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Abstract: The initiation of protein synthesis is suppressed under several stress conditions, inducing
phosphorylation of the α-subunit of the eukaryotic initiation factor 2 (eIF2α), thereby inactivating the
GTP-GDP recycling protein eIF2B. By contrast, the mammalian activating transcription factor 4 (ATF4,
also known as cAMP response element binding protein 2 (CREB2)) is still translated under stress
conditions. Four protein kinases (general control nonderepressible-2 (GCN2) kinase, double-stranded
RNA-activated protein kinase (PKR), PKR-endoplasmic reticulum (ER)-related kinase (PERK), and
heme-regulated inhibitor kinase (HRI)) phosphorylate eIF2α in the presence of stressors such as
amino acid starvation, viral infection, ER stress, and heme deficiency. This signaling reaction is
known as the integrated stress response (ISR). Here, we review ISR signaling in the brain in a
mouse model of Alzheimer’s disease (AD). We propose that targeting ISR signaling with quercetin
has therapeutic potential, because it suppresses amyloid-β (Aβ) production in vitro and prevents
cognitive impairments in a mouse model of AD.
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1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder with increasing prevalence worldwide,
and characterized by the deposition of neurofibrillary tangles and amyloid in the brain. These changes
may affect memory and other cognitive functions [1]. Several other biological processes have been
suggested to be dysregulated in AD, such as cholesterol/sterol metabolism, inflammation, and
endosomal vesicle recycling [1]. In addition, it has been recently found that ER stress is activated in a
mouse model of AD and in AD patients [2–6]. Several reviews have indicated that α-subunit of the
eukaryotic initiation factor 2 (eIF2α)-mediated translational control regulates synaptic plasticity [7], that
eIF2α phosphorylation is a molecular link between AD and diabetes [6], and that the integrated stress
response (ISR) mediates memory impairments in AD associated with apolipoprotein E ε4 (ApoE4) [8].

Quercetin is a natural dietary flavonoid found abundantly in fruits and vegetables. There is evidence
suggesting that quercetin exhibits antioxidant and anti-inflammatory activities, as well as anti-tumor
properties [9]. Quercetin can also improve several pathological conditions such as diabetes [10] and AD
through regulation of anti-oxidative stress enzymes via the action of nuclear factor (erythroid-derived
2)-like 2 (Nrf2) and the antioxidant effect of paraoxonase 2 (PON2) expression [11,12]. Quercetin and
its metabolites have been detected in the rat brain after oral administration of quercetin [13]. Recently,
several studies suggest the effects of quercetin on memory and cognition improvement may be associated
with ISR regulation [14–16]. In this review, we discuss ISR signaling in AD and the effects of quercetin on
memory and adult neurogenesis.
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2. ISR Elements and Signaling

