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P e r s p e c t i v e

In the auditory system, acoustic information conveyed 
by hair cells and auditory nerves is broken up into dif-
ferent components in central neural circuits, which can 
then be processed and encoded separately. This process 
relies on the generation of a variety of response features 
different from auditory nerve activity. Inhibition in  
the central circuits proves crucial for the creation and  
refinement of these functional response properties. 
Previous understanding of inhibitory mechanisms for 
auditory information processing has been limited by 
the methodology of deriving inhibition indirectly from 
spike and membrane potential responses. Recent appli-
cation of in vivo whole cell voltage-clamp recordings 
(iVCRs) to auditory cortical neurons directly reveals  
the spectral and temporal properties of synaptic inhibi-
tion evoked by auditory stimuli. These findings provide 
new insights into how cortical inhibition shapes spike 
responses of excitatory neurons through its specific inter-
action with their excitatory synaptic input. This review 
highlights our current understanding of cortical in-
hibitory mechanisms underlying several fundamen-
tal functional properties of auditory cortical neurons.  
In particular, we propose that the variation in spectro-
temporal pattern of cortical inhibition in relation to  
excitation contributes to the functional diversity of au-
ditory cortex.

In the central auditory system, a variety of response 
features that do not resemble auditory nerve activity are 
found. For example, although the auditory nerve fire 
spikes continuously during sound duration, some cen-
tral auditory neurons only respond transiently to the 
onset or the offset of sound stimuli (Fig. 1). The firing 
rate of the auditory nerve increases monotonically as 
sound intensity increases, whereas that of some central 
auditory neurons reaches a peak and then declines with 
further intensity increments. These diverse functional 
properties may set a foundation for parallel processing 
of different components of acoustic information. It is 
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believed that the generation of many of these novel  
response properties depends on inhibitory circuits. How-
ever, the detailed underlying mechanisms remain largely 
unclear, as it has been difficult to directly reveal synap-
tic inhibition in previous studies. Recently, in vivo whole 
cell recording techniques, especially, those of iVCR, have 
been successfully applied to auditory cortical neurons. 
These studies provided new insights into the inhibitory 
synaptic circuitry basis for the generation and refine-
ment of these functional response properties, even though 
many of them are originated in subcortical nuclei.

Cortical responses are know to be strongly influenced 
by synaptic inhibition, which plays important roles in 
defining frequency–intensity receptive fields (RFs) and 
shaping sound-evoked responses of individual cortical 
neurons (e.g., Feng and Ratnam, 2000; Wang et al., 
2000, 2002; Ojima and Murakami, 2002; Oswald et al., 
2006). The inhibitory control is mediated by cortical 
GABAergic interneurons through their feedforward or 
feedback projections. To understand the inhibitory con-
tribution to cortical information processing, two major 
questions need to be addressed: (1) How do GABAergic 
interneurons respond during cortical processing? (2) 
What kind of interplay between coactivated excitatory 
and inhibitory synaptic inputs to the cortical neuron de-
termines the inhibitory shaping of its responses?

Response properties of inhibitory neurons
Because of the relative sparseness of GABAergic inter-
neurons, which account for only 15–25% of total corti-
cal neurons (Peters and Kara, 1985; Hendry et al., 1987; 
Prieto et al., 1994), our knowledge on in vivo functional 
properties of these cells has lagged far behind that of 
pyramidal cells. The inhibitory neuron population con-
tains more than a dozen morphologically and neuro-
chemically distinct subgroups (Kawaguchi and Kondo, 
2002; Markram et al., 2004). The high heterogeneity of 
inhibitory neurons, as well as the technical challenge of 
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neurons place them in a strong position to supply fast, 
reliable, and temporally precise feedforward inhibi-
tion to other cells (Gabernet et al., 2005). Functional 
properties of other inhibitory neuron subtypes and 
their involvement in auditory cortical processing remain 
to be addressed.

