension, than corresponding spatially homogeneous net-
works with more topological defects. The heterogeneous gels
were also stiffer, as indicated by a higher shear modulus.
Interestingly, our observations are in agreement with bulk
fracture theories,31,55,56 where spatial heterogeneity is generally
not incorporated.
Interestingly, in the spatially heterogeneous networks, we

noted that fewer bonds need to be broken for the entire
network to break under deformation, as illustrated in Figure 8a.
This can be explained by the network structure, where only a
few “key” strands connect the dense, highly cross-linked
regions across much more dilute regions. Consequently, less
strands need to be broken for the entire network to break. To
illustrate this, a representative graph network structure is
shown in Figure 9. Here, each strand was represented as an
edge in a graph, and each cross-linker functioned as a node.
Visually, strands that were between highly cross-linked regions
were the ones that were more likely to break; broken bonds are
indicated by dashed red lines in Figure 9. These observations
also point toward the same interpretation as for the shear
modulus, the spatially heterogeneous gels can be essentially
viewed as networks with lower density and the small highly
cross-linked dense regions contribute little to the mechanical
properties.
To quantify this observation further, we determined strand

properties as a function of whether they are broken or not, as
shown in Figure 10. There are significant differences in the

properties of the broken and intact bonds. The heterogeneous
networks have a substantially higher number of kinks nkink (as
determined by the geometry reduction algorithm Z1

57,58),
indicating a much higher degree of entanglements. Addition-
ally, the bonds that are broken (open symbols in Figure 10),
have less kinks. The broken bonds were, on average, also in the
less dense regions. In the homogeneous case, there was no
difference in the number of kinks or local density for broken or
intact bonds, and both are very low, to begin with. In both
homogeneous and heterogeneous networks, the broken bonds
had a higher value of betweenness59,60 cB, a network
connectivity measure. In short, it quantifies the number of
shortest paths in the entire graph that pass through a strand/
edge; higher values indicate a more “important” strand
connection that sits between more nodes. However, the
difference between broken and intact betweenness values cB
was much more pronounced in the heterogeneous gels. In all
networks, the broken bonds had significantly higher reduced
lengths Lred in the initial configurations, as determined by
energy minimization.

4. CONCLUSIONS
Spatial heterogeneity e.g., concentration fluctuations, and
topological defects e.g., loops, are both important for
properties of gels due to the different imprints they leave on
the network structure. We present a simple extension to a
network generation algorithm,40,41 which enabled the inves-
tigation of the effect of spatial heterogeneities and topological
defects on network properties. Both loop defects and spatial
heterogeneity had different effects on the network properties.
Heterogeneous gels break at lower extensions than spatially

homogeneous gels and sustain slightly lower maximum
stresses, even though spatially heterogeneous networks have

Figure 7. Stress τ vs extension λ curves for all fully formed gels. The
legend indicates ρh values, and each line is averaged over 30
independent networks and the shaded area indicates the standard
error of the mean.

Figure 8. Maximum stress τmax, maximum extension λmax, extension λ
at maximum stress τmax, and the fraction of broken bonds as a function
of ρh for homogeneous (blue) and heterogeneous (red) networks.
Error bars are of the order of symbol size.

Figure 9. Graph network structures of the largest cluster, i.e. the gel,
where loops and dangling ends are not shown. The left shows an
example of the most homogeneous dilute case, and the right shows an
example of the most heterogeneous case. Bonds that break during
deformation are highlighted as red dashed lines.

Figure 10. Average number of kinks, nkink, reduced length, Lred,
betweenness, cB, and fraction of strands in the dense region, fdense, for
broken (open symbols) and not broken (filled symbols) bonds in the
homogeneous (blue, light blue) and heterogeneous (red, orange)
systems as a function of ρh.
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more elastically active strands and cross-linkers. Despite having
a lower topological factor, the shear moduli of heterogeneous
networks were slightly higher than those of the homogeneous
gels. Additionally, heterogeneous gels showed behavior
deviating from theoretical predictions, whereas ANT predicts
the shear moduli of homogeneous networks well.
Spatial heterogeneity also decreased the number of bonds

that needed to be broken in order to break the entire gel.
Additionally, broken bonds in heterogeneous networks had
more distinct properties, such as having fewer kinks, being in
the low-density region, and having higher betweenness values.
While the algorithm provided a simple and efficient way to

generate networks with controlled topological defects and
spatial heterogeneities, it also introduced some systematic
effects that warrant further investigation. The sequential
addition of strands introduces systematic effects that will
become important when investigating properties during gel
formation, e.g. gel points, and not just network properties of
the fully formed networks as done here. Overall, the precise
morphology and parameters of the spatial heterogeneity as
small spherical dense clusters are somewhat arbitrary and
artificial. Future careful evaluation and investigation of
different types of spatial heterogeneities at different length
scales will be needed.
Overall, simulations need to move toward more realistic gel

structures to carefully detangle the effect of different types of
defects. By providing a detailed analysis of the network
structure and mechanical properties, our study highlighted the
importance of considering both spatial and topological factors
in understanding gel networks. In the future, investigating the
connection between the microscopic molecular picture
presented here and the macroscopic bulk fracture theories
will be interesting. In addition, explicit solvent swelling
simulations and comparisons to Flory−Rehner theory can be
used to show the effects of the elastic contribution to swelling,
as it is expected to be different due to differences in moduli.
Other interesting future avenues include the effects of
heterogeneities on glass transition temperatures,61,62 where
the density fluctuations in particular are expected to have an
effect on segmental mobility.
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