In neurons, many ribosomes are attached to the endoplasmic reticulum (ER), forming the rough
ER. Protein synthesis occurs in the rough ER as well as in free ribosomes, and is regulated by ternary
complexes between the methionyl initiator tRNA (met-tRNAi), eIF2α, and guanosine triphosphate
(GTP). Initiation of translation is required for the formation of the ternary complex, which binds to the
40S ribosomal subunit and the eukaryotic initiation factors to form the 43 pre-initiation complex. The 43
pre-initiation complex, which binds to the 5′ untranslated region (UTR) of mRNA, scans the mRNA
downstream to identify the initiation codon, AUG, by the anticodon of met-tRNAi. AUG recognition
activates the GTPase-activating protein (GAP) eIF5 to convert the GTP bound to the eIF2α (eIF2α-GTP)
in the ternary complex to GDP bound to eIF2α (eIF2α-GDP). After the release of eIF2α-GDP, the 60S
ribosomal subunit joins its complex to produce an 80S initiation complex and elongation of peptides
is performed after recruitment of elongation factors. The exchange of eIF2α-GDP for eIF2α-GTP
is catalyzed by eIF2B, a guanine nucleotide exchange factor (GEF) responsible for the recycling of
eIF2α-GTP to form a ternary complex with the methionyl initiator tRNA. The ternary complex is
regulated by eIF2B because eIF2B activity is inhibited by the phosphorylation of eIF2α at the residue
serine 51 (Ser51) [17]. Since eIF2α is more abundant than eIF2B, part of the phosphorylation of eIF2α
affects eIF2B activity, resulting in the reduction of general protein synthesis because the phosphorylation
of eIF2α at residue Ser51 regulates the rate of translation initiation. Paradoxically, mammalian activating
transcription factor 4 (ATF4) is specifically translated [18]. ATF4 is a transcription factor targeting
several genes involved in amino acid import and metabolism, redox, and mitochondrial function [19].
The phosphorylation of eIF2α at residue Ser51 is reversed by protein phosphatase 1c (PP1c), which is
regulated by two interacting proteins: The constitutive repressor of eIF2α phosphorylation (CReP) [20]
and the growth arrest and DNA damage-inducible gene 34 (GADD34), which is strictly regulated
by stress [21]. When the phosphorylation of eIF2α at residue Ser51 is removed, ATF4 expression
levels quickly decrease. Therefore, ATF4 expression is regulated by the phosphorylation status of
eIF2α at Ser51. Under several stress conditions, eIF2α is phosphorylated at residue Ser51 by four
protein kinases: General control nonderepressible-2 (GCN2) kinase, double-stranded RNA-activated
protein kinase (PKR), PKR-endoplasmic reticulum (ER)-related kinase (PERK), and heme-regulated
inhibitor kinase (HRI). These kinases are activated mainly by amino acid starvation, viral infection, ER
stress, and heme deficiency, respectively. Activation of the above-mentioned four kinases under such
conditions is known as the ISR (Figure 1) [22].
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EIF2α phosphorylation and ATF4 expression are reduced in the hippocampus of GCN2-/- mice. In
CA1 hippocampal slices from GCN2−/− mice, late long-term potentiation (L-LTP), which is required
for transcription and translation, is induced by stimulation of a single 100 Hz train, but not by four
100 Hz trains, which elicit L-LTP in hippocampal slices from wild type mice. GCN2−/− mice showed
an impairment in contextual fear conditioning, but an intact auditory fear conditioning. Interestingly,
a single training session per day, but not three training sessions, enhanced spatial learning evaluated
by the Morris water maze [23]. This study demonstrated that gene transcription in the hippocampus
is enhanced in GCN2−/− mice because cAMP response element binding protein 2 (CREB)-targeting
gene expression is increased when ATF4 expression is downregulated. Therefore, Costa-Mattioli et al.
proposed that the plasticity of the synapse and gene transcription induced by CREB are suppressed at
basal conditions, during which ATF4 expression is high, while during learning, suppression of CREB is
removed by downregulation of ATF4 expression. Consistently, decreased eIF2α phosphorylation and
enhanced spatial learning and memory were observed in eIF2α heterozygous mice with a mutation of
the phosphorylation site at residue Ser51 (eIF2α+/S51A). Moreover, inhibition of dephosphorylation
of eIF2α by a small molecule, Sal003, impairs synaptic plasticity in wild type mice, but not in ATF4
knockout mice. Sal003 infusion into the bilateral hippocampus of wild type mice impairs contextual fear
memory while eIF2α phosphorylation is increased in the hippocampus [24]. These studies indicated
that the levels of eIF2α phosphorylation and ATF4 expression are important for synaptic plasticity and
memory formation.

