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Chlamydial infection causes a number of clinically relevant diseases and induces
significant morbidity in humans. Immune and inflammatory responses contribute to
both the clearance of Chlamydia infection and pathology in host tissues. Chlamydia
infection stimulates host cells to produce a large number of cytokines that trigger and
regulate host immune responses against Chlamydia. However, inappropriate responses
can occur with excessive production of cytokines, resulting in overreactive inflammatory
responses and alterations in host or Chlamydia metabolism. As a result, Chlamydia
persists and causes wound healing delays, leading to more severe tissue damage and
triggering long-lasting fibrotic sequelae. Here, we summarize the roles of cytokines in
Chlamydia infection and pathogenesis, thus advancing our understanding chlamydial
infection biology and the pathogenic mechanisms involved.
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INTRODUCTION

Chlamydia are gram-negative prokaryotic organisms with obligate intracellular parasitism (1). Each
species of Chlamydia is capable of infecting the host species—ranging from humans to amoebae—
that they are adapted to (2). In animals, infections with Chlamydia can result in inflammatory
pathologies at the sites of infection, including ocular, pulmonary, genital, articular, and intestinal
tissues. Chlamydia infections and their transmission impose a significant medical and social burden,
thus causing economic damage and representing a major public health challenge (3), and there is
currently no optimal strategy to control chlamydial infections and stop their spread. Although
chlamydial vaccine research dates to seventy years ago, an effective vaccine is not yet available for
the limitations in the safety and protective immunity (4). Drug therapy is beneficial for temporary
control of infection but unable to treat the irreversible lesions caused by reinfection and persistent
asymptomatic infection (5). Therefore, it is crucial to deeply investigate the pathogenic mechanisms
of Chlamydia to develop more effective strategies for the treatment and prevention of these diseases.

Chlamydia have a biphasic life cycle, alternating between the infectious elementary body (EB)
and the replicative reticulate body (RB). Intracellular infection starts with the entry of EBs into a
host cell. Then, the endocytosed EBs differentiates into noninfectious but metabolically active RBs
(6), which replicates and converts into EBs again for transmission of the infection to a new host cell
(1). Invasion of the host by Chlamydia and the ensuing chlamydial life cycle, involves series of
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poorly understood mechanisms that compromise and interfere
with the function of the host cells, thus damaging host health.
Instead, it is critical for the host to mount an immune response,
including production of cytokines such as interleukin (IL)-1, IL-
6, IL-8, and tumor necrosis factor alpha (TNF-a) that activate or
recruit immune cells to trigger or amplify inflammation against
Chlamydia (7, 8). These cytokines can be not only used by
immune system to inhibit Chlamydia growth and control
infection, which is helpful for preventing or slowing down the
progression of chlamydial lesions (9, 10), but also used for
microbial survival but not for clearance, and result in
irreversible lesions and severe tissue damage (Table 1).

In vitro and in vivo studies on Chlamydia infection show that
a variety of cytokines, including IL, interferon (IFN), and TNF
are involved in the inflammatory response (Figure 1) and
immune regulation in Chlamydia-induced diseases. Here, we
attempt to summarize the roles of cytokines involved in
Chlamydia infection and pathogenesis.
IFN

IFN was originally shown to induce an antiviral state in host
cells, and was later found to be a cytokine with several effects on
the immune system (26, 27). Type I interferon (IFN-a/b) mainly
functions as an antiviral factor and immune regulator (26, 28).
Type II interferon (IFN-g) is involved in immunoregulation, and
has anti-bacterial, anti-parasitic and anti-tumor functions
(26, 27).
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The level of IFN is elevated in the cell culture supernatants,
serum, and cervical secretions after Chlamydia infection (20, 29,
30). During chlamydial infection, IFN-a/b activates
macrophages, enhances the cytotoxic activity of natural killer
(NK) cells, and promotes IFN-g production or Th1 cell
differentiation through the activator of transcription (STAT)
signal pathway (31). However, the precise role of IFN-a/b in
chlamydial infection is not very clear (32). IFN-g plays an anti-
Chlamydia role in the innate immune system and adaptive
immune system. The secretion of IFN-g is not only regulated
by IL-12, IL-18, IL-10, and other cytokines after chlamydial
infection, but is also enhanced through a positive feedback
mechanism (33–35). The importance of IFN-g in the host
during chlamydial infection is evidenced by the elevated
chlamydial load in IFN-g -/-, IFN-gR -/- mice or mice treated
with anti-IFN-g antibody compared with that in the wild/control
group (20–22).

