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Abstract: A widely accepted concept is that boys are more susceptible than girls to oxidative stress-
related complications of prematurity, including bronchopulmonary dysplasia (BPD), retinopathy
of prematurity (ROP), necrotizing enterocolitis (NEC), intraventricular hemorrhage (IVH), and
periventricular leukomalacia (PVL). We aimed to quantify the effect size of this male disadvantage
by performing a systematic review and meta-analysis of cohort studies exploring the association
between sex and complications of prematurity. Risk ratios (RRs) and 95% CIs were calculated
by a random-effects model. Of 1365 potentially relevant studies, 41 met the inclusion criteria
(625,680 infants). Male sex was associated with decreased risk of hypertensive disorders of pregnancy,
fetal distress, and C-section, but increased risk of low Apgar score, intubation at birth, respiratory
distress, surfactant use, pneumothorax, postnatal steroids, late onset sepsis, any NEC, NEC > stage 1
(RR 1.12, CI 1.06–1.18), any IVH, severe IVH (RR 1.28, CI 1.22–1.34), severe IVH or PVL, any BPD,
moderate/severe BPD (RR 1.23, CI 1.18–1.27), severe ROP (RR 1.14, CI 1.07–1.22), and mortality
(RR 1.23, CI 1.16–1.30). In conclusion, preterm boys have higher clinical instability and greater need
for invasive interventions than preterm girls. This leads to a male disadvantage in mortality and
short-term complications of prematurity.

Keywords: preterm birth; oxidative stress; sex differences; male disadvantage; female advantage;
bronchopulmonary dysplasia; retinopathy of prematurity; necrotizing enterocolitis; intraventricular
hemorrhage; periventricular leukomalacia; mortality

1. Introduction

Preterm birth is defined as birth before 37 completed weeks of gestational age (GA)
and is further subdivided in extremely (GA < 28 weeks), very (GA 28 to <32 weeks),
moderate (GA 32 to <34 weeks), and late (GA 34 to <37 weeks) preterm birth. Prematurity,
particularly in the in the lowest ranges of GA, is a leading cause of infant mortality, as well
as long-term morbidity [1].

Two widely accepted concepts in neonatal medicine are the so-called “male disadvan-
tage” and “oxygen radical disease in neonatology”. The first concept is supported by a large
body of evidence showing that boys are more susceptible than girls to adverse outcomes of
prematurity, including bronchopulmonary dysplasia (BPD), retinopathy of prematurity
(ROP), necrotizing enterocolitis (NEC), intraventricular hemorrhage (IVH), periventric-
ular leukomalacia (PVL), chronic neurodevelopmental and cognitive impairment, and
death [2–7].

The term “oxygen radical disease in neonatology” was coined by Saugstad in the 1980s
when he hypothesized that complications of prematurity, such as BPD, ROP, NEC, IVH, or
PVL, are different facets of one disease sharing a basic pathogenetic mechanism: increased
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oxidative stress and reduced endogenous antioxidant defenses [8,9]. Interestingly, preterm
girls have higher antioxidant enzyme activity than preterm boys and it has been suggested
that these differences may play a key role in the male disadvantage of prematurity [10–12].

Although the notion of male disadvantage of prematurity is more than five decades
old, only sex-associated differences in mortality have been systematically reviewed [13].
Our current aim is to conduct a systematic review and meta-analysis on male-female
differences in risk of developing oxidative stress-associated complications of prematurity.
In addition to outcomes such as BPD, ROP, NEC, IVH, or PVL, we also analyzed potential
male–female differences in obstetrical characteristics and clinical conditions in the first
weeks of postnatal life. Finally, since it has been suggested that the male disadvantage of
prematurity has undergone changes in the last few years [14], we investigated by meta-
regression the influence of time and other variables on the association between infant sex
and complications of prematurity.

2. Materials and Methods

The study was performed and reported according to the preferred reporting items
for systematic reviews and meta-analyses (PRISMA) and meta-analysis of observational
studies in epidemiology (MOOSE) guidelines [15]. Review protocol was registered in
the PROSPERO international register of systematic reviews (ID = CRD42018095509). The
research question was “Do preterm boys have a higher risk of developing short-term
complications of prematurity than preterm girls?”

2.1. Sources and Search Strategy

A comprehensive literature search was undertaken using the PubMed and EMBASE
databases. The search strategy is detailed in Table S1. No language limit was applied.
The literature search was updated up to February 2021. Narrative reviews, systematic
reviews, case reports, letters, editorials, and commentaries were excluded, but read to
identify potential additional studies. Additional strategies to identify studies included
manual review of reference lists from key articles that fulfilled our eligibility criteria, use of
“related articles” feature in PubMed, and use of the “cited by” tool in Web of Science and
Google scholar.

