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Abstract: Liver fat deposition related to systemic insulin resistance defines non-alcoholic fatty liver disease (NAFLD) which, when as-
sociated with oxidative hepatocellular damage, inflammation, and activation of fibrogenesis, i.e. non-alcoholic steatohepatitis (NASH), 
can progress towards cirrhosis and hepatocellular carcinoma. Due to the epidemic of obesity, NAFLD is now the most frequent liver dis-
ease and the leading cause of altered liver enzymes in Western countries. Epidemiological, familial, and twin studies provide evidence for 
an element of heritability of NAFLD. Genetic modifiers of disease severity and progression have been identified through genome-wide 
association studies. These include the Patatin-like phosholipase domain-containing 3 (PNPLA3) gene variant I148M as a major determi-
nant of inter-individual and ethnicity-related differences in hepatic fat content independent of insulin resistance and serum lipid concen-
tration. Association studies confirm that the I148M polymorphism is also a strong modifier of NASH and progressive hepatic injury. Fur-
thermore, a few large multicentre case-control studies have demonstrated a role for genetic variants implicated in insulin signalling, oxi-
dative stress, and fibrogenesis in the progression of NAFLD towards fibrosing NASH, and confirm that hepatocellular fat accumulation 
and insulin resistance are key operative mechanisms closely involved in the progression of liver damage. It is now important to explore 
the molecular mechanisms underlying these associations between gene variants and progressive liver disease, and to evaluate their impact 
on the response to available therapies. It is hoped that this knowledge will offer further insights into pathogenesis, suggest novel thera-
peutic targets, and could help guide physicians towards individualised therapy that improves clinical outcome.  
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1. INTRODUCTION 
 Liver fat deposition related to systemic insulin resistance (IR) 
defines non-alcoholic fatty liver disease (NAFLD) [1]. In suscepti-
ble individuals this maybe associated with oxidative hepatocellular 
damage, inflammation, and activation of fibrogenesis, i.e. non-
alcoholic steatohepatitis (NASH) [2], potentially progressing to-
wards cirrhosis and hepatocellular carcinoma [3]. Due to the epi-
demic of obesity and the metabolic syndrome, NAFLD is now the 
most frequent liver disease (prevalence 20-34%) and the leading 
cause of altered liver enzymes in Western countries [4, 5]. Al-
though NASH is still an emerging health problem, it is already 
projected to become the leading cause of end-stage liver disease, 
liver transplantation and hepatocellular carcinoma within the next 
10-20 years. 
 Epidemiological, familial, and twin studies provide evidence 
for an element of heritability of hepatic fat content, NAFLD, and 
bona fide metabolic cirrhosis [6, 7]. Recently, the inherited deter-
minants of steatosis are beginning to be unrevealed using genome-
wide association studies. These have identified Patatin-like 
phosholipase domain-containing 3 (PNPLA3) gene variants as a 
major determinant of inter-individual and ethnicity-related differ-
ences in hepatic fat content independent of insulin resistance and 
serum lipids concentration [8]. 
 Furthermore, a few large multicenter case-control studies dem-
onstrate a role of genetic variants implicated in insulin signalling 
[9], oxidative stress [10, 11], and fibrogenesis [12] in the progres- 
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sion of NAFLD towards fibrosing NASH, and confirm that hepato-
cellular fat accumulation and insulin resistance are key operative 
mechanisms in the pathophysiology of NAFLD, and are closely 
involved in the progression of liver damage.  
 The main purpose of this review is to provide an overview of 
what is known about the genetic predisposition to NAFLD and in 
particular to the progressive form of liver disease, NASH. In addi-
tion, we will outline the possible influence of genetic variation on 
the response to NASH treatment, an area where more studies are 
urgently needed. New genetic risk factors could prove useful for the 
clinical management of patients with NAFLD, as well as for other 
chronic liver diseases associated with steatosis, and for the identifi-
cation of novel therapeutic targets for NASH, for which specific 
treatments are still lacking. 

2. PATHOPHYSIOLOGY OF NAFLD AND NASH 
 A short overview of the pathophysiology of NAFLD and 
NASH is required to introduce the genetic determinants of disease 
pathogenesis and progression. The acronym NAFLD defines a wide 
spectrum of liver disease ranging from simple uncomplicated he-
patic fat accumulation in the form of triglycerides exceeding 5% of 
liver mass (steatosis) in the absence of significant alcohol consump-
tion to severe hepatitis characterized by steatosis, lobular inflamma-
tion, and hepatocellular damage and apoptosis with activation of 
fibrogenesis (steatohepatitis, NASH) [13], which can progress to 
cirrhosis and hepatocellular carcinoma [3]. Hepatic fat accumula-
tion results from an unbalance between triglycerides acquisition and 
removal [14], and initially represents a protective mechanism to 
protect hepatocytes from the toxicity resulting from an increased 
flux of free fatty acids (FFAs) to the liver [15]. Several lines of 
evidence support the hypothesis that most of the FFAs accumulated 
as triglycerides during steatosis derive from increased peripheral 
lipolysis [16] related to adipose tissue insulin resistance [17], fol-
lowed by increased lipogenesis induced by hyperinsulinemia and 
diet. Indeed, the major risk factor for NAFLD is systemic insulin 
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resistance due to central obesity and the metabolic syndrome [1, 
18]. Steatosis per se may then further contribute to hepatic insulin 
resistance, exacerbating these metabolic disturbances and increase 
the risk of other extra-hepatic complications including cardiovascu-
lar disease [19, 20]. Impaired ability to secrete lipoproteins [21] and 
changes in fatty-acid oxidation also contribute to hepatic fat accu-
mulation.  
 Development of NASH has been classically explained by the 
occurrence of a so-called “second-hit”, leading to the activation of 
inflammation, in the context of hepatic steatosis [22]. This second 
insult is likely to actually represent a combination of insults related 
to direct hepatic lipotoxicity, hepatocellular oxidative stress secon-
dary to free radicals produced during �- and �- oxidation of FFAs, 
inflammation triggered by endotoxin engaging TLR-4 receptors in 
Kupffer cells and hepatocytes due to increased intestinal permeabil-
ity, bacterial overgrowth and altered intestinal flora [23-25], cyto-
kines release, and endoplasmic reticulum stress. These combine to 
produce inflammation, cellular damage, and activation of fibro-
genesis [26]. A working model of NASH pathogenesis is presented 
in (Fig. 1), whereas the role of inflammation is presented in greater 
details in (Fig. 2). 

3. EVIDENCE OF HERITABILITY OF NAFLD AND NASH 
 A possible explanation for the observed inter-individual vari-
ability in the susceptibility to NAFLD and progressive NASH is 
provided by heritability [26]. In addition to evidence of heritability 
provided by epidemiological, familial, and twin studies [6, 7, 27-
29], clinical case series have also shown familial clustering of 
NAFLD [29]. Although shared environmental risk factors may 
contribute to development of steatosis, the variation in NAFLD 
phenotypic expression in persons with similar risk factors impli-
cates a genetic contribution. Recently, a familial aggregation study 
of fatty liver in overweight children with and without NAFLD 
showed that liver fat fraction and in particular the condition of fatty 
liver are strongly heritable traits [6]. In addition, a family study of 
157 individuals with familial combined hyperlipidemia (FCHL) 
showed that ALT levels and the prevalence of fatty liver were in-
creased not only in FCHL probands but also in their relatives, sug-
gesting the presence of a genetic component [30]. 
 Twin studies confirmed that, in subjects without evidence of 
alcohol abuse or viral hepatitis, alanine transaminases (ALT) levels, 
mostly reflecting liver fat content, were a heritable trait, with ge-
netic factors explaining almost up to 60% of variability [27]. A 

Fig. (1). Mechanisms involved in the pathogenesis of NASH.  
NAFLD is characterized by the hepatic fat accumulation resulting from an unbalance between triglycerides acquisition and removal. Most of free fatty acids 
(FFAs) that are stored as triglycerides during hepatic steatosis derive from peripheral lipolysis related to adipose tissue insulin resistance, followed by de novo
lipogenesis induced by hyperinsulinemia, and diet. In the liver, FFAs can be catabolized through �-oxidation, re-esterification to triglycerides and stored as 
lipid droplets, or exported as very low density lipoproteins (VLDL). Impaired ability to secrete lipoproteins and decreased �-oxidation due to mitochondrial 
damage (expecially in the presence of NASH) may play a role in hepatic fat accumulation. Long-term injury arising from i) hepatocellular triglycerides storage 
and lipotoxicity, ii) hepatocellular oxidative stress secondary to free radical produced during �- and omega- oxidation of FFAs, iii) inflammation triggered by 
endotoxin, iv) cytokines release, v) and endoplasmic reticulum (ER) stress lead in the end to inflammation, perpetuation of cellular damage, and activation of 
fibrogenesis. 
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study population among Danish twins identified substantial herita-
bility (35-61%) for levels of biochemical liver indices including 
ALT, gamma-glutamyl peptidase (GGT), the remaining variation 
being attributed to environmental factors [31]. Furthermore, GGT 
levels have also been shown to represent a highly heritable trait 
(roughly 50%), which had a significant covariance with risk factors 
for NAFLD determining the metabolic syndrome, such as IR, lipid 
levels, and diastolic blood pressure [32], and several studies dem-
onstrated a role of genetic factors in the pathogenesis of metabolic 
alterations typical of hepatic IR and NAFLD [33], although some 
genetic risk factors for NAFLD are specific for hepatic fat content 
(see below). The estimates for heritable components of liver fat and 
liver enzymes associated with steatosis are presented in (Fig. 3).
However, it should be underlined that a recent study concluded that 
ultranosonographically detected NAFLD has a low heritability in 
Hungarian twins [34]. 