IFN-g inhibits the normal metabolism and replication of
Chlamydia by affecting availability of essential nutrients for
Chlamydia growth. IFN-g not only strongly reduces C.
trachomatis metabolic growth via cellular tryptophan depletion
and glucose starvation (36), but also interferes with the iron
metabolism of the host (37). In addition, IFN-g has immune-
defens ive funct ions in the host . Severe combined
immunodeficiency (SCID) mice treated with neutralized anti-
IFN-g antibody, or RAG-1-/-/IFN-gR-/- mice exhibit increased
susceptibility to C. trachomatis compared with RAG-1-/- mice,
suggesting that IFN-g exerts beneficial effects on host innate
immunity for controlling Chlamydia infection (38).
TABLE 1 | Function of cytokines in pathological changes during Chlamydia infection.

Cytokine Methods for research Regulatory role in host immune response Function in pathology

IL-1 Chemical inhibition, antibody blockade and KO mice (11, 12) Regulate Th1/Th2 balance
Regulate other pro-inflammation cytokines

Accelerate formation of tissue
lesions

IL-6 Chemical inhibition, antibody blockade and KO mice (13, 14) Recruit white cell
Promote B cell differentiation
Regulate Th1 response

Induced pathology has been
controversial

IL-8 KO mice (15) Inhibit apoptosis of neutrophils
Reduce sensitivity of therapeutic drugs

Accelerate formation of tissue
lesions

IL-13 KO mice (16) Regulate other pro-inflammation cytokines Accelerate tissue lesion
IL-17 Antibody blockade and KO mice (17) Up-regulate iNOS and NO

Regulate DC to evoke Th1 response
Increase neutrophil infiltration

Accelerate formation of tissue
lesions

IL-4 Antibody blockade and KO mice (18) Enhance B cell to present antigen
Trigger DTH
Lessen inflammatory

Accelerate formation of tissue
lesions

IL-10 siRNA inhibition, chemical inhibition, antibody blockade and
KO mice (19)

Down-regulated the expression of MHC I molecules
Inhibit apoptosis of DC and control its antigen-
presentation function
Reduced local inflammatory infiltration
Decreased eliminating activity of CD8+ T cells

Attenuate pathological damage

INF-g siRNA inhibition, chemical inhibition, antibody blockade and
KO mice (20–22)

Inhibit host cell metabolism
Regulate Th1/Th2 balance
Influence Chlamydia life cycle

Clear infection and reduce
sequelae

TNF-a siRNA inhibition, chemical inhibition, antibody blockade and
KO mice (23–25)

Inhibit host metabolism
Induce apoptosis of infected cells
Enhance neutrophil and macrophage phagocytic
activity
Facilitate the expression of other cytokines

Involved in immune injury
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Furthermore, the role of IFN-g against Chlamydia in adaptive
immune protection can be demonstrated by transfer of
Chlamydia-specific CD4+ or CD8+ T cells, which induce IFN-g
production after infection and provide complementary
mechanisms for maintaining protective levels of IFN-g (39).
Chlamydia-specific CD8+ T cells, derived from IFN-g-deficient
mice, failed to provide protection under conditions whereas the
wild-type CD8+ T cells did (40, 41). IFN-g also has a regulatory
impact on anti-Chlamydia defense by altering the Th1/Th2
balance, which is modulated by STAT1 phosphorylation and
subsequent activation of the Th1/Th2 cell differentiation-specific
transcription factor T-bet (42, 43). However, low-level IFN-g
induces the formation of smaller atypical inclusions that contain
large RBs and non-replicating aberrant bodies with no newly
generated EBs, which are associated with the persistent infection
of Chlamydia (32, 44).