2.2. Study Selection

Studies were included if they had a prospective or retrospective cohort design, exam-
ined preterm (GA < 37 weeks) infants, and reported primary data that could be used to
measure the association between infant sex and short-term complications of prematurity.
We only selected studies in which infant sex was the independent variable and the perina-
tal characteristics and outcomes were the dependent variables. Studies that exclusively
included late preterm infants (GA ≥ 34 weeks), or combined preterm and term infants
were excluded. To identify relevant studies, two reviewers (E.V., E.V.-M.) independently
screened the results of the searches and applied inclusion criteria using a structured form.
Discrepancies were resolved through discussion or consultation with a third reviewer
(M.J.H.).

2.3. Data Extraction and Quality Assessment

Two reviewers (E.V., E.V.-M.) extracted data from relevant studies using a predeter-
mined data extraction form, and two reviewers (E.W.-K., M.J.H.) checked data extraction
for accuracy and completeness. Discrepancies were resolved by consulting the primary
report. Data extracted from each study included citation information, language of publica-
tion, study design, location and frame time, patient characteristics, and results (including
raw numbers or summary statistics when raw numbers were not available). Data were
extracted for all obstetric and perinatal variables as well as clinical conditions and outcomes
reported in each study.
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Methodological quality was assessed using the Newcastle-Ottawa Scale (NOS) for
cohort studies [15]. This scale assigns a maximum of 9 points (4 for selection, 2 for
comparability, and 3 for outcome). NOS scores ≥ 7 were considered high-quality studies
(low risk of bias), and scores of 5 to 6 denoted moderate quality (moderate risk of bias) [15].

2.4. Statistical Analysis

Meta-analysis was performed when at least three studies were identified that reported
on the same variable or outcome measure. Studies were combined and analyzed using
comprehensive meta-analysis V3.0 software (Biostat Inc., Englewood, NJ, USA). Due
to anticipated heterogeneity, summary statistics were calculated with a random-effects
model. This model accounts for variability between studies as well as within studies.
For dichotomous outcomes, the risk ratio (RR) with 95% confidence interval (CI) was
calculated. For continuous outcomes (example: GA), the mean difference (MD) with 95%
CI was calculated. Statistical heterogeneity was assessed by Cochran’s Q statistic and
by the I2 statistic. Potential sources of heterogeneity were assessed through subgroup
analysis and/or random effects (method of moments) univariate meta-regression analysis
as previously described [16,17]. For both categorical and continuous covariates, the R2

analog, defined as the total between-study variance explained by the moderator, was
calculated based on the meta-regression matrix. Predefined sources of heterogeneity
included the following characteristics of cohorts: mean or median GA, median year of
birth, and geographical location (continent). We used the Egger’s regression test and funnel
plots to assess publication bias. Subgroup analyses, meta-regression, and publication bias
assessment were performed only for the main outcomes (BPD, IVH, PVL, ROP, NEC, and
mortality) and when there were at least ten studies in the meta-analysis. A probability
value of less than 0.05 (0.10 for heterogeneity) was considered statistically significant.

3. Results
3.1. Description of Studies and Quality Assessment

The flow diagram of the search process is shown in Figure S1. Of 1365 potentially
relevant studies, 41 (including 625,680 infants, 319,470 males) were included [2–5,14,18–53].
Their characteristics are summarized in Table S2. The percentage of males in the cohorts
ranged from 41.2% [32] to 66.2% [20] with a pooled percentage of 52.2% (95% CI 51.4
to 53.0). Four studies included exclusively twin infants [24,35,44,51] and two studies
included exclusively singleton infants [43,49]. The quality score of each study according
to the Newcastle-Ottawa Scale is depicted in Table S2. All studies received at least seven
points, indicating a low risk of bias.