3. ATF4 in Memory and Synaptic Plasticity

ATF4, also known as cAMP response element binding protein 2 (CREB2) [25], CREB-2 [26], or
tax-responsive enhancer element B67 (TAXREB67) [27], was originally cloned by screening with a DNA
probe containing ATF-binding sites [28] and was later identified as a tax-responsive enhancer element
in the LTR of HTLV-1 binding protein [27]. ATF4 has a leucine zipper region for protein interaction
and a stretch of basic amino acids for DNA binding at the C-terminal, and belongs to the ATF/CREB
protein family [26]. ATF4 mRNA is widely expressed in mammalian tissues including the brain. ATF4
is controlled translationally by regulated re-initiation [29,30]. Mouse ATF4 mRNA has two upstream
open reading frames (uORFs), uORG1 and uORF2, in the 5′ noncoding region. uORF1 and uORF2
encode three and sixty amino acid residues, respectively, and uORF1 localizes upstream of uORF2 and
the ATF4 coding region. Currently, a model of ATF4 translation proposes that in the presence of a high
number of ternary complexes of met-tRNAi and eIF2α-GTP in non-stressed conditions, ribosomes
scan and translate uORF1 and reinitiate translation of uORF2. After translation of uORF2, ribosomes
dissociate from the ATF4 mRNA, leading to a reduction in ATF4 coding region translation. On the
other hand, in cases of reduced levels of the ternary complex during stressed conditions, re-initiation of
uORF2 translation is suppressed by a delay in the reacquisition of the ternary complex after translation
of uORF1. Therefore, the ribosome scans and initiates translation of the ATF4 coding region [29–31].
ATF4 is degraded through the E3 ubiquitin ligase SCF (Skp1/Cullin/F-box protein) containing the
β-transducin-repeat-containing protein (β-TRCP) [32], indicating that ATF4 expression is regulated
by translation and post-translation. ATF4 heterodimerizes with Nrf2 to regulate heme oxygenase-1
(HO-1) expression [33]. Phosphorylation of ATF4 by protein kinase A regulates the expression of
several genes such as the osteoclast differentiation factor Rankl [34]. ATF4 is phosphorylated by
RSK2, the growth factor-regulated kinase whose mutation causes Coffin–Lowry syndrome that is
associated with mental retardation and skeletal abnormalities [35]. ATF4 is essential for lens fiber
cell differentiation [36]. These studies indicate that ATF4 is important for differentiation of bone
and the lens, amino acid metabolism, and resistance to oxidative stress [22]. ATF4 also plays roles
in several physiological processes such as memory [25,37]; that is, ATF4 binds CREB to control its
activity [25], and expression of a dominant negative CREB2 improves spatial learning, indicating
that ATF4 works as a memory-suppressor gene [37]. The ATF4 protein has been reported to be
present in the axons of the brains of patients with AD. ATF4 is synthesized in the axon of primary
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hippocampal rat neurons exposed to amyloid-β (Aβ)1–42, which induces eIF2α phosphorylation in
the axons, causing neuronal cell death [38]. Overexpression of ATF4 in the nucleus accumbens of
rats showed an anxiolytic-like response. However, depression-like behavior was also observed [39].
On the other hand, knockdown of ATF4 in the mouse hippocampus resulted in an impairment of
spatial memory, decreased spine and puncta of the PSD95 and AMPA receptor GluR1, indicating
that ATF4 plays a key role in synapse formation and memory [40]. These studies indicated that
exploration of the regulation of ATF4 expression is important for the treatment of several diseases.
Recently, three mechanisms have been proposed. First, feedback inhibition by GADD34 wherein
eIF2α is dephosphorylated, leading to a suppression of ATF4 expression and a recovery of protein
synthesis [21]. Second, ATF6-induced p58IPK expression, which has been identified as an inhibitor of the
interferon-induced PKR, suppresses PERK activity, leading to the suppression of eIF2α phosphorylation
and ATF4 expression [41,42]. Lastly, ER stress-induced ATF4 expression is suppressed by pretreatment
with low doses of lipopolysaccharide (LPS), which activates toll-like receptor 4 signaling, independently
of the suppression of the phosphorylation of PERK or eIF2α [43], like an ISR inhibitor (ISRIB) [44].