 In line with a strong role of genetics in the pathogenesis of 
NASH, racial and ethnic differences have been reported in the 
prevalence of NAFLD, NASH and cryptogenic cirrhosis, which is 
believed to represent an evolution of NASH in the majority of cases 
[4, 35]. In the US for example, Hispanic subjects are at higher risk 
than subjects of European descent, whereas African-Americans are 
protected independently of diabetes and BMI [7]. The results of the 
Insulin Resistance Atherosclerosis Study (IRAS) Family Study with 
1,142 participants of Hispanic or African-American descent was 
also consistent with a role of heritability in the pathogenesis of 
NAFLD [36].  

4. PNPLA3 I148M IS A MAJOR RISK FACTOR FOR NAFLD 
AND NASH 
 A major determinant of the inter-individual and ethnicity-
related differences hepatic fat content quantified by magnetic reso- 

Fig. (2). Inflammation in NAFLD. Obesity and NAFLD are directly associated with activation of inflammatory pathways. Hypertrophic adipocytes release 
chemokines and proinflammatory cytokines including TNF�, IL-6, resistin and MCP-1. Chemokines recruit macrophages, especially in visceral adipose tissue. 
Adipose tissue macrophages produce inflammatory cytokines such as TNF�, IL-6 and IL-1�. These inflammatory changes in adipose tissue induce adipocyto-
kine dysregulation: a decrease in insulin sensitizing and anti-inflammatory adipocytokines as adiponectin, and an increase in pro-inflammatory cytokines such 
as TNF�, interleukins and resistin. Extracellular free fatty acids (FFAs) as well as bacterial endotoxins activate Kupffer cells by engaging the Toll-like recep-
tor 4 (TLR4). Upon TLR ligation, MyD88, an adaptor molecule, is recruited to transmit the signals that activate NF-kB and JNK. Activated Kupffer cells 
produce inflammatory cytokines such as TNF� and IL-1�, chemokines such as MCP-1 and ROS leading to liver damage. Acute loss of hepatocytes triggers a 
compensatory proliferative response in surviving hepatocytes. However, in chronic fatty liver many hepatocytes have sustained oxidative damage that inhibits 
progression to the cycle and regeneration. Moreover fatty hepatocytes have reduced proliferative capacity. Damaged hepatocytes release several factors includ-
ing ROS, cytokines, chemokines that recruit inflammatory cells into the liver. Once in the liver, these inflammatory cells release cytotoxic factors that increase 
hepatocytes death. Other hepatocytes-derived factors activate hepatic stellate cells (HSC), which produce more extracellular matrix (ECM) leading to matrix 
accumulation and fibrogenesis. HSCs also release fibrogenic cytokines with autocrine and paracrine effects, including TGF-�1, and over-express tissue inhibi-
tors of metalloproteinase, which promote ECM accumulation by inhibiting matrix degradation. 
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Fig. (3). Heritable components of non-alcoholic fatty liver disease 
(NAFLD) and liver indices associated with steatosis. Average values of 
studies reported in the manuscript are presented. HFF: hepatic fat fraction; 
ALT: alanine transaminase; GGT: gamma-glutamyl transferase. 

nance spectroscopy was identified by a genome-wide association 
scan (GWAS) of non-synonymous sequence variation reported in 
2009, the rs738409 C>G SNP in the Patatin-like phospholipase 
domain-containing 3 (PNPLA3) gene, encoding for the isoleucine 
to methionine variant at protein position 148 (I148M) [8]. PNPLA3, 
also called adiponutrin, encodes a 481 amino acid protein expressed 
in the endoplasmic reticulum and at the surface of lipid droplets in 
hepatocytes and adipocytes, which is induced in the liver after feed-
ing and during insulin resistance by fatty acids and the master regu-
lator of lipogenesis SREBP-1c [37]. Although the mechanism and 
the physiological substrates remain an area of active research, the 
common I148M variant appears to disrupt the phospholipase activ-
ity of the enzyme, thus likely altering lipid catabolism, but it might 
also acquire new functions [38], and it has recently been reported to 
increase the synthesis of phospholipids [39]. Importantly, the asso-
ciation between PNPLA3 genotype and steatosis is independent of 
insulin resistance and serum lipids concentration [8], but appears to 
modify response to nutritional and lifestyle factors including obe-
sity. 
 The association of the G allele encoding for the protein 148M 
variant with hepatic fat content has been confirmed in several stud-
ies [8, 40-49], and by a recent meta-analysis [50]. Sookoian et al
reported an association between the 148M allele and increased se-
verity of NAFLD [44] and we demonstrated that the frequency of 
148M variant was significantly higher in NAFLD patients com-
pared to healthy controls with a near 3.3-fold increased risk in Ital-
ian and UK subjects carrying the GG genotype [51]. The rs738409 
SNP influenced both the presence of NASH and the severity of 
fibrosis in NAFLD patients with histological evaluation of liver 
damage, independent of body mass, diabetes and the previously 
demonstrated effect on NASH. The association of the I148M vari-
ant with progressive liver disease was independent of the predispo-
sition to increased steatosis, thus suggesting that it influences the 
regulation of proinflammatory lipid mediators [52-54]. The effect 
of the rs738409 variant on liver fat and liver enzymes was apparent 
early in life [55, 56] and synergized with other risk factors of 
NAFLD. In a large cohort of Italian obese children with histologi-
cally proven NAFLD, the rs738409 G allele was the strongest de-
terminant of steatosis severity, and in patients with the GG geno-
type severe steatosis was associated with increased lobular inflam-
mation, hepatocellular ballooning and NASH [57], suggesting that 
the rs738409 genotype may represent a critical factor that deter-
mines whether the increased free fatty acids flux related to obesity 
translates into mild steatosis or progressive NASH in obese chil-
dren.  

 The coexistence of the rs738409 G risk allele (148M) and an 
independent environmental stressor such as obesity [58] or chronic 
alcohol consumption [59], is associated with elevated serum alanine 
transaminase levels and higher liver damage, suggesting that these 
stressors appear to uncover the association between 148M and he-
patic injury. Indeed, the magnitude of the association between the 
I148M PNPLA3 variant and liver enzymes was related to abdomi-
nal fat mass [60, 61], and to high dietary carbohydrate and sugar 
consumption [62]. The rs738409 PNPLA3 genotype also influences 
steatosis development in chronic hepatitis C patients and is inde-
pendently associated with cirrhosis and other steatosis-related clini-
cal outcomes, such as lack of response to antiviral treatment and 
possibly hepatocarcinoma [63-66], and with of cirrhosis and hepa-
tocellular carcinoma in patients with alcohol abuse [59, 67-71]. 
Importantly, it has recently been reported that the I148M PNPLA3
variant is a risk factor for the development of hepatocellular carci-
noma in severely obese subjects from Northern Europe [72]. 
 Therefore, current evidence suggests that the PNPLA3 I148M 
variant is a genetic determinant of liver damage progression associ-
ated with steatohepatitis, which may be triggered by a number of 
factors including obesity, IR, excessive alcohol intake, and chronic 
hepatitis C (Fig. 4) [53]. 

5. OTHER GENETIC VARIANTS INFLUENCING NAFLD 
SUSCEPTIBILITY IDENTIFIED BY GENOMEWIDE 
SCANS
 Besides confirming that rs738409 of PNPLA3 is the major 
common genetic risk factor of NAFLD, a recent meta-analysis of 
combined GWAS datasets identified four other SNPs associated 
with liver fat content and other aspects of the NAFLD phenotype. 
These were localized in or near the genes neurocan (NCAN, SNP 
rs2228603), protein phosphatase 1, regulatory (inhibitor) subunit 
3B (PPP1R3B, SNP rs4240624), glucokinase regulator (GCKR, 
SNP rs780094) and lysophospholipase-like 1 (LYPLAL1, SNP 
rs12137855). NCAN is involved in the regulation of cell adhesion 
and likely lipoprotein metabolism, and was also associated with 
histologically validated steatosis in a replication study. GCKR, a 
regulator of glucose metabolism and LYPLAL1, which exerts a 
complementary function to the PNPLA3 protein in triglyceride 
breakdown, were also associated with histologically assessed lobu-
lar inflammation and/or fibrosis [73]. The rs780094 GCKR poly-
morphism is in strong linkage disequilibrium with rs1260326, en-
coding for the P446L protein variant, which influences the ability of 
GCKR to inhibit glucokinase in response to fructose-6-phosphate, 
thereby resulting in a constant increase in hepatic glucokinase activ-
ity and glucose uptake by the liver [74]. Unrestricted hepatic glyco-
lysis associated with carriage of the minor 446L allele leads on one 
hand to lower glucose and insulin levels, but on the other hand to 
increased levels of malonyl-CoA, which in turn may favor hepatic 
fat accumulation by serving as a substrate for lipogenesis and by 
blocking fatty acid oxidation through the inhibition of carnitine-
palmytoil transferase-1 (CPT-1). The combined effects of PNPLA3 
I148M and GCKR P446L polymorphisms has been proposed to 
explain up to one third of variability in liver fat content amongst 
obese children of European descent [75, 76]. 
 To date one other GWAS has been reported. This identified 
variants conferring a predisposition to disease progression in a 
small cohort of patients with histologically proven NAFLD [77]. 
The study highlighted an association between severity of histologi-
cal NAFLD activity score and SNP rs2645424 on chromosome 8, in 
the gene encoding farnesyl diphosphate farnesyl transferase 1 
(FDFT1), an enzyme involved in cholesterol biosynthesis. Other 
associations observed included rs343062 on chromosome 7 with 
degree of fibrosis, and rs1227756 on chromosome 10 in the 
COL13A1 gene, rs887304 on chromosome 12 in the EFCAB4B 
gene with lobular inflammation. It was however perhaps surprising 
that this study did not identify PNPLA3 given that it has been re-
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peatedly validated in some many other studies. These findings 
therefore require validation.  