Approaches to unraveling cortical inhibitory mechanisms
To understand the role of inhibition in shaping audi-
tory cortical function, two approaches have been ap-
plied. First, functional properties of neurons have been 
compared before and after removing cortical inhibition 
pharmacologically. Local iontophoretic application of 
an antagonist of GABAA receptors results in the broad-
ening of frequency tuning of cortical neurons (Wang  
et al., 2000, 2002). These results provide evidence for 
an inhibitory sharpening of frequency tuning. However, 
they could not generate deeper insights into detailed 
underlying mechanisms. Second, RF properties of cortical 
inhibition have been indirectly derived by examining 
spike responses. In a two-tone forward-masking para-
digm, inhibition is revealed by the suppression of re-
sponses to a characteristic frequency (CF) tone caused 
by a leading tone (Calford and Semple, 1995; Chen and 
Jen, 2000; Sutter and Loftus, 2003; Zhang et al., 2003). 
In these studies, it is found that inhibitory RFs flank the 
excitatory RFs, leading to the proposal of a lateral inhibi-
tion model. Inhibition has also been estimated based on 
the suppression of spontaneous spiking activity (e.g., Qin 
and Sato, 2004; Sadagopan and Wang, 2010; Zhou et al., 
2010). Furthermore, intracellular sharp-electrode re-
cording has revealed inhibition as a hyperpolarizing mem-
brane potential response (Ojima and Murakami, 2002). 

identifying inhibitory neurons with either extracellular 
or intracellular recordings, greatly increases the difficulty 
in studying this population of cortical cells. Current un-
derstandings of response properties of cortical inhibi-
tory neurons are mostly on fast-spike neurons, which 
exhibit distinctive narrow spike waveforms and can  
be identified with extracellular recordings (Mountcastle 
et al., 1969; Swadlow, 2003; Atencio and Schreiner, 
2008; Wu et al., 2008). These cells have also been cate-
gorized as basket or chandelier cells based on mor-
pho logy, and parvalbumin-positive neurons based on 
molecu lar markers (Kawaguchi and Kondo, 2002; 
Markram et al., 2004). Extracellular recording studies 
demonstrate that fast-spike inhibitory neurons exhibit 
different functional properties from excitatory neurons 
(Atencio and Schreiner, 2008; Wu et al., 2008). They 
display broader spectral tuning, shorter response la-
tency, lower intensity threshold, and higher response 
reliability, whereas their preferred frequency is essen-
tially the same as that of excitatory neurons in the same 
column. Intracellular recordings further indicate that 
the spectral range of excitatory inputs received by fast-
spike neurons is not different from that of nearby excit-
atory neurons (Wu et al., 2008), suggesting that the two 
classes of cells receive common thalamocortical inputs. 
However, fast-spike neurons are more efficient in con-
verting synaptic input to spike output, resulting in more 
broadly tuned spike responses than excitatory neurons. 
This observed broader tuning of fast-spike neurons is 
also consistent with results in other sensory cortices 
(Bruno and Simons, 2002; Swadlow, 2003; Niell and 
Stryker, 2008; Liu et al., 2009; Kerlin et al., 2010; Ma et al., 
2010). These unique response properties of fast-spike 