IFN-g not only has an anti-Chlamydia function, but also
influences the outcome of Chlamydia infection. Under normal
conditions, IFN-g can accelerate the clearance of Chlamydia,
control infection effectively, and alleviate the lesions that form.
However, a high concentration of IFN-g is related to excessive
inflammatory reaction and infectious sequelae (45, 46). Thus, the
diverse effects of IFN-g on Chlamydia infection-induced immune
response are related to its concentration, the immune
microenvironment, and the stage of infection (32, 33). Anti-
Chlamydia strategies seek to take advantage of the functions
of IFN-g: for example, cell-specific IFN-g/IFN-gR gene
knockout (KO) mice may be established using the Cre/loxP
recombinant system, defining where IFN-g exerts its anti-
infective effects. Furthermore, magnifying the effects of cell-
targeting IFN-g in that particular area can be used to improve
the sensitivity of IFN-g treatment. Genital and intestinal
epithelial cells should be the main focus in strategies against
C. trachomatis infection.
Frontiers in Immunology | www.frontiersin.org 3
TNF

TNF, an important inflammatory factor mainly produced by
activated monocytes/macrophages (47), is divided into the
categories of TNF-a and TNF-b (48). TNF-a is chiefly
secreted in response to inflammatory stimuli and is well
known for its killing effect against intracellular microbes (23).
Chlamydia or its pathogenic substances such as pORF5 and
lipopolysaccharide (LPS) induce TNF-a production in host
serum, bronchial lavage fluid, vaginal secretions, and
supernatants of cultured cells cells (49–51), through activating
mitogen-activated protein kinases (MAPK) or other signaling
pathways (52, 53). Toll-like receptor (TLRs) regulate TNF-a
expression. Deficiency of TLR2 or TLR4 in macrophages
significantly reduces TNF-a levels during chlamydial infection
(53, 54),while deficiency of TLR3 in epithelial cells increases its
levels at the early stage of chlamydial infection (55).

Elevated TNF-a levels have certain effects on Chlamydia
infection. First, TNF-a works with IFN-g to inhibits the
metabolism of host cells by increasing the activity of
indoleamine 2, 3-dioxygenase (IDO), and restricts the growth
of Chlamydia (36, 56). Secondly, TNF-a influences the survival
of Chlamydia in vivo by inducing apoptosis of host cells that
provide suitable conditions for the growth of the organism (57–
59). Furthermore, the adoptive transfer of TNF-a reduces the
lung bacterial load of newborn mice infected with Chlamydia. It
is possible that TNF-a strongly enhances the phagocytic activity
of neutrophils and macrophages (60). However, deficiency of
TNF-a or application of TNF-a inhibitors has no significant
effect on Chlamydia clearance in vivo, suggesting that TNF-a
may not be necessary for Chlamydia clearance (23).

It has been documented that TNF-a is related to the
formation of Chlamydia-induced lesions. TNF-a not only up-
regulates adhesion molecules, assisting the exudation of
FIGURE 1 | The function of cytokines in Chlamydia-induced inflammation.
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leukocytes to the site of inflammation, but also facilitates the
expression of cytokines such as IL-6 and IL-8, which are
connected with tissue fibrosis and scar formation (61, 62).
Second, TNF-a accelerates the release of collagenase by
stimulating the proliferation of tissue fibroblasts, which leads
to histopathological damage (63). Third, deficiency of TNF-aR,
the specific receptor of TNF-a that is essential for mediating its
biological function; injection of TNF-a antibody; or knockout of
the TNF-a gene significantly reduces the severity of mouse
fallopian tube lesions due to chlamydial infection, illustrating
that TNF-a play an important role in immune injury induced by
Chlamydia (24, 25). Therefore, although TNF-a is not necessary
for Chlamydia clearance, it can mediate immunopathological
damage caused by Chlamydia.
IL