4. Integrated Stress Response and Alzheimer’s Disease

Aβ deposits in the brain, also known as senile plaques, are a product of Aβ precursor
protein (APP) cleavage by γ-secretase. γ-Secretase is a protein complex containing presenilin (PS),
which is critical for its activity and when mutated causes familial AD [45]. Aβ may enhance tau
phosphorylation, suggesting a connection between senile plaques and the neurofibrillary tangles [1].
Phosphorylated PERK is detected in the hippocampus and the temporal lobe of AD patients by
immunohistochemistry [2]. Phosphorylation of eIF2α has also been detected in the brain of AD patients
by immunohistochemistry [46] and western blot analysis [3]. The major genetic factor for sporadic AD
is the presence of the ApoE4 allele. eIF2α phosphorylation is associated with cognitive impairments in
ApoE4 knock-in mice [4], which is rescued by PKR inhibition, coinciding with a reduction in ATF4
expression levels [47]. The expression levels of eIF2α phosphorylation are also increased in a mouse
model of frontotemporal dementia overexpressing the P301L tau mutation. In this case, neuronal loss is
rescued by a PERK inhibitor, which acts by suppressing the expression levels of eIF2α phosphorylation
and ATF4 [48]. Increased levels of eIF2α phosphorylation are observed in the hypothalamus following
intracerebroventricular (ICV) injection of AD-associated Aβ oligomers (AβOs) in mice and macaques,
inducing glucose intolerance. This AβO-induced expression of eIF2α phosphorylation is attenuated
by a TNF-α neutralizing monoclonal antibody, infliximab. Additionally, AβO-induced peripheral
glucose intolerance is prevented by ICV injection of tauroursodeoxycholic acid (TUDCA), a chemical
chaperone used to alleviate ER stress [49]. The expression levels of eIF2α phosphorylation and ATF4
increased around Aβ deposits in the brain of a mouse model of AD [15]. ER stress links both obesity
and diabetes [50] and ISR is activated in the hypothalamus [51]. APP23 mice express a human APP751

cDNA with a Swedish double mutation on a C57BL/6 genetic background [52]. APP23 mice have been
previously crossed with obese and diabetic db/db (Leprdb/db) mice to generate a mouse model of AD
with obesity (APP23/Leprdb/db). ATF4 expression was increased in the cerebral cortex of APP23/Leprdb/db

mice [15]. Taken together, these studies indicate that the ISR is activated in the brain of mouse models
of AD and in AD patients.

Aβ production changes dynamically during sleep [53]. Sleep deprivation increases the levels
of eIF2α phosphorylation as a consequence of PERK activation in the mouse cerebral cortex [54],
and chronic sleep restriction causes an increase in both the number and the size of the Aβ deposits
in the brain of a mouse model of AD [53]. These results suggest that sleep deprivation-induced
ISR activation enhances Aβ secretion. Treatment with an ER stress inducer, tunicamycin, enhanced
Aβ production by increasing the expression of PS1 and ATF4 [55]. ATF4 binds to the amino acid
response element (AARE) [56], which is localized in the human PS1 gene [57] (Figure 1). Although
abundance of PS1 fragments is regulated by cellular factors [58], the levels of PS1 expression were also
upregulated in the ISR by the binding of ATF4 to the regulatory region in the PS1 gene. In ISR signaling
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induced by leucine and lysine deprivation, secreted Aβ was elevated dependently of ATF4 [57].
Macroautophagy (referred to as autophagy hereafter) involves an important cellular mechanism for the
degradation of proteins, lipids, and organelles, such as mitochondria and peroxisomes by engulfing
into a double-membrane-bound structure, the autophagosome. Fusion of autophagosomes with
lysosomes forms an autolysosome to hydrolyze its contents. Autophagosome formation is regulated
by sixteen autophagy-related (atg) genes, characterized in yeast [59]. In these genes, ATG5 is essential for
the formation of autophagosomes and autophagosome-lysosome fusion [60]. Since autophagy plays a
role in the recycling of amino acids, glucose, and lipids, autophagy is induced when cells are exposed
to amino acid starvation [61]. ISR signaling, eIF2α phosphorylation and ATF4 expression, is activated
in autophagy impaired cells, which are generated by the knockdown of ATG5 (Atg5KD), and in cells
treated by chloroquine [62], which inhibits autophagic flux [63] because GCN2 activity is required
to adapt to amino acid deprivation [64]. In Atg5KD cells, secreted Aβwas elevated by PS1 induction
through increased eIF2α phosphorylation and ATF4 expression. Aβ production was decreased by the
addition of plant polyphenolic compounds, such as resveratrol that prevents GCN2 activity, resulting
in the downregulation of eIF2α phosphorylation and ATF4 expression [62]. This evidence indicates
that ISR regulates Aβ production.