6. GENETIC FACTORS INFLUENCING LIVER DISEASE 
PROGRESSION IN NAFLD FROM CANDIDATE GENE 
STUDIES 
6.1. Variants Involved in the Regulation of Lipid Metabolism  
 The hallmark of hepatic steatosis is triglyceride (TG) accumula-
tion within hepatocytes caused by alterations in hepatic lipid me-
tabolism changing the balance between the pathways of uptake, 
synthesis, degradation and secretion on a background of systemic 
insulin resistance [78]. Genes that affect hepatic fat storage and 
mobilization are therefore likely candidates to influence the devel-
opment and progression of NAFLD as are variants of transcription 
factors controlling lipid metabolism in the liver and adipose. Perox-
isome proliferator-activated receptor-alpha (PPAR�) is a member 
of the nuclear hormone receptor superfamily. A molecular target of 
long chain fatty acids, eicosanoids and fibrates [79], it is highly 
expressed in tissues that catabolize fatty acids such as the liver and 
skeletal muscle. Under condition of increased hepatic fatty acid 
influx or decreased fatty acid efflux, PPAR� activation prevents the 
accumulation of triglycerides by increasing the rate of fatty acid 
catabolism. PPAR� downregulation is involved in NASH patho-
genesis by reducing FFA catabolism [80]. The Val227Ala SNP in 
the PPAR� gene may be implicated in the pathogenesis of NAFLD 
and it could play a protective role against the development of obe-
sity [81]. It has been hypothesized that the substitution of Valine to 
Alanine at codon 227 causes a functional change in PPAR� and 
that the Ala227 isoform has higher activity than the Val227 isoform 
[82]. However, in Italian subjects the Leu162Val PPAR� loss-of-

function polymorphism did not influence the risk of NAFLD, where 
it was associated with IR but not histologically assessed disease 
severity [83], suggesting that the risk related to increased insulin 
resistance may be balanced by the protective effect of decreased 
oxidative stress.  
 Peroxisome proliferator-activated receptor-gamma (PPAR�),
the molecular target of glitazones, is highly expressed in adipose 
tissue and regulates adipocyte differentiation, FFA uptake and stor-
age. Pharmacological activation of PPAR� improves insulin resis-
tance in diabetes and has been reported to decrease liver damage in 
NAFLD by restoring adipose tissue insulin sensitivity, decreasing 
FFA flux to the liver [84, 85]. The Pro12Ala loss-of-function SNP 
in PPAR�2, which is thought to induce a modest impairment of 
transcriptional activation due to decreased DNA-binding affinity, 
was associated with a reduction of PPAR� activity in adipose tissue 
as well as decreased IR and diabetes in Caucasians [86]. The data in 
liver disease are conflicting however, Rey et al showed a signifi-
cantly higher risk of developing histological necro-inflammation in 
alcoholic liver disease patients carrying the 12Ala allele but found 
that the 12Ala allele was not associated with the progression of 
liver disease in NAFLD patients [87]. Similarly, the 12Ala allele 
was not associated with NAFLD susceptibility, liver damage or IR 
in 212 Italian patients with NAFLD [83]. However an association 
with carriage of the minor PPAR� haplotypes encompassing the 
12Ala allele was reported with increased risk of progressive liver 
disease in a US cohort of similar size [88]. 
 Another interesting candidate is represented by Lipin1 (LPIN1), 
a phosphatidate phosphatase that is highly expressed in adipose 
tissue, is involved in the metabolism of phospholipids and triacyl-
glycerol, and is required for adipogenesis and the normal metabolic 

Fig. (4). The I148M PNPLA3 mutation and progressive liver disease. A simplified working model showing the influence of the I148M PNPLA3 variant on the 
progression of chronic liver disease. 
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flux between adipose tissue and liver, where it also acts as an induc-
ible transcriptional co-activator to regulate fatty acid metabolism 
[89]. LPIN1 mRNA expression in the liver and adipose tissue has 
been positively associated with body mass and IR. LPIN1 SNPs and 
haplotypes that may confer variability in the protein activity have 
been associated with several components of the metabolic syn-
drome, including body mass, insulin levels, resting metabolic rate 
and to responsiveness to insulin sensitizers [90, 91]. Whereas in a 
case-control population study of 17538 Danes LPIN1 variants and 
haplotypes did not influence type 2 diabetes, obesity, or related 
quantitative metabolic phenotypes [92]. However, in a recent meta-
analysis conducted in 8504 subjects the LPIN1 rs13412852 T allele 
was associated with lower BMI and insulin levels [93], confirming 
that it possibly represents a protective factor towards metabolic 
syndrome alterations. 
 We evaluated whether the LPIN1 rs13412852 C>T polymor-
phism was associated with NASH and fibrosis in pediatric Italian 
patients with NAFLD, finding that the TT genotype was under-
represented in pediatric but not in adult patients with NAFLD, was 
associated with less severe dysplipidemia, and that children with 
this genotype had a trend for a lower prevalence of NASH and sig-
nificantly less severe liver damage independently of PNPLA3 geno-
type and other risk factors [94]. Although independent validation of 
these results is required, these data suggest that LPIN1 genotype 
may predispose to progressive NASH at early age by influencing 
lipogenesis and lipid metabolism. 
 Hepatic uptake of fatty acids (FA), as one of the routes to de-
velopment of steatosis, is of clinical relevance. Fatty acid transport 
proteins (FATP) hold a crucial role in mediating FA uptake in dif-
ferent tissues [95-97]. In the liver two different FATP isoforms are 
predominantly expressed; FATP2 and FATP5 [98]. The FATP5 
gene encodes a multifunctional protein which increases the hepatic 
uptake of FA and activates very long-chain fatty-acids and has bile-
CoA ligase activity [99, 100]. Overexpression as well as inhibition 
of FATP5 in cell culture and experimental animals underline its 
function in hepatic fatty acid trafficking [101, 102]. Furthermore, 
mice lacking FATP5 have defective bile acid conjugation and are 
protected from obesity [100]. FATP5 silencing reverses diet-
induced NAFLD and improves hyperglycemia in mice [101].  
 Since variations in the promoter region may alter the transcrip-
tional activity [103] we investigated the association of a FATP5 
promoter polymorphism with parameters of the fasting and post-
prandial lipid and glucose metabolism in a cohort study and in sub-
jects with histologically proven NAFLD. A total of 716 male sub-
jects from the Metabolic Intervention Cohort Kiel (MICK) and 103 
male subjects with histologically proved non-alcoholic fatty liver 
disease (NAFLD) were genotyped for the rs56225452 FATP5 
polymorphism and phenotyped for features of the metabolic syn-
drome. In the MICK cohort, ALT levels, postprandial insulin levels 
and triglyceride concentrations were higher in subjects carrying the 
rare A-allele than in GG homozygotes. Accordingly, the insulin 
sensitivity index determined after a mixed meal and standardized 
glucose load was lower in A-allele carriers. NAFLD cases carrying 
allele A were presented with also higher ALT activities. In NAFLD 
subjects the association of BMI with the degree of steatosis and 
glucose concentration differed across FATP5 promoter polymor-
phisms [104]. Therefore, the FATP5 promoter polymorphism 
rs56225452 seems to be associated with higher ALT levels, insulin 
resistance and dyslipidemia in the general population. The impact 
of the BMI on the severity of steatosis in NAFLD cases seems to 
depend partly on the FATP5 polymorphism, but additional studies 
are needed to define the association with progressive liver damage.  
 Synthesis of phosphatidylcholine is required for VLDL forma-
tion, when it is not available fat droplets accumulate in the cytosol 
of hepatocytes [105], [106]. This observation underpins the use of 
choline deficient diets as a well-recognised animal model of NASH 
[107, 108]. Thus, modifier genes of choline metabolism provide 