3.1.1. Meta-Analysis

The following variables were reported in more than two studies and were therefore
included in the meta-analysis: chorioamnionitis, hypertensive disorders of pregnancy,
maternal diabetes, prenatal care, premature rupture of membranes, prolonged rupture of
membranes, antepartum hemorrhage, antenatal corticosteroids, fetal distress, cesarean-
section, birth in a non-tertiary hospital (outborn), 5′ Apgar score < 3, 5′ Apgar score < 7,
intubation at birth, resuscitation at birth, birth weight (BW) below the 10th percentile,
BW below the 3rd percentile or -2SD, early onset (<72 h) sepsis, late onset (>72 h) sepsis,
undefined onset sepsis, hypotension, patent ductus arteriosus (PDA), respiratory distress
syndrome (RDS), administration of surfactant, mechanical ventilation, pneumothorax,
postnatal steroids, any BPD (defined as oxygen requirement on postnatal day 28), mod-
erate/severe BPD (defined as oxygen requirement at the postmenstrual age of 36 weeks),
any IVH (grade 1–4), severe IVH (grade 3–4), PVL, severe IVH or PVL, any ROP, severe
ROP (stage ≥ 3 or requiring treatment), any NEC, NEC ≥ Stage II, and mortality before
discharge.

The meta-analyses on obstetric and perinatal characteristics are summarized in Figure 1
and Table 1. The meta-analyses on clinical characteristics and outcomes are summa-
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rized in Figure 2 and Table 2. The individual meta-analyses for each outcome (BPD,
IVH, PVL, ROP, NEC, and mortality) are shown in Figures S2–S12. Male sex was asso-
ciated with a decreased risk of hypertensive disorders of pregnancy, fetal distress, and
cesarean-section, but an increased risk of birth in a non-tertiary hospital, 5′ Apgar score
< 3, intubation at birth, respiratory distress syndrome, surfactant use, pneumothorax,
postnatal steroids, late onset sepsis, any BPD (Figures 2 and S2), moderate/severe BPD
(Figures 2 and S3), any IVH (Figures 2 and S4), severe IVH (Figures 2 and S5), severe IVH
or PVL (Figures 2 and S7), severe ROP (Figures 2 and S9), any NEC (Figures 2 and S10),
NEC ≥ stage II (Figures 2 and S11), and mortality (Figures 2 and S12). With regard to
the continuous variables, BW was significantly higher in boys than in girls (Table 1). In
contrast, no differences were found by infant sex in either GA or maternal age (Table 1).
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P10: 10th percentile; SD: standard deviation.
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Table 1. Meta-analyses on the association between obstetric and perinatal characteristics of preterm infants and male sex.

Meta-Analysis K RR
95% CI

p
Heterogeneity

Lower Limit Upper Limit I2 (%) p

Chorioamnionitis 6 1.001 0.953 1.052 0.969 67.3 0.009

Hypertensive disorders of
pregnancy 15 0.829 0.803 0.856 <0.001 22.9 0.200

Maternal diabetes 7 0.991 0.808 1.214 0.927 65.9 0.007

Smoking during pregnancy 3 0.987 0.800 1.218 0.901 3.9 <0.001

Prenatal care 5 1.017 0.982 1.053 0.352 96.2 0.353

Premature rupture of
membranes 6 1.006 0.947 1.068 0.852 62.8 0.020

Prolonged rupture of
membranes 5 0.968 0.914 1.026 0.275 0.0 0.972

Antepartum hemorrhage 3 0.986 0.708 1.374 0.936 96.9 <0.001

Antenatal corticosteroids 21 0.992 0.982 1.003 0.143 44.9 0.012

Fetal distress 3 0.784 0.678 0.907 0.001 0.0 0.741

Cesarean-section 21 0.980 0.966 0.995 0.008 51.5 0.003

Outborn 9 1.077 1.027 1.128 0.002 0.0 0.682

Apgar 5′ <3 3 1.269 1.132 1.422 <0.001 0.0 0.726

Apgar 5′ <7 3 1.010 0.946 1.077 0.772 85.2 0.001

Intubation at birth 5 1.038 1.006 1.071 0.019 66.4 0.018

Resuscitation at birth 3 0.990 0.609 1.609 0.968 93.2 <0.001

Birth weight <P10 18 0.892 0.785 1.014 0.080 80.9 <0.001

Birth weight <P3 3 1.123 0.877 1.438 0.358 51.5 0.127

Continuous variables MD

Gestational age (weeks) 24 −0.10 −0.21 0.01 0.076 87.0 <0.001

Birth weight (g) 24 47.8 34.1 61.5 <0.001 91.5 <0.001

Maternal age (years) 10 0.0 −0.5 0.5 0.999 92.5 <0.001

Random effects analysis. Risk ratio (RR) > 1 indicates association of male sex with increased risk of the variable and RR < 1 indicates
association of male sex with decreased risk of the variable. K: number of studies, MD: difference of means.

