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Abstract

Acinetobacter baumannii, has been developing resistance to even the last line of drugs.

Antimicrobial peptides (AMPs) to which bacteria do not develop resistance easily may be

the last hope. A few independent experimental studies have designed and studied the activ-

ity of AMPs on A. baumannii, however the number of such studies are still limited. With the

goal of developing a rational approach to the screening of AMPs against A. baumannii, we

carefully curated the drug activity data from 75 cationic AMPs, all measured with a similar

protocol, and on the same ATCC 19606 strain. A quantitative model developed and vali-

dated with a part of the data. While the model may be used for predicting the activity of

any designed AMPs, in this work, we perform an in silico screening for the entire database

of naturally occurring AMPs, to provide a rational guidance in this urgently needed drug

development.

Introduction

Acinetobacter baumannii (A. baumannii) [1] is mainly implicated in hospital infections and is

responsible for 80% of the Acinetobacter infections. A. baumannii can also be found on normal

human skin, but it generally does not pose a threat to a healthy person [2–5], besides the not-

so-frequent skin and soft tissue infections, infections in the surgical site, urinary tract infec-

tion, etc [6, 7]. In the past 30 years, A. baumannii has evolved into a multidrug resistant

(MDR) [8–10] opportunistic pathogen that selectively infects seriously ill patients in intensive

care unit (ICU), trauma or burn patients [2–4, 11]. The presence of intrinsic efflux pump and

high rates of genetic adaptation, contributes to adaptation against the antibiotics [12–14].

Besides, it also possesses several beta-lactamase genes which offer resistance against beta-lac-

tam antibiotics [15, 16]. A. baumannii has also been developing resistance against carbapenem

[17] which had been one of the last line of drugs against it. Combination therapies such as of

colistin, polymixin B, and tigecycline are used to treat MDR strains, but these are complex

compared to a single drug when it comes to quantification of the effect and the validation

of their safety [18–20]. Due to the growing concern about MDR, new types of antimicrobial

agents are needed.
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Antimicrobial peptides (AMP) are a fundamental part of the innate defense system and are

reportedly present in organisms from bacteria and fungus to humans [21, 22]. Although sev-

eral modes of AMP activity, including DNA damage [23], RNA damage [24] and targeting

ribosomes [25–27] regulatory enzymes [28] or other proteins [29] have been proposed, it is

generally believed that the positively charged AMPs act by disrupting the bacterial membrane

[30–32] and the membrane disruption is one of the key factor for the AMP activity [29, 33,

34]. Because of this fundamental difference in the mechanism compared to the traditional

drugs, it is believed that the bacteria do not develop resistance easily against AMPs [21]. The

low toxicity of AMPs towards human cells and their tendency not to result in resistant strains

makes them an ideal rational choice as the next generation antimicrobial agents [35–37], possi-

bly eventually becoming effective drugs for A. baumannii.
Quantitative Structure and Activity Relationship (QSAR) [38] is an approach in computer

aided rational drug design, which uses biophysical or biochemical parameters of the molecules

to develop a quantitative relation with the measured activities. Once validated, the computa-

tional model can be used for predicting the activities of the possible drug candidates and for

pre-screening them. Recent studies have developed a QSAR relation using 29 small molecule

drug candidates which act on the oxphos metabolic path of A. baumannii [39]. As noted

above, since bacteria are less likely to develop resistance against AMP based drugs, we focus on

QSAR for AMPs against A. baumannii.
The present work has three major objectives. Several experimental groups have indepen-

dently evaluated the activity of AMP against A. baumannii. We curated these experimental

results against a single, well studied target, ATCC 19606 strain, whose activity is quantified

using Clinical and Laboratory Standards Institute (CLSI) or related protocols. [40] We devel-

oped a computational model using neural networks to rationally predict the activity from the

biochemical attributes of the AMP. Since A. baumannii is a growing threat, while realizing

the potential limitations of training on 75 peptides, we also predict the activity of all the natu-

rally occurring AMPs in the AMP database to enable a rational screening of AMPs against A.
baumannii.