IL, which are produced by lymphocytes, macrophages, and
monocytes, and direct certain immune cells to divide and
differentiate, consists of several pro- or anti-inflammatory
proteins, with pro-inflammatory IL-1b, IL-17A, IL-18 being its
best characterized members. The main pro-inflammatory ILs
include the IL-1 family, IL-17A, IL-8 (64). While, Major anti-
inflammatory cytokines include IL-1 receptor antagonist, IL-
4, IL-6, IL-10, IL-11, and IL-13 (65).

IL-1 Family
The IL-1 family consists of 12 members, including IL-1, IL-18,
and IL-33 (66). These ILs are expressed and secreted by different
cells, such as mast cells, eosinophils, macrophages, and may play
an important role in biological activities such as regulation of
immune responses; induction of the inflammatory response, cell
proliferation, and differentiation; and promoting the secretion of
other cytokines (67). The IL-1 family members are also the
central mediators of innate immunity and inflammation (68).
Frontiers in Immunology | www.frontiersin.org 4
These multi-effect cytokines exert a variety of local or systemic
responses to viral and bacterial infections and are involved in the
pathogenesis of chronic inflammatory diseases (67, 68). This has
also been observed in chlamydial infections (69, 70) (Table 2).

The increase in IL-8 and IL-1 levels can be detected in the
blood and synovial tissue of patients infected with C. trachomatis
(9). Further, alveolar macrophages and peripheral blood
mononuclear cells (PBMCs) obtained from chronic obstructive
pulmonary disease (COPD) patients with C. pneumoniae
infection produce significantly higher amounts of IL-1b and
lower amounts of IL-1R-antagonist (10) than cells from COPD
patients without C. pneumoniae infection produce. In addition,
elevated levels of IL-1, IL-6, and IL-8 can be detected in the
female cervix with C. trachomatis infection (81). Based on these
phenomena, IL-1 family might have vital functions in the
immune response and acute or chronic inflammation following
chlamydial infection (71, 82). Current evidence shows that IL-1a
can affect the secretion and maturation of IL-8 during chlamydial
infection in two ways. On the one hand, IL-1a combined with
DNA of host cells enhances the expression of IL-8, mediating
host inflammation in the early stage of chlamydial infection. On
the other hand, IL-1a can be released from ruptured cells to bind
to IL-1R, promoting the secretion of IL-8 in the later stage of
infection (11). Through IL-8 activity, IL-1a might play a role in
inflammation and tissue lesions induced by Chlamydia (83, 84).
IL-1b evolved to assist host defense against chlamydial infection
by inducing a wide spectrum of inflammatory cytokines and
chemokines, such as IL-6 and IL-8 (71, 74). However, it was
found that high expression of IL-1b could drive foam cell
formation and accelerate atherosclerosis during C. pneumoniae
infection (78). Furthermore, IL-1b is believed to be associated
with exacerbation of upper genital tract pathology during
infection with C. muridarum (75). IL-33 can activate ST2-
mediated signaling pathways, which mainly promotes Th2
cytokine production (85). Because Th2 cytokines can suppress
Th1 responses and inhibit IFN-g production, it is not likely that
TABLE 2 | IL-1 family in Chlamydia infection.