Figure 1. New functional response features are generated in the central auditory system. Two examples are shown. First, the discharge 
pattern of the auditory nerve in response to tones (marked by the gray line) exhibits a sustained response, with strong firing at stimulus 
onset. Many central auditory neurons, however, only exhibit transient responses to the onset or offset (not depicted) of stimulus.  
Second, the firing rate of the auditory nerve increases monotonically with the increase of sound intensity and may reach a plateau  
at high intensities. Central auditory neurons, however, can be intensity selective, as demonstrated by their nonmonotonic response– 
intensity functions.
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neurons in the auditory cortex, with the onset of inhibi-
tion delayed by 2–3 ms compared with that of excita-
tion (Wehr and Zador, 2003; Tan et al., 2004; Wu et al., 
2008; Zhou et al., 2010). This relative onset of inhibi-
tion appears constant across different tone frequencies 
(Wehr and Zador, 2003). A similar excitation–inhibition 
response sequence is also widely observed in other sen-
sory cortices (Douglas and Martin, 1991, 2004; Higley 
and Contreras, 2006; Liu et al., 2010). As shown in  
Fig. 2 A, the briefly delayed inhibition has three effects 
on the membrane potential response: (1) suppressing 
the depolarization response level; (2) narrowing the 
time window for depolarizing response; and (3) creat-
ing a relatively long period of hyperpolarization after 
the initial depolarization. Such excitatory–inhibitory 
interplay selectively allows spikes to occur within the 
narrow depolarization window while it prevents spiking 
during the delayed long period of hyperpolarization 
(Fig. 2 A). This leads to transient onset spike responses 
in cortical neurons with relatively precise spike timing, 
and also allows the neuron to behave as a coincidence 
detector for synchronous inputs (Pouille and Scanziani, 
2001; Wehr and Zador, 2003; Tan et al., 2004; Higley 
and Contreras, 2006). This canonical excitatory–inhibitory  
temporal relationship can be attributed to a feedforward 
inhibitory circuit, with disynaptic inhibitory inputs pro-
vided most likely by fast-spike inhibitory neurons (Tan 
et al., 2004; Gabernet et al., 2005; Wu et al., 2008;  
Ma et al., 2010).

Intensity-dependent inhibitory delay. Intensity-tuned audi-
tory neurons are characterized by their nonmonotonic 
responses to sound intensities (Phillips et al., 1995; Heil 
and Irvine, 1998; Sutter and Loftus, 2003) and have 
been proposed to play important roles in encoding 
sound loudness and envelop transients (Heil and  
Irvine, 1998; Polley et al., 2004). Because auditory nerve 
responses all exhibit monotonic rate-level functions, 
intensity tuning must be created in the central auditory 
pathway, likely through specific spectral and temporal 
interactions between excitation and inhibition (Suga 
and Manabe, 1982; Faingold et al., 1991; Pollak and 
Park, 1993; Calford and Semple, 1995; Ojima and  
Murakami, 2002; Wang et al., 2002; Sutter and Loftus, 
2003; Sivaramakrishnan et al., 2004). Recent iVCR re-
cordings from intensity-tuned cortical neurons indicate 
that although excitatory input already exhibits intensity 
tuning, cortical intensity tuning is greatly strengthened 
by inhibitory input recruited in an imbalanced manner 
(Wu et al., 2006; Tan et al., 2007). As intensity increases, 
the amplitude of inhibition increases monotonically, 
and the temporal delay of inhibition relative to excita-
tion is shortened. As a result, the suppression of excita-
tion by the inhibitory input is enhanced at intensities 
above the preferred intensity, and intensity selectivity  
of spike responses is sharpened. More interestingly, 

The above studies, although providing persuasive evi-
dence for inhibition, cannot give a quantitative mea-
surement of inhibition. For example, in the two-tone 
suppression experiments, the leading tone may result 
in both excitation and inhibition, and the apparent sup-
pression of the CF-tone response cannot be simply viewed 
as a pure inhibitory effect. In addition, short-term plas-
ticity of excitatory and inhibitory inputs should also be 
considered because the temporally close two tones may 
not activate completely independent pathways.