Methods

Curation of data

Training QSAR models with data from multiple sources, obtained with different protocols and

on different strains can lead to poor predictive capabilities. [41] In order to standardize the

data used in the analysis, we used three criteria for inclusion- the tests should be on ATCC

19606 strain, with cationic antimicrobial peptides and studied according to the CLSI or equiv-

alent guidelines. With these inclusion criteria, we believed that the mechanism of antibiotic

action will be similar and the data curated from different sources can be compared. Since data

availability was limited, we had to include data from different groups. AMP sequence and

activity data against A. Baumannii was curated from different sources [42–52] and is presented

in Table A in S1 File. The curated AMP data set had the activity of 75 AMPs with their length

ranging from 10 to 43 amino acids and charges in the range +1 to +12. Of these, for 63 AMPs

the MIC was available (referred to as quantitative data), and for the remaining 12, only the

lower bound of minimum inhibitory concentration (MIC) (refered to as the qualitative data).

Parameter computation

in vivo aggregation propensity is calculated by using a web-based software AGGRESCAN [53].

Where the aggregation propensity is calculated on the basis of aggregation- propensity scale of

amino acids. in vitro aggregation propensity is calculated by using TANGO software (with

Computational screening of antimicrobial peptides for A. baumannii

PLOS ONE | https://doi.org/10.1371/journal.pone.0219693 October 2, 2019 2 / 13

https://doi.org/10.1371/journal.pone.0219693


ionic strength 0.02M, pH 7.0 and T = 298K) [54], where we only consider the β-sheet aggrega-

tion term. Aliphatic index of the peptides is calculated as described by Ikai [55]. Grand average

hydropathy is calculated on the scale given by Kyte-Doolittle [56] and the hydrophobic

moment is calculated by using HELIQUEST software [57]. The toxicity of the AMPs was pre-

dicted using ToxinPred (http://crdd.osdd.net/raghava/toxinpred/). [58] The method allows for

the prediction of toxicity of peptides shorter than 50 amino acids. However, this was not a lim-

itation as peptides longer than that are anyways complicated to synthesize and may not be

ideal drug candidates.

Artificial neural network

Since the available data is limited, we used used both the quantitative and the qualitative

data, albeit with different proportions, to train and test the models. We used 63 of the MIC

values from the quantitative data and 3 from the qualitative data for which the cited lower

bound was treated as the MIC for the purpose of this analysis. We performed a 10-fold cross

validation to check the robustness of our models. To do the 10-fold cross validation, we

divide the data set into 10 different test sets, each contains 7 data points. We performed the

artificial neural network (ANN) calculation for each test set by taking 53 data points for

training and 6 data points for validation. Rest of the 9 points from the qualitative data are

used for an independent qualitative test. The activity of the AMPs was predicted by ANN

model with an open module for machine learning called Scikit-learn [59] in Python. For the

activation function, logistic function was used and low memory BFGS optimization algo-

rithm was used a solver. Three independent neural network calculations have been per-

formed to do the 10-fold cross validation, by using a hidden layer of 6 neurons, 8 neurons

and 10 neurons. 2500 trial runs in each case were made by taking 50 different random initial-

izations for the input biases and 50 random choices for the training and validation sets. We

screened the results of these 2500 trials with R2
training > 0:7 and R2

validation > 0:6. Two best mod-

els were selected based on the result obtained from the 10-fold cross validation. The models

were expected to perform with R2
test > 0:8 for the quantitative data and at least 5 predictions

for the qualitative data set. These models were then used to predict the MIC values of a com-

plete AMP database [60–62] (https://aps.unmc.edu).