Neither visual inspection of funnel plots (Figure S13) nor Egger’s test suggested
publication or selection bias for any of the eligible meta-analyses (i.e., with at least ten
studies).

3.1.2. Subgroup Analysis and Meta-Regression

Subgroup analysis based on the geographic location (continent) of the studies showed
no significant differences for any of the outcomes analyzed, with only the exception of PVL
(Table S2). The effect size of the association between male sex and PVL was significantly
lower (meta-regression p = 0.048, R2-analog = 0.5) in the cohorts from America when
compared with Asian and European cohorts (Table S3).

Meta-regression showed that the effect size of the association between male sex and
mortality significantly decreased as the median year of the cohort increased (Figure 3A). In
contrast, the association between male sex and the other outcomes did not correlate with
the median year of birth of the cohort (Table S4). Meta-regression also showed that the
effect size of the association between male sex and mortality significantly increased as the
mean/median gestational age of the cohort increased (Figure 3B). The association between
sex and the other outcomes did not correlate with the mean/median gestational age of the
cohort (Table S4).
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Figure 2. Summary of meta-analyses on the association between clinical characteristics and outcomes
of preterm infants and male sex. BPD: bronchopulmonary dysplasia; CI: confidence interval; IVH:
intraventricular hemorrhage; K: number of studies; NEC: necrotizing enterocolitis; PDA: patent
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Table 2. Meta-analyses on the association between clinical characteristics and outcomes of preterm infants and male sex.

Meta-Analysis K RR

95% CI
p

Heterogeneity

Lower
Limit

Upper
Limit I2 (%) p

Early onset sepsis 5 0.975 0.924 1.030 0.371 0.0 0.459

Late onset sepsis 8 1.051 1.026 1.077 <0.001 17.0 0.296

Undefined onset sepsis 8 1.083 0.962 1.218 0.186 20.6 0.266

Hypotension 3 1.270 0.514 3.140 0.605 72.7 0.026

PDA 18 0.985 0.958 1.012 0.262 52.5 0.004

RDS 12 1.090 1.042 1.140 <0.001 96.1 <0.001

Surfactant 13 1.031 1.026 1.036 <0.001 41.4 0.059

Mechanical ventilation 5 1.054 1.003 1.108 0.038 54.7 0.066
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Table 2. Cont.

Pneumothorax 9 1.240 1.104 1.393 <0.001 42.2 0.086

Postnatal steroids 6 1.234 1.169 1.302 <0.001 37.6 0.433

Any BPD 7 1.200 1.091 1.319 <0.001 66.0 0.004

Moderate/severe BPD 26 1.219 1.176 1.264 <0.001 71.4 <0.001

Any IVH 12 1.166 1.139 1.193 <0.001 0.0 0.680

Severe IVH 19 1.271 1.207 1.338 <0.001 40.5 0.035

PVL 13 1.110 0.971 1.269 0.128 77.3 <0.001

Severe IVH/PVL 3 1.158 1.023 1.310 0.020 80.8 0.005

Any ROP 4 1.025 0.870 1.207 0.767 66.3 0.031

Severe ROP 20 1.143 1.065 1.226 <0.001 79.2 <0.001

Any NEC 11 1.145 1.036 1.266 0.008 60.1 0.003

NEC stage ≥ II 9 1.122 1.039 1.211 0.003 32.9 0.155

Mortality 20 1.227 1.163 1.294 <0.001 83.7 <0.001

Random effects analysis. Risk ratio (RR) > 1 indicates association of male sex with increased risk of the outcome and RR < 1 indicates
association of male sex with decreased risk of the outcome. K: number of studies.
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Figure 3. Meta-regression. (A) Plot showing the correlation between the association of male sex with
mortality in preterm infants and the median year of birth of each cohort. A total of 24 studies were
included (coefficient, −0.009; standard error, 0.004; p = 0.019; R2-analog, 0.37). (B) Plot showing the
correlation between the association of male sex with mortality in preterm infants and mean/median
gestational age of each cohort. A total of 18 studies were included (coefficient, 0.051; standard error,
0.014; p < 0.001; R2-analog, 0.75).
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4. Discussion