5. Quercetin on Memory in AD Models

Accumulation of evidence suggests a protective role for quercetin in cognitive decline and
neurodegenerative disease [11,72,73]. Here, we summarize recently reported studies on the effects of
quercetin using a variety of AD models (Table 1), which show quercetin can improve cognition and
memory, and have beneficial effects on AD in different species [65–71]. Karimipour et al. suggest that
quercetin improves learning and memory through CREB activation and induces neurogenesis as a
compensatory mechanism for neuronal cell death in the brain of Aβ1–42 injected rats [65]. Wang et al.
speculate that quercetin improves the cognitive impairments present in an APP/PS1dE9 mouse model
of AD, alleviating Aβ-induced mitochondrial dysfunction via regulation of AMP-activated protein
kinase (AMPK) activity [68]. Cardona-Gomez’s group suggests an anti-inflammatory effect of quercetin
in the hippocampus by the reduction of Iba-1 and iNOS microglial immunoreactivity in the CA1 area
of the hippocampus [66], and suggest effects of quercetin on neuropathological changes, cognitive
impairments, and anxiety present in aged 3xTg-AD mice [67]. Moreno et al. demonstrated that oral
administration of quercetin-loaded nanoparticles improves the cognition and memory impairments in
senescence accelerated mouse-prone 8 (SAMP8) mice [69]. Kong et al. showed that quercetin rescues
the impairments in the climbing ability of a Drosophila AD model by inhibiting cyclin B expression [71].
These studies and several reviews [11,72,74] demonstrated the biological roles of quercetin and its
potential molecular mechanisms against memory impairments in AD models.
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Table 1. Alzheimer’s disease (AD) model and effects of quercetin on memory.

AD Model Dose and Duration of Quercetin Effects References

3 µg/µL of Aβ1–42 injection into bilateral
intracerebroventricular zones of rats 40 mg/kg/day orally, one month

improvement of spatial learning and memory.
increase of the number of doublecortin (DCX)-expressing cells in
the dentate gyrus.
increase of BDNF expression.

[65]

3xTg-AD mice 25 mg/kg intraperitoneal injection, every 48 h
for three months

reduction of Iba-1 and iNOS microglial immunoreactivity in the
CA1 area of the hippocampus.
decreased fluorescence intensity of Aβ.

[66]

3xTg-AD mice 25 mg/kg intraperitoneal injection, every 48 h
for three months

decrease of Aβ, tauopathy, astrogliosis, and microgliosis in the
hippocampus and the amygdala.
improvement of spatial learning, memory, and anxiety.

[67]

APPSWE/PS1dE9 mice 40 mg/kg/day orally, 16 weeks improvement of mitochondria dysfunction.
increase AMPK activity. [68]

Senescence Accelerated Mouse-Prone 8
(SAMP8) mice

25 mg/kg quercetin-loaded nanoparticles
(NPQ) orally, every two day, two months

improvement of the cognition and memory impaiments by NPQ.
decreased expression of the hippocampal GFAP expression. [69]

pentylenetrazole (PTZ)-induced
cognitive impairment of zebrafish

10 mg/kg solid lipid nanoparticle of quercetin,
single intraperitoneal injection

inhibition of PTZ-induced cognitive impairment and
acetylcholinesterase activity. [70]

human Aß expressing Drosophila 0.44 g/L in standard sugar-yeast medium,
dietary supplementation of quercetin, 10 days

inhibition of Cyclin B expression.
extended lifespan. [71]
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6. Unfolded Protein Response and GADD34