Results

Curated data for AMPs and their effectiveness

The data on the activity of AMPs on A. baumannii is scattered in literature. We curated the

data mainly with the goal of developing a quantitative model, and hence restricted the focus to

the most commonly studied ATCC 19606 strain. To maintain uniformity of standards, we

included studies which were performed according to CLSI or equivalent guidelines. The

sequence data and the antimicrobial activity of these peptides measured as the MIC was gath-

ered (Table A in S1 File). Overall, the comprehensive collection of the data on AMP activity

allowed a classification based on the various biophysical parameters which are commonly used

for developing a quantitative relation with activity: (1) charge, which draws the AMPs selec-

tively to anionic membrane, (2) length, reflecting how it has to be commensurate with the

membrane thickness for an improved activity [63, 64] (3) molecular weight, which gives an

idea of the bulkiness and membrane penetration efficiency (4) hydrophobic moment (μH),

[57] which quantifies the amphipathic characters required to form pores in the membrane, (5)

aliphatic index [55], which indicates the volume of aliphatic content (A, V, I and L) of the pep-

tide, (6) grand average of hydropathy (GRAVY) based on Kyte-Doolittle hydropathicity scale
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[56], (7) in vivo aggregation propensity, calculated by using a web-based software AGGRES-

CAN [53] and (8) in vitro (β-sheet) aggregation propensity, calculated by using TANGO

software (with ionic strength 0.02 M, pH 7.0 and temperature 298 K) [54]. The in vitro aggre-

gation, before interaction with the membrane can at times stop proteolytic degradation [65] by

the bacteria but in many other cases reduce the drug potency [66, 67]. Further, the aggregation

propensity affects the barrel-stave [68] and carpet mechanisms [63] of action differently. Tox-

icity of peptides obtained from ToxinPred [58] was categorical, and it was used only to classify

the AMPs from the database as potential drug candidates, and not for the activity prediction.

The distribution of the eight parameters for all the curated AMPs are given in Fig A in S1 File

and their individual relation with MIC in Fig 1, which shows that each of the parameters indi-

vidually is not sufficient to describe the activity.

Quantitative models for AMP activity

ANN model was used to obtain the relationship between the various above-mentioned param-

eters and MIC values (Methods). A schematic of how we developed the model is shown in Fig

B in S1 File. The first step was to create a model with the activity data from 75 AMPs, of which

some were used for an internal assessment of the quality of predictions. The second step was

to use the test set in the 75 AMP data analysis as a secondary validation for refining the choice

of model that can be used for making the predictions for the AMP database. The details are as

follows. Out of the 75 AMPs curated, for 12 of them a lower bound of MIC, as being greater

than a certain value (Table B in S1 File), rather than a precise number was cited. To include

them in the analysis, and not to reduce the data size which is already small (75 AMPs), we

created two independent test sets, one in which a quantitative MIC comparison was made

(referred to as quantitative data) and another qualitative one in which the calculated MIC was

checked if it was more than the experimental lower bound (referred to as qualitative data). The

Fig 1. MIC versus different parameters. The AMPs used in the analysis along with the sequences and biophysical parameters are given in Table A in

S1 File.

https://doi.org/10.1371/journal.pone.0219693.g001
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combined data set with quantitative and qualitative data was used to construct training, valida-

tion and test sets (Methods). We performed a 10-fold cross validation with three different

architectures with 6, 8 and 10 hidden neurons respectively. The overall error in the architec-

ture with 8 neurons was optimal, thus justifying a small sampling around it with 6 and 10

neurons (Table C in S1 File). However, all three architectures were satisfactory in their predic-

tions (Figs C, D and E respectively in S1 File), resulting in many models, which qualify for the

criteria (R2
training > 0:7 & R2

validation > 0:6). Several of these models also had good predictions for

the test sets, which are about 10% of the data.