In previous intracellular or whole cell recording ex-
periments, many attempts to derive synaptic conductances 
may have been compromised by the high impedance  
of recording microelectrodes. Recently, the successful  
application of high-quality iVCR technique opens the 
door to probing into synaptic circuits underlying corti-
cal processing. Only with low access–resistance whole 
cell recording and sufficient voltage clamp of neuronal 
membranes has it become possible to isolate excitatory 
and inhibitory synaptic conductances reliably (Wehr 
and Zador, 2003; Tan et al., 2004; Wu et al., 2006; Liu  
et al., 2007). It is worth noting that an evaluation of 
clamping quality cannot be based simply on the linear-
ity of current–voltage relationship, but should also be 
based on the proximity of measured reversal potentials 
of synaptic currents to theoretical values. The iVCR 
technique is particularly important and useful for inves-
tigating inhibition because indirect derivations of inhibi-
tion could be problematic, as discussed above. Recent 
studies in the primary auditory cortex (A1) using the 
iVCR technique have revealed inhibitory patterns un-
derlying several fundamental functional properties of 
cortical neurons, such as selectivity for auditory features 
and specific temporal response profiles (Wehr and Zador, 
2003, 2005; Zhang et al., 2003; Tan et al., 2004, 2007; 
Wu et al., 2006, 2008; Liu et al., 2007; Sun et al., 2010; 
Zhou et al., 2010). The results provide us with a more 
thorough picture on the inhibitory mechanisms underly-
ing auditory cortical processing.

Temporal shaping of auditory responses by  
cortical inhibition
Sound-evoked responses of individual cortical neurons 
are primarily determined by the temporal integration 
of coactivated excitatory and inhibitory synaptic inputs 
to the cell. Recent iVCR studies have allowed a detailed 
comparison of onset latency between excitation and in-
hibition evoked by the same stimulus. The results re-
vealed that the temporal relationship between excitation 
and inhibition is not fixed, but varies in different corti-
cal locations as to fulfill different processing functions. 
Three salient excitatory–inhibitory temporal relation-
ships have been observed.

Canonical inhibitory delay. A stereotyped excitatory–
inhibitory temporal relationship is found for layer 4 
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spike responses in a large proportion of L6 excitatory 
neurons (Tsumoto and Suda, 1980; Sirota et al., 2005; 
Zhou et al., 2010), but suppress their spontaneous firing 
within the expected tonal RF (Zhou et al., 2010). The sup-
pression of evoked spike responses results from a strong 
inhibitory input preceding the coactivated excitatory 
input (Zhou et al., 2010) (Fig. 2 C). Such a reversed 
excitatory–inhibitory temporal relationship can be at-
tributed to a parallel feedforward circuit in L6, with ex-
citatory and inhibitory inputs both disynaptically relayed 
from the thalamus. Because of earlier spiking of the first-
order L6 inhibitory neurons than the first-order excit-
atory neurons (Zhou et al., 2010), the second-order 
excitatory neuron would receive inhibition before the ar-
rival of the disynaptic excitatory inputs. It is proposed that 
the preceding inhibition may be relieved under specific 
conditions, such as during the arrival of attention-related 
inputs. Then, the corticothalamic feedback is allowed to 
be activated to mediate the induction of sound-specific 
plasticity in the auditory thalamus (Zhang and Suga, 2000; 
Suga and Ma, 2003; Zhang and Yan, 2008).

neuron modeling work indicates that even if excitatory 
input is not intensity tuned, intensity tuning can still be 
generated by shortening the relative onset of inhibition 
with intensity increments (Wu et al., 2006) (Fig. 2 B). 
This result suggests that controlling the relative timing 
between excitation and inhibition can be a good strat-
egy used by synaptic circuits to achieve a de novo con-
struction of intensity selectivity.

Inhibitory advance in layer 6 (L6). L6 of the A1 has been 
implicated in a major corticothalamic feedback loop. It 
receives direct thalamocortical input and conversely 
sends feedback projections predominantly to the first-
order thalamic nucleus (Ojima, 1994; Prieto and Winer, 
1999; Rouiller and Welker, 2000; Winer et al., 2001, 
2005; Kaur et al., 2005; Winer, 2005; Takayanagi and 
Ojima, 2006; Lakatos et al., 2007; Llano and Sherman, 
2008; Wallace and Palmer, 2008). This corticothalamic 
feedback has been thought to mediate thalamic re-
sponses (Villa et al., 1991; Zhang and Suga, 1997; Yan 
and Ehret, 2002). However, sensory stimuli do not drive 