To the best of our knowledge, this is the first systematic review and meta-analysis
focused on male–female differences in short-term outcomes of prematurity. Our results
confirm the presence of male disadvantage in mortality as well as relevant morbidities,
including IVH, BPD, ROP, and NEC. Although the observed increases in risk are modest,
they hold important implications for understanding preterm birth complications. Besides
the short-term complications, we investigated whether other prognostic factors such as GA,
birth weight, obstetric history, or clinical condition in the first days of life were different
between boys and girls. We found no male–female differences in GA but the well-known
difference is birth weight. In addition, meta-analysis showed that male sex was associated
with decreased risk of being exposed to hypertension during pregnancy, developing fetal
distress, and being born by cesarean section but increased risk of birth in a non-tertiary
hospital, low Apgar score, intubation at birth, developing respiratory distress, being
treated with surfactant and mechanical ventilation, developing pneumothorax, receiving
postnatal steroids, and developing late onset sepsis. These differences in clinical course
may have a major influence on the development of the pulmonary, neurological, ocular, and
gastrointestinal complications of prematurity. On the other hand, our meta-analysis could
not demonstrate that the rates of hypotension, PDA, or early onset sepsis were significantly
different between boys and girls.

Male–female differences in human health and disease have been recognized for many
years [54–57]. In reproductive and perinatal medicine, there are numerous studies dealing
with sex differences, extending from fertilization and embryo implantation to the neonatal
period [58–66]. The male to female ratio at birth is generally estimated to be around
1.05–1.06 [63–65,67]. This excess of males at birth is known for centuries and has been
extensively studied by demographers, statisticians, epidemiologists, and biologists [63].
Focusing exclusively on preterm birth, the excess of males is even higher with male
to female ratios around 1.2 [63–65,68,69]. However, the underlying mechanisms for this
difference remain unclear, with suggestions including sexual dimorphism in embryonic and
fetal homeostasis, as well as in the pathophysiological pathways that trigger preterm birth.

Preterm birth is always the result of a pathologic process, which may not only con-
tribute to early delivery but may also adversely affect neonatal outcomes [16,70–73].
The pathophysiological pathways, or endotypes, leading to very and extreme preterm
birth are divided into two main groups: (1) intrauterine infection/inflammation, and
(2) dysfunctional placentation [16,70–73]. The first group is related to chorioamnionitis
and placental microbial invasion and is associated with preterm labor, pre-labor pre-
mature rupture of membranes, placental abruption, and cervical insufficiency. The sec-
ond group is associated with hypertensive disorders of pregnancy (including preeclamp-
sia, eclampsia, and pregnancy-induced hypertension), and the entity identified as fetal
indication/IUGR [16,70–73]. The association between fetal sex and prematurity endotype
has been particularly examined in the case of the dysfunctional placentation endotype. A
number of meta-analysis showed that preterm preeclampsia is associated with carrying a
female fetus, while pregnancies with a male fetus are associated with developing term and
post-term preeclampsia [61,62]. Accordingly, we observed an increased risk of hypertensive
disorders of pregnancy and fetal distress associated with female sex. In contrast, there was
no evidence of sexual dimorphism for conditions related to the infectious-inflammatory
endotype, such as chorioamnionitis or rupture of membranes. Nevertheless, it should
be taken into account that the low number of studies reporting on these prenatal condi-
tions limits the power of the meta-analysis to detect possible differences. In fact, it has
been suggested that pregnancy with a male fetus may favor a more pro-inflammatory
intra-uterine environment, leading to a higher incidence of infection/inflammation-driven
preterm birth [59,69,74]. Our group is currently conducting a meta-analysis exclusively
focused on the association between fetal sex and endotype of prematurity.

Regardless of the imbalanced sex ratio at birth, the underlying mechanisms specifically
responsible for the observed increase in neonatal morbidity in preterm boys are likely
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multifactorial and not yet fully elucidated. Possible explanations include male–female
differences in mother–fetus interaction, rate of fetal development, molecular differences
between sex chromosomes, epimutations that preferentially affect one sex, variations
in antioxidant capacity, and hormonal differences [7,11,58–60,64–66]. Since the dawn of
neonatology, the degree of pulmonary maturity at birth has been recognized as the critical
factor in determining the survival and prognosis of preterm infants [75]. It was also noted
early on that preterm boys had a higher rate and severity of respiratory distress syndrome
than preterm girls [76]. This has been linked to the influence of sex hormones on lung
development and maturation and to anatomic differences in lung development during fetal
life [57,77,78]. As reviewed by Seaborn et al., the lung of male fetuses is exposed to higher
levels of testosterone in the period preceding the surge of surfactant production [77,78].
Thereafter, both sexes are exposed to increasing levels of estradiol but the fetal lung has
the capability to synthesize and inactivate sex hormones, and hence to modulate their
action in a sex-dependent way [78]. The present meta-analysis confirms that the respiratory
clinical course is less favorable in preterm boys than in preterm girls. As mentioned above,
these differences in the first days of life may be critical for the later development of other
complications of prematurity.