Selecting the best model

In a traditional QSAR analysis, the choice of the best model would be guided by the combina-

tion of the best R2
training and R2

validation, following which R2
test on a small fraction of the data, in our

case 7 data points, comes as a consequence. Since the goal of screening through the large set

of potential AMPs whose activities against an extremely important pathogen are not yet avail-

able is more ambitious than performing well on these 7 points, we performed a secondary

validation check to select the best models. We used two additional criteria: R2
test > 0:6 for

the quantitative and that at least 5 predictions in qualitative data set were correct to within a

factor of 2 (Table B in S1 File). Two models satisfied these conditions, with R2
test > 0:8 and

they were selected. The best among these models (referred to as Model-1) obtained from the

calculation with 8 hidden neurons, had good predictions (R2
training ¼ 0:975, R2

validation ¼ 0:866

and R2
test ¼ 0:827). The experimental MIC for the quantitative data set versus MIC values pre-

dicted from Model-1 is shown in Fig 2. Results obtained from another model (Model-2) are

given in Fig F in S1 File.

Predicting the results for naturally occurring AMPs

Considering the health threat A. baumannii is posing, and the potential of AMPs for antibi-

otic-resistance-free activity, we propose a rational basis for an in silico screening of AMPs

active against A. baumannii. Our models were used to predict the MIC values of the 2338

AMPs obtained from database [60–62] (https://aps.unmc.edu) of naturally occurring AMPs.

We made the predictions from Model-1 and Model-2 (S2 File). In order to reduce the risk

of a poorly trained ANN model with limited data, we filtered these results for a consistent pre-

diction that is within ΔMIC� 5 μg/ml for both the models (Table 1). Despite the potential sta-

tistical limitations of training and validating on 75 AMPs, a pre-screening to rationally sort

multiple AMPs with their predicted activity, in vitro and in vivo aggregation potential, toxicity

and length (a surrogate for synthetic complexity), all are provided in Table 1 and in the S2 File.

The computational scripts and the predictions are made accessible (S3 File), to provide an

immediate access to a pool of rational choices that can help progress towards large scale exper-

imental testing, considering the extreme urgency of developing effective strategies to combat

the superbug, A. baumannii

Parameter importance in model

It is important to know which are the parameters (Pi) that are most responsible for

the activity on A. baumannii. In the combined training and validation set used for

accepting the models, we replaced (Pi) with its average <Pi> and measure the difference

DR2
Pi
¼ R2

trainingþvalidation � R2
trainingþvalidation;<Pi>

. DR2
Pi

is treated as reflecting the importance of

the parameter. The results obtained from Model-1 are given in Fig 3 and the result obtained
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from another model is given in Fig G in S1 File. From our calculations, we found out that

the aliphatic index is the most important parameter in both the models.

Relevance of predictions for MDR strains

In order to reduce the uncertainties, our computational model was trained on data standard-

ized in three ways, A. baumannii strain used, choice of cationic AMPs and measurements by

CLSI method. However, considering the threat that A. baumannii MDR strains are posing, it

is important to ask whether our calculations have any relevance to these clinical variants. The

two limitations of this work are the smaller data size used for training, and it was based on

ATCC 19606 strain. Interestingly, in the limited studies that we found the activity of cationic

AMPs against ATCC 19606 and other MDR strains of A. baumannii are comparable [43, 46],

thus potentially removing the latter strain specific data limitation for A. baumannii, although

for other bacteria, such as S. aureus the activity changes quite significantly with the strain [69,

70]. Drawing confidence from this fact, we used our models to predict the activity for a few

Fig 2. Comparison of the experimental and calculated MIC (μg/ml) of curated AMPs on A. baumannii obtained from Model-1, calculated by using 8 hidden

neurons. Training (purple circles), validation (orange squares) and test (green diamonds) sets are shown. The data used in the analysis is shown in Table 1 in S1 File.

https://doi.org/10.1371/journal.pone.0219693.g002
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MDR strains [71–73]. The results reported in Table D in S1 File are encouraging at this stage,

although more such validations will be helpful in establishing the utility of the screening mod-

els we proposed.