Figure 2. Temporal shaping of auditory re-
sponses by cortical inhibition. (A) A brief 
delay of inhibition narrows the time window 
for membrane depolarization, resulting in 
spikes with high temporal precision. (Left) 
Relative timing of model tone-evoked ex-
citatory (red) and inhibitory (blue) inputs. 
Dashed line indicates the onset. (Middle) 
Derived membrane potential response result-
ing from excitation alone (top) or from the 
interplay of excitation and inhibition (bot-
tom) using a simple neuron model. Dashed  
line indicates the spike threshold. Vertical  
lines mark the time window for spike gen-
eration. Vm, membrane potential response;  
Vr, resting membrane potential. (Right) Derived 
spike responses to tones in different trials.  
(B) Varying the onset of inhibition modulates 
the response of the cortical neuron, a mecha-
nism underlying intensity selectivity. (Left) Blue 
curve 1 represents the inhibitory response to 
tone of optimal intensity, whereas 2 repre-
sents that to tone at higher intensity. (Middle) 
The derived membrane potential response to 
tone at higher intensity is weaker than that at 
optimal intensity. (Right) A simulation result 
showing the relationship between the peak 
amplitude of membrane potential response 
and the relative delay of inhibition. (C) Pre-
ceding inhibition silences spike output of 
the cortical neuron. (Left) Similar excitatory 
and inhibitory synaptic inputs as in A and B,  
except that the onset of inhibition is 2 ms earlier 
than that of excitation. (Middle) The derived 
membrane potential response is lower than 
the spike threshold. (Right) The expected 
post-stimulus spike–time histogram (PSTH) 
in response to a tone. The spontaneous firing 
is suppressed during tone stimulation.
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scales down the level of membrane depolarization re-
sponses and thus narrows the frequency range for spike 
responses through an “iceberg” or thresholding effect 
(Wehr and Zador, 2003; Tan et al., 2004). The cotuned 
inhibition can be explained by a feedforward circuit  
in which inhibitory neurons providing the inhibition 
receive the same set of thalamic inputs as the excitatory 
neuron under examination. Second, in the lateral in-
hibition model (Fig. 3 B), the spectral range of inhibitory 
inputs is much broader than that of excitatory inputs, 
resulting in suppressive sidebands flanking the excitatory 
RF and the narrowing of frequency tuning of spike re-
sponses (Suga and Manabe, 1982; Shamma, 1985; Shamma 
and Symmes, 1985; Calford and Semple, 1995; Sutter 
and Loftus, 2003; Oswald et al., 2006). This second model 
is primarily based on extracellular recording results of two-
tone suppression experiments (Suga and Manabe, 1982; 
Calford and Semple, 1995; Sutter and Loftus, 2003), 

Spectral shaping of auditory feature selectivity by  
cortical inhibition
In the auditory system, frequency or spectral informa-
tion is mainly coded spatially in a tonotopic map. There-
fore, the spatial distribution of presynaptic neurons largely 
determines the spectral range of synaptic inputs to the 
postsynaptic cell. Through specific spectral interactions 
between excitation and inhibition, feature selectivity rep-
resented by auditory cortical neurons can be enhanced or 
even created.

Frequency selectivity. Three models have been proposed 
to explain the inhibitory sharpening of frequency selec-
tivity. First, in the balanced excitation and inhibition 
model (Fig. 3 A), excitation and inhibition exhibit the 
same tuning profiles (Fig. 3 A); that is, they are cotuned 
(Wehr and Zador, 2003; Zhang et al., 2003; Tan et al., 
2004; Oswald et al., 2006). In this model, inhibition 