another source of candidates for study. Phosphatidylethanolamine 
N-Methyltransferase (PEMT) catalyzes the de novo synthesis of 
phosphatidylcholine in the liver [109]. Synthesis of new phosphati-
dylcholine molecules is required for VLDL formation and when 
they are not available fat droplets accumulate in the cytosol of he-
patocytes [105], [106]. PEMT knockout mice do not display any 
PEMT activity in the liver and depend completely on dietary cho-
line intake [110, 111], and when fed a choline-deficient diet de-
velop severe steatosis [112]. Song et al. identified a non-
synonymous SNP in the PEMT gene (523 G>A in exon 8), which 
results in a loss-of-function valine to methionine (V175M) substitu-
tion in the encoded protein. A higher occurrence of the low-activity 
175M variant was found in 28 subjects of mixed ethnicity with 
biopsy confirmed NAFLD compared to 59 controls, suggesting that 
this SNP may confer susceptibility to NASH [113]. Dong et al.
found that carriage of the Val175Met variant allele was signifi-
cantly more frequent in 107 patients with biopsy-proven NASH 
than in 150 healthy volunteers and also found that non-obese carri-
ers of the Val175Met variant were at increased risk of NASH [114]. 
In contrast, Jun et al. did not find any difference in PEMT genotype 
frequency between NAFLD patients (n=195) and controls (n=393) 
[115] and Romeo et al also failed to identify an association between 
the V175M allele and hepatic triglyceride content in the Dallas 
Heart Study (DHS) multiethnic cohort of 2349 individuals [116]. 
Together these findings suggest that it is unlikely that the 
Val175Met mutation represents a major contributor to NASH sus-
ceptibility, although the effect of altering genetic background may 
have been a contributory factor.  
 A defect in lipid export as lipoprotein may also contribute to the 
pathogenesis of steatosis [21]. Microsomal triglyceride transfer 
protein (MTTP) is necessary for assembly and secretion of VLDL 
from hepatocytes [117]. It has a key role in lipoprotein assembly by 
transferring triglycerides, to nascent apolipoproteins B. Abetalipo-
proteinaemia, a rare autosomal recessive disease caused by muta-
tions in the coding region of the MTTP gene, results in very low 
total cholesterol, undetectable plasma apoB levels and fat malab-
sorption, and is characterized by liver steatosis although this seldom 
progresses to steatohepatitis [118, 119]. A common functional SNP 
in the MTTP gene promoter (-493G/T) has been described [120], 
with the G allele associated with decreased MTTP transcription, 
less export of triglycerides from hepatocytes, and greater intracellu-
lar triglycerides accumulation. Namikawa et al. showed that NASH 
patients had a higher incidence of the G allele and of the G/G geno-
type compared to controls, even if the number of both patients and 
controls included in the study was limited [121]. Moreover, the 
stage of NASH was more advanced in Japanese patients with the 
G/G genotype than in patients with G/T genotype. A relatively 
small study from Italy demonstrated that the -493 G/T MTTP SNP 
influences liver disease and postprandial lipid metabolism in 
NASH. Patients with the G/G genotype were found to have more 
severe liver disease and a more atherogenic postprandial lipoprotein 
profile, in spite of similar degrees of adiposity and insulin resis-
tance, adipokine profile and dietary habits [122]. In 40 non-diabetic 
normo-lipidemic NASH patients compared to 40 healthy controls, 
the -493 G/T polymorphism modulated beta-cell function, an effect 
mediated by postprandial HDL-C and oxLDL metabolism [123]. In 
271 French patients with type II diabetes the -493 G/T SNP was 
associated with increased liver enzymes and increased susceptibility 
to steatohepatitis, however this study provided only indirect evi-
dence of a link between MTTP genotype and NASH, as liver biopsy 
specimens were not available and the authors adopted raised ALT 
as a surrogate for NASH [124]. This potential association was not 
supported by a Brazilian study in 131 patients with biopsy proven 
disease compared to 141 healthy volunteers: the presence of at least 
one -493 G allele was only marginally different between NASH and 
simple steatosis [125] (Tables 1, 2, and 3).
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 Variants in apolipoproteins influencing serum lipid metabolism 
might be involved as well. Apolipoprotein E (ApoE) is a plasma 
protein involved in lipid transport and metabolism [126]. Three 
alleles, �2, �3 and �4, at the ApoE locus determine three isoforms, 
ApoE2, ApoE3 and ApoE4, resulting in six ApoE genotypes (E2/2, 
E3/3, E4/4, E2/3, E2/4, E3/4). These isoforms differ by single 
amino acid substitution at position 112 and 158 of ApoE, which 
lead to a different association with lipoproteins and affinity for the 
LDL receptor [126, 127]. Homozygosity for the �2 allele is associ-
ated with hyperlipidemia, but no significant difference in ApoE 
genotypes and allele frequencies was observed between NAFLD 
patients and controls. Nevertheless, comparing non obese patients 
with controls it was found that the �2 allele and the �2/3 genotype 
were more prevalent in the control group, suggesting that occur-
rence of this allele and of this genotype may be protective against 

the development of NAFLD [128]. In line with these data, the 
ApoE3/3 genotype was associated with an increased risk of NASH 
in a cohort of Turkish patients, whereas the ApoE3/4 genotype had 
a protective effect [129]. Interestingly, Price et al. reported that in 
patients with persistent hepatitis C virus (HCV), which circulates in 
the plasma associated with VLDL, allowing the virus to enter target 
cells via lipoprotein receptors [130], the common genetic variations 
at the ApoE locus influence the outcome of HCV infection, with the 
�2 and �4 alleles favoring viral clearance [131].  
 Apolipoprotein C3 (ApoC3) is another major constituent of 
plasma very low density lipoprotein (VLDL), chylomicrons and 
HDL-C which inhibits lipoprotein lipase and triglyceride clearance 
[132]. Petersen et al reported that two common ApoC3 T-455C and 
C-482T promoter SNPs, which hamper the regulation of apolipo-
protein C3 expression by insulin signalling via FOXO1 phosphory-

Table 1. Genetic variants influencing NAFLD susceptibility identified by genomewide scans (GWAS) [8, 77, 273]. 

Gene SNP Effect on steatosis Effect on NASH/fibrosis/inflammation 

PNPLA3, patatine-like phospholipase domain  
containing 3 [48]

rs738409 
rs6006460[8] 

�

�
�

FDFT1, farnesyl diphosphate farnesyl transferase 1 rs2645424  �

COL13A1, collagen, type XIII, alpha1 rs1227756  �

EFCAB4B, EF-hand calcium binding domain 4B rs887304  �

NCAN, neurocan rs2228603 �

LYPLAL1, lysophospholipase-like 1 rs12137855 �

GCKR, glucokinase regulatory protein rs780094 �

PPP1R3B, protein phosphatase 1, regulatory subunit 3b rs4240624 �

Table 2. Genetic risk factors for NAFLD evaluated in case-control studies. 

Gene SNP 

Genetic variants involved in the modulation of steatosis 

PEMT, phosphatidylethanolamine N-methyltransferase [113] 

PPAR�, peroxisome proliferative activated receptor alpha [81]  

PPAR�, peroxisome proliferative activated receptor gamma [83, 87] 

APOE, apolipoprotein E

APOC3, apolipoprotein C-III [288] 

rs7946 

rs1800234 

rs1805192 

N/A 

rs2854116 

rs2854117 

Genetic variants involved in glucose metabolism 

ADIPOQ, adiponectin [153] rs2241766 

rs1501299 

Genetic variants influencing redox status and stress response 

SOD2, superoxide dismutase 2, mitochondrial [274] 

UCP3, uncoupling protein 3, mitochondrial [167] 

rs4880 

rs1800849 

Genes influencing inflammation 

TNF�, tumor necrosis factor alpha [207] 

IL-6, interleukin [218] 

IL28B [230, 232, 233, 238, 289] 

rs361525 

rs1800795 

rs12979860 

N/A: not available 
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lation [133], predispose to liver fat accumulation in Indian men by 
altering lipid metabolism and IR [134]. The relationship with al-
tered liver enzymes and liver damage was not assessed. This asso-
ciation was not replicated by a later study which found no associa-
tion between these two ApoC3 polymorphisms and hepatic triglyc-
eride content, IR or fasting triglycerides levels in a large multi-
ethnic US cohort [135]. Neither was this validated in an Italian 
study of 585 obese subjects [136]. Furthermore, APOC3 genotype 
was not associated with elevated liver enzymes or with the his-
tological severity of liver damage in Italian and UK patients [137], 
suggesting that the initial observation may represent a type 1 error.  

6.2. Variants Involved in the Pathogenesis of IR 
 IR is the key factor in NAFLD pathophysiology and is deeply 
entangled with the progression of liver disease [138], but the causal 
relationship between IR and fibrogenesis remains unclear. Func-
tional common SNPs of genes included in the insulin signalling 
pathway influence IR and the susceptibility to type 2 diabetes. A 
schematic representation of the insulin signalling pathway in the 
liver is presented in (Fig. 5). Plasma cell antigen-1, also known as 
ENPP1 is a membrane glycoprotein, which inhibits insulin signal-
ling. The ENPP1 Lys121Gln gain-of-function polymorphism en-
hances the interaction between the ENPP1 glycoprotein and insulin 
receptor (INSR), contrasting INSR kinase activity, and is associated 
with an increased diabetes risk [139]. IRS-1 transduces INSR sig-

nalling to downstream kinases regulating glucose and lipid metabo-
lism, cell survival, and proliferation. The loss-of-function 
Gly972Arg SNP decreases IRS-1 activity and inhibits INSR auto-
phosphorylation and activity [140], increasing the risk of IR and 
diabetes [141, 142]. We recently demonstrated that the combination 
of ENPP1 121Gln and IRS-1 972Arg alleles was associated with 
decreased activation of the insulin signalling pathway in the liver 
and influenced fibrosis severity in a large multicentre series of 
NAFLD patients [9]. These data suggest that hepatic IR has a 
causal role in the progression of liver damage in NASH and there-
fore, that amelioration of IR may improve the long-term progres-
sion of the disease. However, additional independent studies are 
required to replicate this association and to establish the efficacy of 
insulin sensitizers in ameliorating the progression of liver fibrosis.  
 Adiponectin, the major adipokine that has insulin-sensitizing, 
anti-inflammatory and anti-fibrotic effects [143], and whose de-
creased levels have been shown to correlate with hepatic fat accu-
mulation [144-146], is another molecule of interest. Increased adi-
pose tissue IR leading to reduced adiponectin levels has been de-
scribed in patients with severe NASH and hyperglicemia compared 
to healthy controls independently of body mass [84, 85]. Several 
papers have reported a significant decrease in the serum levels of 
adiponectin in NASH patients [147, 148], and the overall evidence 
support the existence of an inverse relationship between adi-
ponectin levels and the severity of NAFLD [149-151], suggesting a 

Table 3. Genetic risk factors for progressive liver disease in NAFLD evaluated in case-control studies. 