Conclusions

To our knowledge, the present work is the only QSAR study for predicting AMP activity

against A. baumannii. The present work is different from the only other QSAR in two different

ways, using AMPs instead of small molecules for a better tolerance to antibiotic resistance and

a slightly larger set (75 AMPs compared to 29 small molecules). Using the ANN models we

developed, we could make quantitative predictions for the entire database of naturally occur-

ing AMPs. We hope that our work will inspire the further studies quantifying the activity of

AMPs on A. baumannii, some of which may follow the activity predictions and others that dif-

fer offer an opportunity to retrain the ANN models.

Table 1. Using the 2 different models, we predicted the activity of 2338 naturally occurring AMPs documented in the AMP database. The complete list of predictions

are given in the S2 File. However, of these the AMPs which had consistent predictions from both the models (ΔMIC� 5 μg/ml) were selected and presented in this table.

All of these were peptides listed below were non-toxic according to the predictions from ToxinPred (http://crdd.osdd.net/raghava/toxinpred/) [58].

Peptide Sequence Length Model-1

MIC(μg/ml)

Model-2

MIC(μg/ml)

AP01466 VNWKKILGKIIKVAK 15 2.84 6.20

AP00143 KKLLKWLKKLL 11 9.08 4.59

AP01456 VGKTWIKVIRGIGKSKIKWQ 20 9.34 4.60

AP00708 GFKRIVQRIKDFLRNLV 17 9.38 4.59

AP00161 GLWSKIKTAGKSVAKAAAKAAVKAVTNAV 29 14.24 10.44

AP00577 GLFTLIKGAAKLIGKTVAKEAGKTGLELMACKITNQC 37 14.24 15.64

AP00608 KRIVQRIKDFLR 12 14.40 14.25

AP01525 SWLSKTYKKLENSAKKRISEGIAIAIQGGPR 31 16.38 20.78

AP00869 ILPLVGNLLNDLL 13 17.60 20.67

AP00425 GCWSTVLGGLKKFAKGGLEAIVNPK 25 18.23 20.86

AP01388 GLLSGILNSAGGLLGNLIGSLSN 23 21.02 20.67

AP00733 LLGDFFRKAREKIGEEFKRIVQRIKDFLRNLVPRTES 37 21.70 19.43

AP01387 GLLSGILNTAGGLLGNLIGSLSN 23 22.83 20.67

AP00061 GIGGVLLSAGKAALKGLAKVLAEKYAN 27 23.57 20.66

AP00210 GMASKAGAIAGKIAKVALKAL 21 25.07 20.26

AP00006 GNNRPVYIPQPRPPHPRI 18 27.10 26.77

AP00007 GNNRPVYIPQPRPPHPRL 18 27.10 26.77

AP00024 GVSGHGQHGVHG 12 27.10 27.98

AP00025 HGVSGHGQHGVHG 13 27.10 26.77

AP00141 RKKWFW 6 27.10 26.77

AP00150 ILPWKWPWWPWRR 13 27.10 26.77

AP00152 VRRFPWWWPFLRR 13 27.10 26.77

AP00169 GRPNPVNTKPTPYPRL 16 27.10 26.77

AP00170 VDKGSYLPRPTPPRPIYNRN 20 27.10 26.77

AP00172 GKPRPYSPRPTSHPRPIRV 19 27.10 26.79

AP00190 HPLKQYWWRPSI 12 27.10 26.77

AP00191 ECRRLCYKQRCVTYCRGR 18 27.10 26.77

AP00211 RRWCFRVCYRGFCYRKCR 18 27.10 26.77

AP00212 RRWCFRVCYKGFCYRKCR 18 27.10 26.77

AP00213 KWCFRVCYRGICYRKCR 17 27.10 26.77

https://doi.org/10.1371/journal.pone.0219693.t001
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Supporting information

S1 File. S1 File contains Table A, details of 75 curated AMPs, Fig A, histogram of all parame-

ters corresponding to AMPs, Table B, experimental and predicted MIC values of 9 qualitative

data that were used for additional test, Table C, 10 fold cross validation analysis with different

number of hidden neurons, Fig B, Fig C, Fig D, comparison of experimental and predicted

MIC obtained from 10 fold cross validation using 6, 8 and 10 neurons respectively, Fig E, com-

parison of experimental and predicted MIC for Model-2, calculated using 6 neurons, Fig F,

importance of different parameters used in Model-2, Fig G, flow chart showing the schematic

of how the ANN model were developed, Table D, comparison of the experimental and pre-

dicted MIC values for the MDR A. baumannii strains.