Figure 3. Three models for the spectral shaping of auditory feature selectivity by cortical inhibition. (A) Balanced excitation and inhibi-
tion model. (Left) Cotuned frequency tuning curves for excitation (red) and inhibition (blue). CF, characteristic frequency. (Middle) 
Tuning curves for membrane potential responses resulting from excitation alone (dashed gray curve) and from integrating excitation 
and inhibition (solid black curve). Note that the tuning curve is scaled down without changes in shape. Red dashed line indicates the 
level of spike threshold. Green dash line indicates the level of resting membrane potential. Red arrows mark the frequency range for 
spike response. (Right) Proposed underlying circuit. The recorded cortical excitatory neuron (triangle cell) receives thalamic inputs 
(excitatory) and inhibition from local inhibition neurons (round cell), which are innervated by the same set of thalamic inputs. Thus, 
inhibition is disynaptically relayed. “Far” means thalamic input with represented frequency far away from the CF of the recorded neu-
ron. (B) Lateral inhibition model. Note that hyperpolarizing responses (Vm below the resting membrane potential) result in apparent 
suppressive sidebands. In this case, the inhibitory neurons receive thalamic input with represented frequency far away from the CF of 
the recorded neuron. (C) Approximately balanced excitation and inhibition model. Note that the inhibitory tuning curve has a more 
flattened peak than the excitatory tuning curve. The cell is a high-CF cell, so that the excitatory tuning curve is skewed toward the high-
frequency side. The relative inhibition is stronger on the left side than the right side of the excitatory tuning curve. The arrow indicates 
the preferred direction, that is, from high frequency to low frequency (downward FM sweeps). Upward sweeps would activate an earlier 
strong inhibition, which would suppress later activated strong excitation. Compared with the model in A, the membrane potential tun-
ing is further sharpened. In the circuit, the cortical excitatory neurons connecting to the recorded cell have narrower frequency tuning 
of spike response compared with the inhibitory neurons connecting to the same cell. As a result, inhibitory inputs are broader than 
summed excitatory inputs.
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spectral offset between excitation and inhibition in  
direction-selective neurons (Suga, 1965; Shamma et al., 
1993; Nelken and Versnel, 2000; Zhang et al., 2003; 
Razak and Fuzessery, 2006; Ye et al., 2010), and relatively 
stronger inhibition appears on one side of the excitatory 
frequency tuning curve in a manner consistent with the 
cell’s preferred direction (Zhang et al., 2003; Ye et al., 
2010). It has been thought that this spectral offset is im-
portant for the generation of direction selectivity. In fact, 
the apparent offset can be attributed to the broader tun-
ing of inhibition than excitation and its less asymmetric 
tuning shape (Fig. 3 C). When FM sweeps are applied in 
the preferred direction, both strong excitation and in-
hibition are activated earlier, but the delayed nature of 
inhibition allows spiking response to be generated. In 
contrast, in the opposite direction, relatively strong in-
hibition is activated earlier, which effectively suppresses 
the later arriving strong excitation and prevents spiking  
response (Zhang et al., 2003). Thus, the detailed excit-
atory–inhibitory imbalance can contribute significantly to 
direction selectivity in response to FM sweeps.

Variety of excitatory–inhibitory interplay  
and functional diversity
Having been supported by several earlier iVCR studies 
(Wehr and Zador, 2003; Zhang et al., 2003; Tan et al., 
2004; Oswald et al., 2006; Tan and Wehr, 2009), the con-
cept of balanced excitation and inhibition has received 
broad attention. The balance is characterized by a rela-
tively constant ratio between amplitudes of excitation 
and inhibition across different stimuli. In addition, a ste-
reotyped sequence of excitation followed by inhibition 
is evoked by sensory input, with the time interval be-
tween them relatively constant across stimuli. Under bal-
anced excitation and inhibition, functional selectivity  
is primarily determined by the property of excitatory  
synaptic inputs, and inhibition only helps to sharpen the 
selectivity. Considering that central auditory neurons  
exhibit a wide variety of functional properties very dif-
ferent from auditory nerves (Schreiner et al., 2000;  
de la Rocha et al., 2008), neural circuits with only bal-
anced excitation and inhibition seem too limited for ex-
plaining the functional diversity. Indeed, in the cortex, 
even the balanced excitation and inhibition can only be 
viewed as being approximate. Neural circuits with differ-
ent organization principles together with neuronal pop-
ulations with different response properties can result in 
various patterns of excitatory–inhibitory interplay devi-
ating from the perfect balance, which would be essential 
for creating diverse functional properties.