IL-
family

Special receptor
(Coreceptor)

Functions in Chlamydia infection Regulating other cytokines

IL-1a IL-1R1(IL-1R3) Promote inflammatory responses to
Chlamydia (11, 70, 71); Tissue lesion (11, 50, 71–73)

Promote IL-6, IL-8

IL-1b IL-1R2(IL-1R3),
IL-1R1(IL-1R3)

Promote inflammatory responses to
Chlamydia (70, 71, 74–76); Assist to defense against chlamydial infection (74, 77); Drive foam cells
formation and accelerate atherosclerosis (73, 78, 79)

Promote IL-6, IL-8

IL-18 IL-1R5(IL-1R7) Promote inflammatory responses to
Chlamydia (34, 70, 80); Promote tubal edema (71, 80) and tissue fibrosis (34, 80)

Promote IFN-g

IL-33 IL-1R4(IL-1R3) Promote inflammatory responses to
Chlamydia (70); unclear

Promote Th2 cytokine, suppress
Th1 cytokine

IL-
1Ra

IL-1R1(NA) Suppress inflammatory responses to Chlamydia (70); unclear Promote IL-8

IL-
36Ra

IL-1R6(IL-1R3) Unknown Unknown

IL-36/
b/g

IL-1R6(IL-1R3) Unknown Unknown

IL-37 IL-1R5(IL-1R8) Unknown Unknown
IL-38 IL-1R6(IL-1R9) Unknown Unknown
May 20
NA, not applicable.
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IL-33 functions in blocking chlamydial infection (86). It is
reported that IL-18 is the only member of the IL-1 family that
can induce T, B and NK cells to produce IFN-g, which is
responsible to controlling chlamydial infection (80). However,
the clearance of Chlamydia did not have significant difference on
mouse pneumonitis (MoPn)-infected IL-18 KO mice and wild-
type mice (12). Thus, it is speculated that IL-18 may not be
necessary for the clearance of chlamydial infection.

The roles of IL-1 members are varied and complex, and their
activities and interactions will change as the chlamydial infection
progresses. Pathogenic molecules produced by Chlamydia, such
as pORF5 and Hsp60, can induce the activation of caspase-1 and
stimulate secretion of IL-1b, IL-18, and IL-33 through TLR2/
myeloid differentiation primary response 88 (MyD88) or
NLRP3/ASC/caspase-1 signaling pathways to promote local
inflammatory responses to Chlamydia (74, 87, 88).
Additionally, these proteins may also be related to the
pathological mechanism of tubal edema and tissue fibrosis
caused by Chlamydia (71, 82). It is important to define the role
of IL-1b in this context: while this IL protects the host in the
defense against chlamydial infection (77, 81), we still believe that
it is a promoting disease-related factor in Chlamydia infection.
IL-18 and IL-33 participate in immunologic injury induced by
chlamydial infection, although the precise mechanisms in
removing chlamydial are still unknown (11, 72, 89). In short,
the IL-1 family not only includes members that regulate
inflammation but also includes those are involved in the
immunopathological damage caused by Chlamydia (72, 77,
87). Doubts still persist regarding the function of some IL-1
cytokines such as IL-37 and IL-38, and further studies are needed
to identify their precise roles in chlamydiosis.