(PDF)

S2 File. S2 File contains two data sheets in xlsx format. These contains the prediction for the

75 different curated peptides and prediction for the 2338 natural occurring AMPs.

(XLSX)

Fig 3. The relative importance of the different parameters in Model-1 is shown. Aliphatic index influences the outcomes of the

predictions the most in this model.

https://doi.org/10.1371/journal.pone.0219693.g003
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S3 File. ZIP file contains python script and data file for predicting antimicrobial activity

against A. baumannii.
(ZIP)
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26. Seefeldt AC, Nguyen F, Antunes S, Pérébaskine N, Graf M, Arenz S, et al. The proline-rich antimicrobial

peptide Onc112 inhibits translation by blocking and destabilizing the initiation complex. Nature structural

& molecular biology. 2015; 22(6):470.

27. Roy RN, Lomakin IB, Gagnon MG, Steitz TA. The mechanism of inhibition of protein synthesis by the

proline-rich peptide oncocin. Nature structural & molecular biology. 2015; 22(6):466.

Computational screening of antimicrobial peptides for A. baumannii

PLOS ONE | https://doi.org/10.1371/journal.pone.0219693 October 2, 2019 10 / 13

https://doi.org/10.1086/528867
http://www.ncbi.nlm.nih.gov/pubmed/18444833
https://doi.org/10.1053/jhin.2002.1205
https://doi.org/10.1053/jhin.2002.1205
http://www.ncbi.nlm.nih.gov/pubmed/12009820
https://doi.org/10.1128/MMBR.00016-10
http://www.ncbi.nlm.nih.gov/pubmed/20805405
https://doi.org/10.1093/gbe/evt047
http://www.ncbi.nlm.nih.gov/pubmed/23538992
https://doi.org/10.1371/journal.ppat.1003068
http://www.ncbi.nlm.nih.gov/pubmed/23236280
https://doi.org/10.1371/journal.pgen.0020007
https://doi.org/10.1371/journal.pgen.0020007
http://www.ncbi.nlm.nih.gov/pubmed/16415984
https://doi.org/10.1371/journal.pone.0054287
http://www.ncbi.nlm.nih.gov/pubmed/23365658
https://doi.org/10.1016/j.resmic.2011.02.006
https://doi.org/10.1371/journal.pone.0157757
https://doi.org/10.1371/journal.pone.0157757
http://www.ncbi.nlm.nih.gov/pubmed/27315107
https://doi.org/10.1371/journal.pone.0150642
https://doi.org/10.1371/journal.pone.0150642
http://www.ncbi.nlm.nih.gov/pubmed/26934182
https://doi.org/10.1016/j.ijantimicag.2016.06.006
http://www.ncbi.nlm.nih.gov/pubmed/27449542
https://doi.org/10.1038/415389a
https://doi.org/10.1038/415389a
http://www.ncbi.nlm.nih.gov/pubmed/11807545
https://doi.org/10.1038/nbt1267
http://www.ncbi.nlm.nih.gov/pubmed/17160061
https://doi.org/10.1002/cmdc.201402215
http://www.ncbi.nlm.nih.gov/pubmed/25044630
https://doi.org/10.1002/anie.201407145
https://doi.org/10.1002/anie.201407145
http://www.ncbi.nlm.nih.gov/pubmed/25220491
https://doi.org/10.1371/journal.pone.0219693
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