Gene SNP 

Genetic variants involved in modulation of steatosis 

MTTP, microsomal triglyceride transfer protein [121, 122, 124, 125] 

PEMT, phosphatidylethanolamine N-methyltransferase [113, 114] 

PPAR�, peroxisome proliferative activated receptor gamma [88] 

APOE, apolipoprotein E [129] 

LPIN1, lipin 1 [94] 

rs1800591 

rs7946 

rs1805192 

N/A 

rs13412852 

Genetic variants involved in glucose metabolism 

ENPP1, ectonucleotide pyrophosphatase/phosphodiesterase1 or PC-1 [9] 

IRS1, insulin receptor substrate 1 [9] 

ADIPOQ, adiponectin [152] 

rs1044498 

rs1801278 

rs2241766 

rs1501299 

Genetic variants influencing redox status and stress response 

SOD2, superoxide dismutase 2, mitochondrial [11, 160] 

UCP3, uncoupling protein 3, mitochondrial [167] 

HFE, hemochromatosis [175, 290] 

rs4880 

rs1800849 

rs1800562 

rs1799945 

Genes influencing inflammation 

TNF�, tumor necrosis factor alpha [207] 

IL-6, interleukin [218] 

TLR4, toll-like receptor 4 [192] 

IL28B [65, 230, 233, 237, 238] 

rs361525 

rs1800795 

rs4986791 

rs12979860 

Genetic variants involved in HSCs activation and fibrogenesis 

KLF6, kruppel-like factor 6 [275] 

TGF-�1, transforming growth factor beta [248, 253] 

rs3750861 

rs1800471 

N/A: not available 



Genetic Predisposition in NAFLD and NASH Current Pharmaceutical Design, 2013, Vol. 19, No. 29    5227

role for adiponectin dysregulation in the pathogenesis of NASH 
[149]. Nevertheless, the available evidence on the correlation be-
tween adiponectin genetic variants and the progression of NAFLD 
is still debated. Tokushige et al. reported that two SNPs (+45T>G 
of exon 2 and +276G>T of intron 2) were associated with the pro-
gression of liver fibrosis and insulin resistance in NAFLD Japanese 
patients [152]. Musso et al. added that the same adiponectin SNPs 
modulate the acute adiponectin response to dietary fat, and are as-
sociated with the presence of NAFLD in the Italian population. 
Moreover, +45 TT and +276 GT/TT carriers had significantly in-
creased prevalence and severity in NAFLD than in other genotypes 
[153]. Wang and colleagues observed hypo-adiponectinemia and 
insulin resistance in Chinese NAFLD patients with metabolic syn-
drome. However, they concluded that the T45G and G276T SNPs 
were not important determinants of NAFLD, even if they might 
influence serum ALT, BMI, insulin resistance, lipid metabolism, 
and plasma adiponectin concentration [154]. Interestingly, it seems 
that genetic variation in the hepatocellular receptor of adiponectin 
(ADIPOR2) may also influence liver fat content in Northern Euro-
pean subjects [155]. 

6.3. Variants Influencing Redox Status and the Stress Response 
 Increased FFA flux to the liver on a background of IR plays a 
key role in the pathogenesis of NASH through hepatocellular oxida-
tive stress, which leads to reactive oxygen species (ROS) produc-
tion during FFA oxidation.  
 The mitochondrial enzyme manganese-dependent superoxide 
dismutase (MnSOD) encoded by the nuclear SOD2 gene, plays an 
important role in protecting cells from superoxide radicals [156]. A 
common polymorphism in the SOD2 gene (C47T, rs4880) results in 
an amino acid substitution (Ala16Val) in the signal sequence target-
ing the enzyme to the mitochondrial matrix, where it exerts its func-

tion [157]. The Ala allele has been associated with more efficient 
protein import and with a higher enzyme activity [158, 159]. There-
fore, the SOD2 rs4880 polymorphism has been investigated as a 
possible susceptibility factor in NASH and several other diseases 
related to oxidative stress including hereditary hemochromatosis 
[160]. In the largest available study in NAFLD, Al-Serri et al. ex-
amined a possible association between SOD2 genotype and suscep-
tibility to NASH using two complementary approaches: a family 
study in which they analyzed trios consisting of children with fi-
brotic NAFLD and their two parents, and a classical case-control 
allelic association study in unrelated patients with NAFLD of vary-
ing severity. Using both the methodologies, a consistent association 
between the C47T SNP and fibrosis was demonstrated, providing 
persuasive genetic evidence that mitochondria-derived oxidative 
stress is important in the pathogenesis of advanced NAFLD [11]. 
Consistent with these findings, Namikawa et al. reported that Japa-
nese patients with NASH had a higher incidence of the T/T SOD2 
genotype [121]. 
 Further evidence supporting a role for mitochondrial ROS 
comes from the evaluation of uncoupling protein 3 (UCP3), a mito-
chondrial transporter that uncouples the oxidative phosphorylation 
by increasing the proton leak of the inner mitochondrial membrane. 
Some studies have pointed to a role for UCP3 in the regulation of 
whole body energy homeostasis [161], diet induced obesity [162] 
and regulation of lipids substrates [163]. A SNP in the UCP3 pro-
moter (-55C>T, rs1800849) has been associated with increased 
expression of UCP3 mRNA in the skeletal muscle of Pima Indians 
[164] as well as with body mass [165] and an atherogenic lipid 
profile in French Caucasians [166]. More relevant, in NAFLD pa-
tients, the rs1800849 UCP3 -55CT genotype was associated with 
insulin resistance, adiponectin levels, the presence of moderate-
severe steatosis and NASH [167]. 

Fig. (5). The insulin signalling pathway in hepatocytes. Insulin (I) binding to the extracellular subunits of insulin receptor (InsR) leads to activation of tyrosine 
kinase in the intracellular domain, adenosine triphosphate (ATP) binding and finally receptor autophosphorylation. ENPP1 is a membrane glycoprotein that 
interact with InsR inhibiting its kinase activity. InsR autophosphorylation is followed by phosphorylation of the insulin-receptor substrates (IRS), activation of 
phosphoinositide 3-kinase (PI3-kinase) and subsequent phosphorylation of Akt/PKB (protein kinase B), which are involved in mediating the metabolic effect 
of insulin. FOXO1 is a transcription factor that in the absence of insulin induces gluconeogenesis, lipoprotein export, and apoptosis. Insulin-mediated Akt 
phosphorylation of FOXO1 leads to its nuclear exclusion, ubiquitination, and subsequent proteasomal degradation. 
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 It has been suggested that excess hepatic iron deposition, a fre-
quent feature observed in patients with NAFLD, may contribute to 
oxidative stress within the liver [22, 168]. The C282Y and H63D 
mutations of the hemochromatosis (HFE) gene represent a common 
cause of inherited iron overload in individuals of European ancestry 
[169]. The mechanism is related to decrease hepcidin release lead-
ing to increased iron absorption and parenchymal accumulation 
[170]. Although initial studies reported that mild iron overload 
associated with heterozygosity for C282Y HFE mutation may con-
fer susceptibility to NAFLD and cause relative insulin deficiency 
[171], the available literature suggests that HFE mutations do not 
predispose to steatosis [172]. It is conceivable that HFE mutations 
could contribute to oxidative stress via hepatic iron loading among 
patients with NASH, and increase the susceptibility to fibrosis pro-
gression however this is not entirely supported. The relationship 
between HFE mutations and liver fibrosis is controversial too. Ini-
tial reports suggested that increased ferritin levels were markers of 
histological damage, but that HFE mutations did not contribute to 
hepatic fibrosis in many patients with NAFLD [173]. Later, Nelson 
et al. suggested that the presence of the C282Y mutation was a risk 
factor for development of advanced hepatic fibrosis among US 
Caucasian patients with NASH [174]. More recently, two large 
multi-centre studies conducted in Northern Italy and the US again 
reported that iron deposition was a risk factor for moderate/severe 
fibrosis in patients with NAFLD, but that HFE genotype determina-
tion was not clinically useful in these patients unless evidence of 
severe parenchymal iron accumulation is obtained [175, 176]. As 
other genetic factors more reliably predicted hepatic iron accumula-
tion, e.g. the beta-thalassemia trait [10], it is likely that a wider 
panel of genetic variants influencing iron metabolism would be 
required to refine the risk of progressive disease. Independent of the 
genetic background, iron overload could be an appealing therapeu-
tic target in some patients with NASH but this remains to be real-
ised [168].  
 Finally, endoplasmic reticulum stress and the activation of the 
unfolded protein response has been implicated in NASH patho-
genesis independently of oxidative stress [177]. Alpha-1-antitrypsin 
(AAT), is the principal serum protease inhibitor synthesized by the 
liver. Several variants of this gene have been described, the most 
common being the PiZ (Glu342Lys) and PiS (Glu264Val) alleles, 
whose prevalence is about 1% and 4% respectively in Northern 
Italy and show a decreasing gradient from North to South in Europe 
[178, 179], and potentially represent genetic modifiers of hepatocel-
lular damage and inflammation. These amino acid substitutions lead 
to abnormal folding and spontaneous protein polymerization, de-
termining endoplasmic reticulum stress and hepatocellular damage. 
Heterozygosity for the PiZ and to a lesser extent for the PiS alleles 
has been associated with cirrhosis and hepatocellular carcinoma 
(HCC) [180, 181]. In Italian patients with NAFLD, the presence of 
the PiS and PiZ alleles was associated with hyperferritinemia and 
non-parenchymal iron accumulation, likely in response to the acti-
vation of the unfolded protein response in the endoplasmic reticu-
lum [182], but on the other hand were not associated with more 
severe liver disease [183]. However, whether AAT mutations pre-
dispose to hepatocellular carcinoma in patients with NAFLD re-
mains to be evaluated. 