IL-6
Like IL-1, IL-6 has a wide variety of activities related to immune
cell functions. IL-6 promotes the terminal differentiation of B
cells (90) and T cell survival (91) and helps T cells to overcome
suppression by Tregs (92); its most noticeable role is in the
defense against infection (90, 93). IL-6 is overexpressed in mice
with Chlamydia-related tubal factor infertility or humans who
suffered from Chlamydia-related disease (94, 95). IL-6 can also
be detected in the semen and serum of asymptomatic patients
with Chlamydia infection (96, 97). Elevated IL-6 levels were
found to play a protective role in controlling Chlamydia
infection, given that IL-6 deficient mice were significantly more
susceptible to Chlamydia infection through the airway than wild-
type mice (98, 99). Patients who received anti-IL-6 treatment
were also found to be at increased risk of Chlamydia infection
(13, 100). These results suggest that the role of IL-6 should not be
ignored in the inhibition of and therapy for Chlamydia infection.
There are a few potential explanations for the resistance of IL-6
to Chlamydia. IL-8, IL-1b, and other cytokines act as initiators of
IL-6 production (101). The MAPK/extracellular regulated
protein kinases (ERK) pathway or the Janus kinase (JAK)/
signal transducer and STAT pathway mediate the expression
and secretion of IL-6 at certain mucosal surfaces or in cell culture
supernatants (94, 102). From the perspective of the innate
immune response, IL-6 induces the recruitment of white blood
Frontiers in Immunology | www.frontiersin.org 5
cells and promotes apoptosis of neutrophils, mediating
inflammation to control infection (93, 103). From the
perspective of the adaptive immune response, high expression
of IL-6 activates the Th1-like response to clear pathogens by
regulating the production of IFN-g and thus decrease
susceptibility to Chlamydia infection (94). In addition, TNF-a,
which is relevant to the degree of Chlamydia-induced fallopian
tube obstruction and maintenance of the continuous state of
disease, is inhibited by IL-6 in a dose-dependent manner (62,
104). Although IL-6 plays critical roles in controlling Chlamydia
infections, the effects may vary. Some of the most interesting
discoveries are relevant to the varying role of IL-6 in Chlamydia
infection at different inoculating doses. IL-6 is required for
controlling chlamydial infection by limiting replication and
colonization by the pathogen, at either high dose or low dose
of Chlamydia muridarum (C. muridarum) (94). In contrast, IL-6
is not essential for induced hydrosalpinx at a high dose of C.
muridarum, but is required for exacerbating infection-induced
hydrosalpinx with low dose of C. muridarum (94). The reason
might be that IL-6 increases inflammatory infiltration in certain
tissues and the specific CD4+ and CD8+ T cells that produce
TNF-a under low-dose chlamydial inoculation (101, 104). These
findings also show that host inflammatory responses to IL-6 do
not match the extent of the infection.

Besides its role in host defense, IL-6 also mediates the
inflammatory pathology. Regardless of infectious dose, the
phenomenon correlating with IL-6-induced pathology has been
reported mainly in C. pneumonia infections and C. muridarum
mice models (94, 102). Patients with C. pneumonia-related
COPD were shown to have high levels of IL-6, which
exacerbates the disease state and has been proposed to be
useful in evaluating the severity of COPD (62, 105). Anti-IL-6
therapy has been used to treat arthritis patients with C.
trachomatis and C. pneumonia infection (14, 100). The
possible reason why use anti-IL-6 treatment might be IL-6
participation in the mechanism of chronic inflammatory
pathology or the resulting fibrosis (102, 106, 107).

The role of IL-6 in chlamydial infection and the pathological
effects thus induced has been controversial. IL-6 mediates
inflammation, in terms of both pro-inflammatory and anti-
inflammatory functions, in bacterial infection, which is
consistent with previous reports (81, 108). Furthermore, while
IL-6 promotes host defense against chlamydial infection by
balancing inflammatory and immune responses, this IL also
exacerbates chlamydial pathogenicity through its involvement
in inflammatory pathology. However, the mechanism involved
has not yet been fully elucidated and further research is needed
(94, 109, 110).