Secreted and transmembrane proteins are generated and modified in the lumen of the ER where
those proteins fold and form proper structures. When proteins are unfolded in the lumen, signals
via three mechanisms are activated to induce gene transcription encoding chaperones and proteins
related to ER-associated degradation (ERAD) and to inhibit translational initiation [75] (Figure 1).
These signaling pathways responsible for controlling protein-folding homeostasis in the ER are called
the unfolded protein response (UPR) [76]. PERK is required for the phosphorylation of eIF2α and the
suppression of translation during ER stress. Perk deficiency causes susceptibility to cell death possibly
by increasing IRE1 phosphorylation and caspase-12 activation [77]. Wolcott–Rallison syndrome
is characterized by diabetes and mental retardation caused by human PERK gene mutations [78].
Prefrontal cortex-specific PERK deficient mice show enhanced behavioral perseveration and impaired
behavioral flexibility, coinciding with low levels of eIF2α phosphorylation and ATF4 expression.
These reductions in eIF2α phosphorylation and ATF4 expression in the prefrontal cortex are observed
in patients with schizophrenia [79]. Activating transcription factor 6 (ATF6) is a type II transmembrane
glycoprotein that is cleaved to produce a 50-kDa protein (p50ATF6) under ER stress conditions.
The p50ATF6 translocates into the nucleus and binds to the ER stress-responsive element (ERSE) [80]
to induce the translation of ER stress-related genes such as the X-box binding protein 1 (XBP1) mRNA
for UPR [81]. IRE1 is the most conserved transmembrane protein of the UPR, localizing at the ER. IRE1
has a stress sensing ER luminal domain, a cytosolic kinase, and a sequence specific endoribonuclease
domain. XBP1 mRNA is spliced by IRE1 after activation via oligomerization. During ER stress
conditions, GADD34 mRNA is induced to transcribe and translate the GADD34 protein from its ORF
through leaky scanning of uORF1 and uORF2 by the ribosomes [82]. GADD34 was originally identified
as an ionizing radiation-inducible transcript in Chinese hamster ovary (CHO) cells, and has been
identified as the homolog of the mouse MyD116 [83]. GADD34 has three domains: An ER-targeting
domain, four central PEST domains, and a C-terminal PP1c-binding domain. The GADD34:PP1c
holoenzyme recruits phosphorylated eIF2α for dephosphorylation, mediated by PEST domains [84].
Promotion of dephosphorylation of eIF2α by the expression of GADD34, decreasing the levels of eIF2α
phosphorylation and ATF4 expression, improves synaptic function and prevents neuronal degeneration
in prion-infected mice [85]. Therefore, GADD34-mediated dephosphorylation of eIF2α inhibits the
UPR, leading to the recovery from translational suppression in a negative feedback manner [21].
Quercetin has been found to interact with the ligand-binding pocket at the dimer interface of the
kinase extension nuclease domain of IRE1 for activation of its ribonuclease [86]. Consistently, XBP1
mRNA splicing is enhanced in quercetin-treated cells, coinciding with an increase in GADD34 mRNA
transcription [55]. Quercetin has been shown to suppress eIF2α phosphorylation, ATF4 expression,
and Aβ production. These findings were not observed in GADD34 knockdown cells. These studies
indicate that quercetin activates IRE1 and regulates GADD34 expression to control ISR, although more
experiments are required for the identification of the molecular mechanisms associated with GADD34
induction through IRE1.

7. Quercetin Improves Memory Impairments in Mouse Models of Alzheimer’s Disease by
Adjusting the Integrated Stress Response

According to the amyloid cascade hypothesis, Aβ formation is a critical step in the progression of
AD [87]. Understanding the role of the ISR in the brain can contribute to the elucidation of the fundamental
link between AD pathogenesis and the cause of morbidity. Axonally translated ATF4 protein leads to cell
death in response to Aβ [38]. eIF2α phosphorylation plays a crucial role in long-lasting synaptic plasticity
and memory consolidation through the regulation of gene expression and the translational control of ATF4
mRNA [23,24,88]. High ATF4 expression in the brain of APP23/Leprdb/db mice showed an impairment of
short-term episodic-like memory [16]. Increased levels of the n-terminal fragment of presenilin-1 (PS1)
and ATF4 expression were observed in the brain of mice fed a leucine- and lysine-deficient diet (LLD).
These mice showed impairments in working memory, as assessed by a Y-maze experiment (Figure 2).



Int. J. Mol. Sci. 2019, 20, 2761 8 of 17

Deficiency of essential amino acids such as leucine in the diet accumulates uncharged tRNA, inducing
GCN2 activation by binding with the uncharged tRNA to phosphorylate eIF2α in the mouse brain. This
GCN2/P-eIF2α signaling is essential for denial of an essential amino acid-deficient diet within 20 min of
the behavioral response to survive [89]. In contrast, mice fed LLD for a long time resulted in an induction
of ISR signaling in the brain, leading to an increased ATF4 expression and an impairment of working
memory. Moreover, mice bilaterally infused in the hippocampus with a derivative of salubrinal, which
blocks eIF2α dephosphorylation, showed impaired contextual memory [24]. In contrast, an ISR inhibitor
(ISRIB), which activates the guanine nucleotide exchange factor (GEF) of eIF2B [90], enhanced spatial
and fear-associated learning [44]. These findings strongly suggest that the eIF2α phosphorylation-ATF4
signaling cascade is involved in memory impairment and that small molecules that modify the ISR activity
are important to improve memory function.
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Figure 2. Working memory is impaired in mice fed with amino acid imbalanced food. (a) PS1 and
ATF4 expression are significantly increased in the brain of mice fed with leucine- and lysine-deficient
food (LLD) 30 minutes per week, for ten times. (b) Percentage of alternation measured in the Y-maze
test decreased in mice fed an LLD. The protocol of animal study was approved by the Gifu University
Graduate School of Medicine Animal Care and Use Committee of 20-131 (15/1/2009).