6.4. Variants Influencing Inflammation 
 Obesity and NAFLD are associated with the increased produc-
tion of cytokines by hepatocytes and Kupffer cells in response to 
bacterial products of intestinal origin [24], leading to hepatic and 
systemic IR, and contributing to the progression from steatosis to 
NASH [2]. 
 Toll-like receptor 4 (TLR4) is a transmembrane receptor which 
signals through adaptor proteins in activating downstream effectors 
that include nuclear factor kB (NF-kB) [184], mitogen-activated 
protein kinase, and phosphatidylinositol 3-kinase (PI3K) [185] that 

control cell survival and apoptosis [186], and plays a critical role in 
mediating the activation of Kupffer cells in the response to LPS in 
NAFLD [23, 187]. In the liver TLR4 signalling contributes to he-
patic inflammation and injury in NAFLD [23, 188, 189]. The T399I 
(1196C>T) SNP of TLR4 gene emerged as conferring protection 
from fibrosis progression [190] along with the highly co-segregated 
D229G (896A>G) polymorphism. The TLR4 T399I and D299G are 
two common, highly linked non-synonymous SNPs within the ex-
tracellular domain of TLR4 protein, which may affect the strength 
of interactions with either agonists and/or co-receptors [191]. Guo 
et al. demonstrated that TLR4 D229G and T399I SNPs that are 
associated with protection from hepatic fibrosis reduce TLR4-
mediated inflammatory and fibrogenic signalling, and lower the 
apoptotic threshold of activated hepatic stellate cells (HSCs) [192], 
thus suggesting a critical role of TLR4 signalling in regulating 
HSCs activation.  
 Evidence indicating that apoptosis is the major pathway of cell 
death during NASH make TNF�, a pro-inflammatory cytokine, a 
good candidate for a role in mediating liver injury given its ability 
to induce apoptosis in hepatocytes under conditions of oxidative 
stress and to induce IR. Two polymorphisms in the TNF� promoter 
region have been studied more extensively: one at position 308 
(TNF2 allele) [193] and another at position 238 (TNFA allele) 
[194]. TNF2 allele is associated to increased constitutive and induc-
ible expression of TNF� [195, 196]. Conflicting data have been 
reported on the TNFA allele [197], but most investigators believe 
that TNFA allele is associated to an increased release of this cyto-
kine. Increasing evidence suggests that TNF� is involved in the 
pathogenesis and progression of liver disease of different aetiology 
[198-202]. TNF� SNPs have been reported to influence susceptibil-
ity to several hepatic diseases including alcoholic steatohepatitis 
[197] as TNF� appears to be involved in both the early stage of 
fatty liver disease and also the transition to steatohepatitis and more 
advanced stages of liver damage [203]. Conflicting data have been 
reported on the association of TNF� polymorphisms, serum insulin 
levels, IR index, per cent body fat, and type 2 diabetes mellitus 
[204-206]. The prevalence of the -238 TNF� polymorphism was 
reportedly higher in Italian patients with NAFLD than in controls, 
and TNF� polymorphisms were associated with IR, pancreatic �-
cell function, and NASH [207]. Pastor et al. found that the TNFA 
allele is associated with a higher risk to develop liver cirrhosis in a 
Spanish alcoholic cohort [208]. In contrast, in a prospective cohort 
of Chinese patients with histology-proven NAFLD, TNF� poly-
morphisms were not associated with either presence of NAFLD or 
disease severity [209]. HCV infection is also associated with in-
creased production of TNF� [210]. Our group reported that in pa-
tients with HCV chronic hepatitis TNF� genotype modulates the 
activity of the cytokine pathway, influences insulin sensitivity and 
the severity of HCV chronic hepatitis, but not liver steatosis [211]. 
On the contrary, Sanchez-Munoz et al. did not find any difference 
in insulin resistance, �-cell reserve, insulin and leptin levels be-
tween HCV patients with or without mutation at the promoter re-
gion of the TNF� gene [212]. All in all, results are not consistent 
across the populations evaluated, and therefore it is likely that the 
reported associations are explained by the extensive linkage dise-
quilibrium and genetic variability within the HLA-C region includ-
ing the TNF� gene, determining the associations of different TNF�
alleles with other causal variants near the TNFA locus. 
 Interleukin 6 (IL-6) is another cytokine involved in both in-
flammation and IR [213]. However, whether specific IL-6 SNPs are 
associated with IR remains still disputed, given that conflicting 
results have been reported, probably due to population specific 
differences in the predisposition to IR and type 2 diabetes. The -
174G/C promoter SNP has been reported to have either a protective 
or a promoting role for the development of type 2 diabetes [214, 
215]. Several studies have shown that C allele is associated with IR, 
diabetes, and metabolic syndrome [215-217]. Carulli et al. found 
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that the IL-6 -174C variant was significantly more prevalent in 
NAFLD than in healthy subjects, was associated with increased 
fasting insulin and HOMA-IR, and was an independent predictor of 
NAFLD and NASH [218]. However, this study considered a very 
limited number of NAFLD patients of whom only half had had liver 
biopsy [218]. 

6.5. IL28B Genotype, Steatosis, and NASH 
 Genome-wide association studies have recently identified ge-
netic variations near the IL28B gene, encoding for interferon (IFN)-
�3, as a strong predictor of spontaneous and treatment-induced 
clearance of hepatitis C viral infection [219-224]. Protective vari-
ants at the rs12979860 and rs8099917 loci have consistently been 
associated with faster decline of viral load and an approximately 
two-fold higher sustained virologic response rate during standard of 
care treatment, in particular in patients affected by the difficult to 
cure HCV genotype 1 and 4 [225, 226]. The mechanism by which 
these genetic variants influence the outcome of HCV infection, i.e. 
whether they influence IFN-�3 expression by affecting gene tran-
scription or are linked a coding variant (Lys70Arg) of the IFN-�3
protein, is still debated [220, 224], but it seems to result in a differ-
ent pattern of activation of the innate immune system against HCV 
infection, as determined by the different basal and IFN-� induced 
expression of interferon stimulated genes and inflammatory activity 
[227, 228], possibly influencing viral evolution under the selective 
pressure of the immune system [229].  
 Steatosis is frequently observed in patients with chronic hepati-
tis C (CHC), particularly those with genotype 3 infection, and is 
associated with fibrosis progression and treatment failure [230, 
231]. Tillmann et al. recently reported a negative association be-
tween the interleukin 28B (IL28B) rs12979860 CC genotype, pre-
dicting sustained virological response [219], and steatosis in geno-
type-1 CHC [232]. Therefore, through the effect of inflammatory 
cytokines on lipid metabolism or by favouring a better control of 
HCV replication [211], IL28B favourable variants protect from the 
development of steatosis [232], and possibly from the steatosis-
associated fibrosis progression and increased risk of HCC [230, 
233]. In addition, the negative association between the CC genotype 
and steatosis may partly explain the association of steatosis with 
resistance to peginterferon plus ribavirin therapy in genotype 1 
CHC patients. However, the effect of IL28B variants likely on fi-
brosis progression rate in patients with ongoing HCV was still con-
troversial [231, 234, 235].  
 As discussed in the previous paragraphs, the PNPLA3 rs738409 
polymorphism is a strong determinant of hepatic fat accumulation 
and steatohepatitis [8, 52], but also influences steatosis and fibrosis 
progression in CHC [64, 233, 236]. A previous study [236], also 
reported an association between IL28B rs12980275 genotype and 
steatosis in CHC non genotype 3 patients, but the rs12979860 
IL28B polymorphism was not tested and the interaction with 
PNPLA3 genotype was not analyzed in details. The negative asso-
ciation of rs12979860 CC with histologically-determined steatosis 
was recently confirmed in 567 naïve, consecutive, non-genotype 3 
patients from referral centres in Milan and Vienna, without exces-
sive alcohol intake [237]. The association between IL28B genotype 
and steatosis was independent of acquired risk factors, and of the 
PNPLA3 GG genotype. Interestingly however, the rs12979860 CC 
genotype protected form steatosis in patients positive, but not in 
those negative for the PNPLA3 G variant at risk, suggesting that an 
interaction occurs between IL28B and PNPLA3 genotypes in the 
pathogenesis of steatosis in CHC non genotype-3 patients. In the 
same cohort of patients, a significant interaction between the 
rs12979860 IL28B CC and PNPLA3 genotype on liver damage was 
also observed, as the IL28B CC genotype was associated with ad-
vanced fibrosis only in patients negative for the PNPLA3 GG geno-
type independently of age, BMI, and ALT levels [65]. These data 
indicate that stratification for PNPLA3 GG genotype unmasked an 

association between IL28B CC genotype and more severe liver 
fibrosis, which may be related to increased hepatic inflammation 
associated with the favourable rs12879860 allele. 
 Interestingly enough, Petta et al. have recently reported that in 
160 consecutive patients with biopsy-proven NAFLD, the IL28B
rs12979860 CC genotype was not associated with protection from 
steatosis in the absence of viral infection, but it was associated with 
about a four-fold increased risk of moderate-severe lobular inflam-
mation independently of age, gender, triglycerides, hyperuricemia, 
and steatosis grade, and was significantly associated with severe 
fibrosis (stage 3-4) at univariate analysis [238]. Intriguingly, the 
risk of more severe inflammation conferred by the “at risk” CC 
variant was particularly evident in subjects carrying also the 
PNPLA3 G allele. Provided that the association between IL28B
genotype and hepatic inflammation complicating NAFLD is con-
firmed in larger series that are urgently awaited, data would suggest 
that the IL28B CC genotype represent a host factor influencing 
hepatic inflammation in different liver diseases, and the incorpora-
tion together with PNPLA3 in non-invasive scores could be useful 
to refine the risk of NASH. 