Future directions
The inhibitory mechanisms discussed so far are largely 
consistent with the functional properties of fast-spike 
inhibitory neurons and their involved circuits. Func-
tional properties of other types of inhibitory neurons in 

and can only be explained by a circuit in which inhibi-
tory neurons receive a broader range of thalamic inputs 
than excitatory neurons. Third, detailed analysis of fre-
quency tunings of synaptic inputs at high resolutions 
reveals that the spectral range of inhibition is in fact 
slightly narrower than that of excitation, and the shapes 
of excitatory and inhibitory tuning curves are different 
(Wu et al., 2008; Sun et al., 2010). The inhibitory tun-
ing curve appears broader, especially within a putative 
spiking frequency range around the CF (Fig. 3 C). This  
current model unites the two previous models by dem-
onstrating that on a global scale, excitation and inhibi-
tion are approximately balanced, but on a finer scale, 
excitation and inhibition can be significantly imbal-
anced. It also fits better with the properties of inhibitory 
neurons. Recordings from layer 4 fast-spike inhibitory 
neurons show that their spectral range of synaptic in-
puts (which is primarily determined by thalamocortical 
inputs) is not different from nearby excitatory neurons, 
but spike responses of fast-spike inhibitory neurons are 
more broadly tuned than those of excitatory neurons 
(Atencio and Schreiner, 2008; Wu et al., 2008). Because 
layer 4 excitatory neurons receive a significant amount 
of excitatory input from other cortical excitatory neu-
rons (Liu et al., 2007; Happel et al., 2010; Zhou et al., 
2010), this differential tuning between fast-spike inhibi-
tory neurons and excitatory neurons introduces a break 
of excitatory–inhibitory balance; that is, inhibitory inputs 
are more broadly tuned than summed excitatory inputs 
(Fig. 3 C). Compared with the cotuned inhibition, the 
more broadly tuned inhibition around the preferred 
frequency has an advantage in that it can exert an equiv-
alent lateral inhibition effect and further narrow the 
frequency range of spike responses (Wu et al., 2008).

Frequency-modulated (FM) direction selectivity. Neurons 
selective for direction of FM sweeps are found in the  
A1 (Suga, 1965; Mendelson and Cynader, 1985; Zhang  
et al., 2003). Mapping studies suggest that direction  
selectivity is topographically ordered in parallel with fre-
quency representation. Low CF neurons prefer upward 
sweeps, whereas high CF neurons prefer downward 
sweeps (Heil et al., 1992; Zhang et al., 2003; Godey  
et al., 2005). It is found that the spectral distribution  
of excitatory synaptic input is asymmetric or skewed in  
direction-selective neurons, and the skewness is strongly 
correlated with direction selectivity (Zhang et al., 2003). 
However, the skewed excitatory inputs by themselves  
do not account for the generation of direction selectiv-
ity, as the integration of single-tone evoked excitatory 
inputs sequentially to simulate FM sweep stimulation 
results in an optimal direction for excitation opposite to 
the cell’s preferred direction (Zhang et al., 2003). The 
correct directional preference on the other hand can 
be achieved by spectral and temporal interplays between 
excitatory and inhibitory inputs. There appears to be a 
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effects of inhibition (Wu et al., 2008; Liu et al., 2010). 
Second, the dynamic-clamp technique (Sharp et al., 
1993) can be combined with in vivo whole cell recording 
to inject experimentally determined synaptic conduc-
tances into the cell and monitor its membrane potential 
response. Finally, the newly developed optogenetic tech-
nique (Lima et al., 2009; Zhang et al., 2010) will allow 
light-controlled reversible inactivation of local inhibi-
tory neurons, while leaving the network activity largely 
intact. Responses of single cells can be examined before 
and after activation or inactivation. Collectively, these 
experiments will be able to provide invaluable insights 
into the inhibitory synaptic mechanisms underlying 
auditory cortical functions.
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