Oral administration of 0.5% quercetin for 5 weeks reduced the levels of ATF4 expression in the
hippocampus, amygdala, and cerebral cortex of the brain of APP23/Leprdb/db mice [16]. This reduction in
ATF4 expression was observed in the brain of APP23 mice fed quercetin for more than one year [15]. In
these conditions, fear-associated learning (contextual and auditory fear conditioning) in wild-type mice
(aged 1 year ± 6 months) was improved after oral administration of 0.5% quercetin for 20 weeks [15].
The percentage of auditory fear conditioning in APP23 mice that were fed quercetin in the long-term
(from 4 to 60 weeks old), was examined every two months. Although there was no difference in each
auditory fear conditioning test between the APP23 mice on a basal diet and those on a basal diet
supplemented with quercetin, the deterioration in memory was delayed in aged but non-diabetic AD
mice fed with quercetin (aged 6–12 months). Contextual and auditory fear memories were enhanced
in aged wild-type mice fed with quercetin [15]. In mice fed with quercetin, GADD34 expression
was increased, coinciding with a reduction in ATF4 expression [15]. In high-cholesterol-fed old mice,
quercetin improves cognitive impairment, suppressing eIF2α phosphorylation [14]. Furthermore,
memory was consistently enhanced in eIF2α heterozygous mice (eIF2α+/S51A) [24]. These findings
demonstrate that quercetin influences ISR signaling by inducing the expression of GADD34 in the
brain to improve memory function.
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8. Quercetin in Adult Neurogenesis

The adult mammalian brain contains neural stem cells (NSCs) located in the subventricular zone
(SVZ), hippocampal subgranular zone (SGZ) [91], and in the hypothalamic subependymal niche [92,93].
NSCs generate neurons and glial cells [94], which may be important for the homeostasis of tissues.
Interestingly, neurogenesis also plays critical roles in learning and memory [91]. For example, in the
hippocampal dentate gyrus, neurogenesis is important for spatial learning [95] and pattern separation,
the process whereby the brain discriminates between two similar objects [96,97]. New neurons reach
the olfactory bulb from the subventricular zone via the rostral migratory stream [98]. This instance of
neurogenesis plays a role in olfactory learning [99]. Hypothalamic neurogenesis, which is important
in the regulation of food intake [100], decreases with aging, and hypothalamic NSCs control aging
speed partly by releasing exosomal microRNAs [101]. It is also suggested that adult hippocampal
neurogenesis may be dysregulated in a mouse model of AD and in AD patients [85,102] and decreases
during aging [103]. Using induced pluripotent stem cells (iPSCs), it has been shown that neural
differentiation is accelerated in iPSCs-derived neural cells from sporadic AD patients and progenitor cell
renewal is reduced through a decrease in the levels of the repressor element 1-silencing transcriptional
factor (REST) [104]. These studies indicate that regulation of neurogenesis may be critical for the
improvement of learning.