6.6. Variants Involved in HSCs Activation and Fibrogenesis 
 Activated HSCs are the major source of extracellular matrix 
(ECM) deposition during fibrogenesis [239]. HSCs also release 
fibrogenic cytokines with autocrine and paracrine effects, including 
TGF-�1, and over-express tissue inhibitors of metalloproteinase, 
which promote ECM accumulation by inhibiting matrix degrada-
tion. 
 Kruppel-like factor 6 (KLF6) belongs to the Kruppel-like fam-
ily of transcription factors that play diverse roles in differentiation, 
cell growth, apoptosis and angiogenesis [240]. KLF6 was identified 
as an early gene expressed in activated hepatic stellate cells (HSCs) 
after liver injury [241, 242], raising the possibility that it may be 
involved in the process of liver fibrogenesis. Indeed, KLF6 transac-
tivates several genes critical for the development of liver fibrosis, 
including collagen 1, TGF-�1 and types I and II TGF- � receptors in 
HSCs [242], [243]. A functional SNP, the IVS1-27G>A SNP 
(rs3750861) located within the first intron, has been identified in 
the KLF6 gene [244]. Miele et al. showed that the presence of the 
KLF6 IVS1-27G>A SNP, which was demonstrated to reduce fibro-
genesis in HSCs, was associated with less fibrosis in a UK cohort 
with biopsy-proven NAFLD patients. This trend was confirmed in 
an independent group of Italian patients. Moreover, analysis of the 
combined UK and Italian groups identified the presence of wild-
type KLF6 as a predictor of moderate/advanced fibrosis independ-
ently of all other risk factors of progressive disease, suggesting that 
the wild-type KLF6 genotype is a significant susceptibility factor 
for fibrotic NAFLD, whereas KLF6 IVS1-27G>A protects against 
the development of fibrosis [12]. The effect of KLF6 genotype on 
NASH might not be limited to modulation of fibrogenesis, as it also 
influenced fasting glucose levels. Bechmann et al. observed that 
KLF6 IVS1-27G wild-type allele was associated with stepwise 
increase in fasting plasma glucose and insulin and reduced hepatic 
insulin sensitivity [245], and the effect was at least partially medi-
ated by reduced expression of glucokinase, raising the possibility 
that the effect of this variant on the progression of liver damage in 
NASH might entail regulation of glucose and lipid metabolism. 
 The growth factor TGF-�1 also plays a dominant role in medi-
ating hepatic fibrosis by contributing to the activation of HSCs 
[246, 247]. Several polymorphic sites have been described within 
the TGF- �1 gene. One non-synonymous SNP at codon 25 (+915) 
C/G, encoding an Arg25Pro substitution, modulates TGF- �1 pro-
duction in vitro and occurs within the peptide signal sequence that 
is cleaved from the active TGF-�1 protein. Individuals with the 
Arg/Arg homozygous genotype produce substantially more TGF-�1
protein than individuals with the Arg/Pro genotype. In patients with 
chronic hepatitis C, those with the high TGF-�1-producing 
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(Arg/Arg) at codon 25 were more likely to have increased hepatic 
fibrosis compared to subjects with Arg/Pro or Pro/Pro genotypes 
[248]. In addition, the pro-fibrotic Arg/Arg genotype was more 
frequent in patients with hypertension versus normotensive controls 
[249]. In cardiac and renal fibrosis, TGF-�1 production is triggered 
by angiotensin II (AII), the principal effector molecule of the renin-
angiotensin system (RAS) [250, 251]. Recent findings indicate that 
AII may augment the accumulation of extracellular matrix [252]. 
An AT polymorphism in the promoter region of the gene (AT-6 
G>A), which affects the basal transcription rate of the gene leading 
to increase AII production, was also associated with progressive 
hepatic fibrosis in Australian patients with chronic hepatitis C 
[248]. Since IR and systemic hypertension are predictors of ad-
vanced fibrosis in obese patients with NAFLD, Dixon et al. hy-
pothesized that high AT and TGF-�1 producing genotypes increase 
the risk of liver fibrosis in obese subjects with NAFLD. In 105 
severely obese subjects with NAFLD, they showed that individuals 
who inherited a combination of two pro-fibrotic genotypes have a 
significantly increased risk of advanced hepatic fibrosis [253]. 

6.7. Variants Influencing Telomerase Activity 
 Telomere diseases, exemplified by dykeratosis congenita, 
which is caused by mutations in DKC and other genes involved in 
telomeres maintenance, are characterized by premature senescence 
of the staminal compartment, tissue fibrosis due to the loss of re-
generative capacity of tissues, and increased cancer risk due to 
chromosomal instability consequent to the faulty protection of 
chromosome ends, i.e. the telomeres, during mitosis [254]. Clinical 
features include hematological alterations ranging from macrocyto-
sis to bone marrow failure, mucocutaneous alterations, pulmonary 
fibrosis, diabetes, and cirrhosis. Loss-of-function mutations in the 
telomerase gene (TERT) are also responsible in combination with 
environmental factors of a significant proportion of cases of famil-
ial idiopathic pulmonary fibrosis [255, 256]. 
 Most importantly however, mutations in TERT and in TERC, 
encoding for the RNA primer of TERT, have been associated with a 
spectrum of familial hepatic liver disease often associated with 
histological steatosis similar to NAFLD and hepatic iron overload 
[257]. Furthermore, they have recently been demonstrated to repre-
sent a frequent risk factor for cirrhosis, being observed in 3-8% of 
unselected patients, in other liver diseases, including chronic viral 
hepatitis, alcoholic liver disease and also NAFLD [258, 259]. 
TERT over-expression is a frequent mechanism in HCC related to 
chronic hepatitis [260] because it favours the replicative potential of 
the stem cell compartment. HCC cases have already been reported 
in a few patients with TERT mutations [254, 259], suggesting that 
an alternative carcinogenic pathway likely involving chromosomal 
instability ensues, that is associated with aggressive biological fea-
tures. Furthermore, rapid progression of liver cirrhosis, aggressive 
recurrence of HCC, and poor outcome after liver transplantation 
have been reported in patients with TERT mutations [259], suggest-
ing that further studies are needed to define the optimal manage-
ment of liver failure and HCC occurring in patients with TERT 
mutations [258, 259].  
 These findings suggest the opportunity to re-evaluate the most 
currently accepted models explaining the progression of liver dam-
age during steatohepatitis and liver diseases, which are based only 
on the activation of fibrogenesis without taking into account the 
exhaustion of the parenchymal regenerative compartment, and es-
tablish genes involved in telomere maintenance as attractive targets 
for future genetic as well as therapeutic research. They also provide 
the first demonstration that relatively rare genetic variants with high 
penetrance, which by definition could not be detected by GWAS, 
are associated with the progression of common liver diseases in-
cluding NAFLD. Given the recent technological developments 
allowing high-throughput sequencing at affordable costs in the near 
future, it is likely that the evaluation of the role of these variants in 

the progression of NASH to cirrhosis and hepatocellular carcinoma, 
and in the pathogenesis of cryptogenic cirrhosis will became an 
active area of research. 