As mentioned in the introduction, oxidative stress plays a central pathogenic role in
the development of most of the complications of prematurity [9,79,80]. Thus, sex differences
in the development of antioxidant defenses are frequently pointed out as the key factor for
male disadvantage among preterm infants [10–12]. From this perspective, the glutathione
pathway is the most extensively studied [10–12]. Glutathione is the major endogenous
soluble antioxidant in mammalian cells and its metabolism controls the intracellular levels
of peroxides (via glutathione peroxidase), aldehydes (via glutathione S-transferase), and
even radicals (via regeneration of oxidized vitamins C and E) [12]. As reviewed by Lavoie
and Tremblay, numerous factors related to glutathione metabolism, including glutathione
levels, activity of enzymes (glutathione peroxidase, glutathione reductase, glutathione
S-transferase), and cellular uptake of cysteine have been found as sex-dependent in the
placenta, umbilical cord, and blood cells of preterm infants [12]. Therefore, it has been
suggested that antioxidant strategies in preterm infants should mainly target glutathione
metabolism and be personalized considering, among others, the sex specificity [12].

The study cohorts included in our meta-analysis spanned a 30-year period (1986–2016)
and some of the factors affecting outcome in the early 1990s may not be so relevant to
current preterm populations. Moreover, it has been suggested that the advances in perinatal
medicine, which have led to a decline in mortality and improved short-term outcomes for
the most vulnerable preterm infants, have had a greater impact on boys than on girls [14].
Therefore, the male disadvantage of prematurity might be decreasing over the years [14].
We have tested this hypothesis by meta-regression and found that the male disadvantage
in mortality among preterm infants tends to decrease as the cohorts include infants born in
recent years. However, the increased risk of developing BPD, ROP, or NEC in males did
not show this decreasing trend over the years. We also used meta-regression to analyze
whether male disadvantage correlated with the gestational age of the cohort. Again, this
meta-regression was only significant for mortality (Figure 3B). The association between
male sex and risk of mortality decreased as the cohort had a lower mean gestational
age. This effect of gestational age was not observed for any of the other complications of
prematurity.

The major strength of our meta-analysis is the comprehensive database search to iden-
tify all the potential studies. Thus, the 41 included studies encompassed a total population
of 625,680 infants from 16 different countries, providing a significant international repre-
sentation. When we performed subgroup analyses based on continent, the only outcome
where we found a significant geographic difference in sex ratio was PVL. It should be noted
that, in contrast to the other outcomes analyzed, PVL was the only main complication of
prematurity for which the meta-analysis did not show an increased risk associated with
male sex. Subgroup analysis showed that the absence of male disadvantage for PVL was
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due to the marked differences between the American and the Asian and European cohorts
(Table S2). Nevertheless, this finding may be an artifact due to the limited number of
studies and therefore needs to be investigated in meta-analyses specifically focused on
PVL. For all other outcomes, including IVH, BPD, ROP, NEC, and mortality, sub-group
analysis did not show geographic differences, suggesting that the male disadvantage of
prematurity is a ubiquitous phenomenon.

The main limitation of our systematic review is that studies were included only if
sex was the independent variable and the association between sex and outcome was
reported for more than one complication of prematurity. Although this design allowed
for comparing the impact of male disadvantage on the different outcomes, we excluded
a large number of studies in which an individual outcome was the independent variable
and sex, among other potential risk factors, was the dependent variable. Our group is now
analyzing these studies separately. The results of these meta-analyses, which for outcomes
such as ROP or BPD include more than 250 studies, will confirm the present findings and
analyze more comprehensively the influence of factors such as changes in trends over the
years or geographic location on male disadvantage.

5. Conclusions

The present data suggest that the clinical course of preterm males is more complicated
than that of females from the earliest moments of life. This higher clinical instability in
males seems particularly to affect the respiratory system and leads to higher mortality
and short-term morbidity. Complications such as BPD, ROP, NEC, IVH, or PVL will
have a serious impact on post-discharge growth and neurodevelopment, extending the
male disadvantage to the years of childhood and adolescence. In numerous studies on
health conditions and neurocognitive outcomes of former preterm infants, adult females
frequently perform better than adult males [1,7,81–83]. An improved understanding of
sex-specific requirements of preterm infants may lead to optimized strategies to avoid the
sequelae of early life oxidative stress and inflammation [7].
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