Neurogenesis is regulated by several factors, including growth factors [99]. Voluntary running
increases SGZ neurogenesis, which is enhanced by neurotrophic factors such as brain-derived
neurotrophic factor (BDNF) [95]. Wrann et al. showed that BDNF is induced in the hippocampus
by exercise, which is mediated by irisin [105]. Irisin is a cleaved product of fibronectin type III
domain-containing protein 5 (FNDC5), which is induced by exercise in muscles [106] and the
hippocampus [107]. Irisin improves obesity, glucose homeostasis [106], and memory impairments
in an AD mouse model [107]. Irisin also enhances the CREB pathway in human cortical slices and
prevents amyloid-β oligomer (AβO)-induced eIF2α phosphorylation and ATF4 expression in cultured
primary rat hippocampal neurons [107]. Recently, it has been shown that, similar to the effects of
exercise, increasing adult neurogenesis with BDNF induction improves memory in an AD mouse
model. By contrast, ablation of adult hippocampal neurogenesis leads to an increase in cognitive
impairments in older, but not younger, 5xFAD mice. These results suggest that the regulation of adult
neurogenesis and BDNF expression may be valuable for improving memory function and modulating
the progression of AD [108]. In a mouse model of obesity, the increased numbers of senescent glial
cells caused by fat deposits in obesity leads to impairment of neurogenesis in the lateral ventricle (LV),
and mice also show higher levels of anxiety. In this case, clearing senescent cells using a senolytic
drug cocktail containing dasatinib and quercetin rescues anxiety and increases neurogenesis [109].
Administration of quercetin-3-O-glucuronide, which is a major quercetin metabolite [110], increases
adult hippocampal neurogenesis in mice [111]. Administration of 14~16 mg of quercetin to rat daily
for one month can promote the proliferation and differentiation of NSCs, increasing the expression of
BDNF, NGF, CREB, and Zif268 mRNAs [65]. Quercetin prevents the reduction of PGC-1α, FNDC5,
and BDNF expression in the hippocampus of rats exposed to hypobaric hypoxia [112], and increases
the number of doublecortin (DCX)-expressing cells in the adult rat dentate gyrus of the hippocampus,
inducing BDNF mRNA expression [65]. Neurogenesis in the hippocampal dentate gyrus is important
for discrimination of two similar things such as pattern separation evaluated by fear conditioning
using two chambers [97]. Mice fed quercetin showed a higher percentage of freezing compared with
mice fed a control diet, although mice fed quercetin as well as the control diet could not discriminate
between the two chambers [113]. These studies suggest that quercetin may have a positive effect in
neurogenesis and BDNF expression (Figure 3), and may lead to the slowing of the progression of
early-stage AD.
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9. Conclusions and Perspective

The ISR mediates cognitive impairments in mouse models of AD. The signaling molecules of the
ISR were increased in post-mortem AD brains and in other neurological diseases such as traumatic brain
injury, amyotrophic lateral sclerosis, Huntington’s disease, and Parkinson’s disease [114]. Inhibition
of ISR signaling by quercetin rescues memory deficits in mouse models of AD and ISRIB prevents
cognitive deficits in traumatic brain injury [115] and neurodegeneration in prion-disease mice [116].
However, identification of the target molecules involved in the ISR signaling in these neuronal diseases
for treatment remains elusive. Future experiments should explore the main molecules for potential
therapeutic interventions such as eIF2α kinases, eIF2B, and phosphatases (PP1c, CReP, and GADD34).
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Abbreviations

Aβ amyloid-β
AβO amyloid-β oligomer
PS1 presenilin 1
eIF2α eukaryotic translation initiation factor 2α
GADD34 growth arrest and DNA damaged-inducible gene 34
ATF4 activating transcription factor 4
AD Alzheimer’s disease
APP Aβ precursor protein
ER endoplasmic reticulum
PKR double-stranded RNA-activated protein kinase
PERK PKR-like ER-localized eIF2α kinase
GCN2 general control nonderepressible-2
HRI heme-regulated inhibitor
CREB2 cAMP response element binding protein 2
ISR integrated stress response
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GTP guanosine triphosphate
PP1c protein phosphatase 1c
CReP constitutive repressor of eIF2α phosphorylation
ApoE apolipoprotein E
Atg5 autophagy-related 5
ISRIB ISR inhibitor
GEF guanine nucleotide exchange factor
NSCs neural stem cells
SVZ subventricular zone
SGZ hippocampal subgranular zone
iPSCs induced pluripotent stem cells
REST repressor element 1-silencing transcriptional factor
BDNF brain-derived neurotrophic factor
FNDC5 fibronectin type III domain-containing protein 5
DCX doublecortin
LV lateral ventricle
MCI mild cognitive impairment
IRE1 inositol-requiring enzyme 1
XBP1 X-box binding protein 1
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