7. SPECIFIC ISSUES IN THE PAEDIATRIC POPULATION 
 Pediatric NAFLD has also become a common chronic liver 
disease in children and adolescents in industrialized countries fol-
lowing the growing prevalence of childhood obesity [261-263]. 
NAFLD affects 3-10% of subjects during the developmental age, 
and this figure increases up to approximately 80% among obese 
[263-266]. A large survey found elevated ALT in 8 % of U.S. ado-
lescents [267], whereas in the two largest samples of biopsy-proven 
NAFLD, NASH was diagnosed in 64-84% of NAFLD children in 
Italy and California [268, 269]. Conditions predisposing to pediatric 
NAFLD are generally hyper-alimentation associated with inade-
quate physical activity leading to a progressive increase of body 
mass and visceral adiposity. Higher intake of calories than needed 
for growth may cause overweight and obesity in children. This is 
becoming more and more diffuse with the daily consumption of fast 
foods and soft drinks, associated with inactive leisure activities, 
such as watching television or playing video games. However, fa-
milial, epidemiological, and twin studies suggest that also inherited 
factors may play a pivotal role in determining the susceptibility to 
develop pediatric NASH [6, 7, 27, 34, 270].  
 As NAFLD has a major genetic component [6], due to the 
lower number of confounding factors, such as the duration of dis-
ease, presence of obesity, lifestyle habits, comorbidities, and drugs, 
and the likely more important role played by genetic factors in 
early-onset disease in the presence of environmental triggers such 
as obesity, this is especially true for children [54]. 
 Indeed, the association between the I148M variant of PNPLA3,
the major risk factor for NASH identified so far, and both liver 
enzymes and steatosis was soon confirmed in obese children of 
different ethnicity [55, 56, 271, 272], and in one family study in 
Italian trios [52], indicating that it exerts its effect early in life. Im-
portantly, the magnitude of the association between the I148M 
PNPLA3 variant and liver enzymes was shown to be related to the 
size of abdominal fat [60], and to high dietary carbohydrate and 
sugar consumption specifically during the developmental age [62]. 
Furthermore, PNPLA3 genotype influenced the histological severity 
of NASH alterations and fibrosis in obese pediatric patients who 
underwent biopsy because of persistently altered liver enzymes 
[54]. Interestingly, the association with fibrosis was stronger than in 
adults [50], in that, after adjustment for other risk factors such as 
age, waist circumference, hyperglycemia, and ALT levels, each 
148M allele increased the risk of fibrosis by almost two-fold [54]. 
 A more recent GWAS conducted in a larger population was 
able to identify a wider set of genetic variants influencing steatosis 
besides I148M of PNPLA3 [273], of whom the rs2854116 SNP of 
Glucokinase regulator (GCKR), involved in the regulation of the 
uptake of monosaccharides and lipogenesis was confirmed to pre-
dispose to fatty liver and dyslipidemia in obese children and ado-
lescents independently of PNPLA3 [75], although the effect on 
histological progression of liver disease is still unknown, especially 
in view of the ameliorating effect on insulin resistance. 
 Additional variants in genes implicated in NASH pathogenesis 
have been shown to influence liver damage and fibrosis progression 
in candidate gene case-control studies using pediatric patients. 
These include genetic variants regulating insulin receptor activity, 
namely the ENPP1 Lys121Gln and the IRS-1 Gly972Arg functional 
SNPs [9], the SOD2 C47T rs4880 SNP regulating SOD2 mitochon-
drial import and anti-oxidant activity [274], and the KLF6 IVS1-
27G>A SNP regulating alternative splicing isoforms of the tran-
scription factor KLF6 involved in the regulation of the regulation of 
metabolism in hepatocytes and fibrogenesis in hepatic stellate cells 
[275]. In contrast, variants in the APOC3 regulating VLDL metabo-
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lism were not confirmed to influence the susceptibility to steatosis 
and NASH [276]. 
 Finally, there is growing awareness that the expression of some 
genetic variants may be age-dependent, i.e. that the phenotype 
might be more (or less) marked or involve different traits during the 
developmental age. For example, the common variant (rs13412852) 
influencing the expression of Lipin-1 (LPIN1) [277], was associated 
with lipid levels, NASH severity, and hepatic fibrosis in children 
with NAFLD, whereas it influenced body mass, but not the severity 
of liver histology, in adults with NAFLD of the same ethnicity 
[278, 279]. 
 To summarize, genetics has a key role in determining who 
among the large fraction of the pediatric population with metabolic 
risk factors will develop progressive liver disease [6]. The I148M 
variant of PNPLA3 is likely the major genetic determinant of in-
creased hepatic fat content by interacting with body fat and dietary 
factors [8, 54, 60, 62], but it also influences the susceptibility to 
NASH and fibrosis, [278]. Additional studies are required to vali-
date these findings at population level and in prospective studies, to 
evaluate whether PNPLA3 influences the response to therapy (see 
below), and to define the possible relevance of I148M genotype for 
the clinical management of patients, and in particular to develop 
new non-invasive scores that may avoid to perform liver biopsy that 
is especially problematic in young children. Evaluation of the inter-
action of PNPLA3 with other genetic variants influencing steatosis 
and NASH, including GCKR [75], ENPP1 and IRS-1 [9], SOD2 
[274], KLF6 [275], LPIN1 [278], and possibly other SNPs will be 
instrumental to achieve these goals. 

8. INFLUENCE OF GENETICS ON TREATMENT OUT-
COME 
 As the previous sections have highlighted, the genetic basis of 
susceptibility to NAFLD and progressive NASH is beginning to be 
elucidated, but very little is known about the effect of genetics on 
the response to treatment. Much of the uncertainty is obviously 
related to the lack of effective pharmacological treatment specific 
for NASH. However, lifestyle changes and in particular sustained 
weight loss has unequivocally demonstrated to improve histological 
features of NASH in the majority of patients [280, 281], suggesting 
that in most cases genetic risk factors are not able to cause NASH 
in the absence of environmental triggers. A recent systematic re-
view and meta-analysis has shown that exercise interventions per se
reduce liver fat despite minimal or no weight loss confirming a role 
for exercise as a therapeutic target in NAFLD [282]. 
 The minor G allele of PNPLA3 has been suggested to impair 
triglyceride hydrolysis in in vitro studies and several studies have 
shown that the GG carriers have an increase risk of NASH, for 
which weight loss is considered the perhaps best treatment [283]. In 
a recent study Sevastianova et al. evaluated whether weight loss is 
able to decrease liver fat in homozygous carriers of the G allele 
(PNPLA3-148MM). They found that 148II and 148MM patients 
lost similar amounts of body weight in response to a 6-day 
hypocaloric, low carbohydrate diet. However, liver fat content de-
creased significantly more in the 148MM group than in the 148II 
one, although this was in part because of the higher baseline levels. 
These data suggest that weight is an effective means for reducing 
liver fat content in subjects with PNPLA3-148MM [284], highlight-
ing that NAFLD is a complex trait exhibiting a strong interaction 
between genetic and acquired risk factors for NASH, and most 
importantly confirming that behavioural changes can counteract the 
effects of the strongest known inherited risk factor for progressive 
NASH [50]. Pending more definitive studies, these data could pro-
vide a rationale to support use of low carbohydrate diet in subjects 
with NASH that poses the 148MM PNPLA3 genotype. Unfortu-
nately, there are no published data addressing the interaction be-
tween other genetic variants and weight loss. We do not know 
whether the effect of antioxidant therapies such as vitamin E, which 

may provide some benefit in a sub-set of patients [285], might be 
influenced by polymorphisms modulating oxidative stress response 
[11]. Although SNPs in the PPAR� gene influence IR, it is not 
known whether the effect of insulin sensitizing drugs such as glita-
zones that target this transcription factor and reduce steatosis in 
some patients with NASH [285] are influenced by PPAR� geno-
type. 
 Limited data are available on possible role of genetic factors in 
influencing the effect of iron depletion therapy. Indeed, hyperfer-
ritinemia reflecting increased body iron stores is frequently ob-
served in NAFLD due to the association with steatosis and IR, and 
associated with faster progression of organ damage [168]. Iron 
depletion by phlebotomy has been reported to decrease both IR and 
liver enzymes in NAFLD patients more than lifestyle changes alone 
[286]. A retrospective study has also shown that iron depletion 
produced a significantly greater improvement in insulin sensitivity 
than nutritional counselling alone and that iron depletion was effec-
tive in reducing HOMA-R in patients with high ferritin concentra-
tions and in carriers of HFE genetic mutations causing hereditary 
hemochromatosis [287], suggesting that HFE genotyping might be 
used to select subjects who might benefit most from this approach. 
However, the study was not designed to test this hypothesis and the 
outcome was not evaluated histologically, this therefore remains 
speculative. 

9. FUTURE DIRECTIONS 
 Despite the recent progresses, several key issues remains to be 
addressed in the next years, including, but not limited to:  
1. The mechanism linking the I148M PNPLA3 variant with pro-

gressive liver disease, its role in other liver diseases, and the 
potential clinical utility of its determination for best tailoring 
the clinical management of the patients with NASH. 

2. The validation of the association of other genetic variants as-
sociated with liver fat content in GWAS studies (e.g. GCKR) 
with the progression of liver diseases associated with steatosis. 

3. The evaluation of risk factors associated with advanced dis-
ease in patients at risk undergoing liver biopsy by a GWAS 
approach. 

4. The evaluation of the role of copy number variants and rela-
tively rare gene variants associated with a high effect on the 
risk of progressive NASH. 

5. The evaluation of the interaction between genetic and acquired 
risk factors in the pathogenesis of NASH. 

6. The development and assessment of the utility diagnostic and 
prognostic scores incorporating multiple genetic risk factors 
associated with clinically relevant end-points. 

7. The evaluation of the effect of genetic factors on the response 
to therapy, including specific diets and physical activity pro-
grams and drugs. 

10. CONCLUSION 
 Genes play a key role in the development and progression of 
NAFLD by interacting with environmental factors. To date, 
PNPLA3 polymorphisms are the best validated susceptibility modi-
fiers for steatosis and progressive hepatic injury. However, several 
other genetic variants that contribute to steatosis and/or steatohepa-
titis have been identified through GWAS studies, and risk factors of 
progressive NASH have been validated in other large multi-centre 
studies (Tables 1-3). It is now important to explore the molecular 
mechanisms underlying these associations between gene variants 
and progressive liver disease, and to evaluate their impact on the 
response to available therapies. It is hoped that this knowledge will 
offer further insights into pathogenesis, suggest novel therapeutic 
targets, and help guide physicians towards individualised therapy 
that improves clinical outcome.  
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