IL-8
IL-8, a pro-inflammatory chemokine, participates in host defense
by recruiting and regulating the activity of immune cells such as
leukocytes, basophils, and T lymphocytes (111). IL-8 was found
to be increased in the serum of patients suffering from
Chlamydia-induced pneumonia (112), and has been found to
be elevated in the culture supernatant of cervical and colon
epithelial cells infected with Chlamydia (113). Thus, IL-8 might
May 2021 | Volume 12 | Article 639834
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be related to acute or chronic inflammation after chlamydial
infection. Further studies have provided a comprehensive
understanding of the function and mechanism of IL-8 in
chlamydial infection. Firstly, Chlamydia and its pathogenic
substances can induce IL-8 secretion by activating the nuclear
factor-kB (NF-kB) and MAPK/ERK signaling pathways (114,
115), by activating the IL-10-mediated JAK/STAT signaling
pathway (116), or through an IL-1a-mediated IL-1RI-
independent mechanism (11). Second, the local hypoxic
environment, formed in the process of C. pneumoniae
infection, also facilitates the secretion of IL-8 in another way
(15). These processes are particularly important for continuing
the induction of IL-8 at later phases of infection (84).
Furthermore, IL-8 is also necessary for chlamydial replication
and its synthesis of its components. The trend in up-regulation of
IL-8 is consistent with the unique development cycle of
Chlamydia (113). It is possible that IL-8 promotes the lipid
metabolism of host cells, thus enabling the provision of nutrients
for chlamydial growth and development (117). C. pneumoniae
relies on the activation of the IL-8-mediated phosphatidylinositol
3-kinase (PI3K)/protein kinase B (Akt) signaling pathway to
stabilize myeloid cell leukemia-1 (MCL-1) and inhibit the
spontaneous apoptosis of neutrophils, which act as a transport
vehicle and are beneficial for C. pneumoniae to establish a
productive infection during the initial phase of infection (118).
In addition, the IL-8 produced during chlamydial infection in
turn reduces the sensitivity of Chlamydia to azithromycin and
other therapeutic drugs (15). Thus, chlamydial infection and IL-8
form a positive feedback cycle. However, although it is inefficient
in resolving chlamydial infection, IL-8 plays a certain role in
preventing chlamydial invasion (119). Further research is needed
to elucidate the contradictory roles of IL-8 in chlamydial
infection. Studies under different infectious conditions may
prove valuable.

IL-17
IL-17, a hallmark cytokine of Th17 cells, performs a pro-
inflammatory function and exerts a host-defensive role in
many infectious diseases (120, 121). IL-17 is present in
inflammatory tissues or the internal environment of almost all
patients infected with Chlamydia (122, 123). Furthermore, the
replicative ability of Chlamydia is enhanced in IL-17 KO mice or
mice treated with IL-17 inhibitors (17, 124). Thus, IL-17 plays an
anti-infective role against Chlamydia (125–127). This function is
achieved not only by up-regulating inducible nitric oxide
synthase (iNOS) production and the cooperative interaction
between nitric oxide (NO) and IFN-g (128), but also via the
induction of type 1 T cell immunity by DCs (129). Furthermore,
the IL-17 response in the early stage was found to be central to
amplifying inflammation and initiating host defense against
Chlamydia through synergy with other cytokines such as IL-6
and macrophage inflammatory protein-2 (MIP-2) (98).

Although IL-17 elicits protection against chlamydial
infections via its pro-inflammatory function, it can promote
inflammatory pathology and participate in the pathogenesis of
chlamydial diseases. IL-17 increases local neutrophil infiltration
by regulating the expression of chemokines and adhesion
Frontiers in Immunology | www.frontiersin.org 6
molecules in early stage of Chlamydia infection (130, 131). It
can also drive the secretion of a series of cytokines that cause
excessive tissue damage and fibrosis repair (132). The C-Fos/IL-
17C signal pathway mediates vascular smooth muscle cell
(VSMC) migration and accelerates atherosclerosis resulted
from C. pneumonia infection (133). Taken together, IL-17
exerts anti-infective effects but is inadequate to clear
Chlamydia infection. More importantly, it unarguably
contributes to the inflammatory pathology of Chlamydia
infection (134).

IL-4
IL-4 is crucial for the function of T and B lymphocytes. It can
elicit many responses, in particular the humoral immune
response that is associated with antibody production (135,
136). IL-4 can be detected in the culture supernatant of
PBMCs isolated from patients with Chlamydia infection (137,
138). Therefore, IL-4 is considered to play a role in Chlamydia
infections. It enhances the antigen-presenting ability of B cells by
boosting the expression of MHC II, FcϵRII/CD23, and CD40
molecules, thus magnifying immune responses beneficial for
eliminating Chlamydia (139). This IL-4-mediated enhancement
of immune responses also triggers delayed type hypersensitivity
(DTH) during Chlamydia infection, which might be associated
with asthma due to Chlamydia (140). Furthermore, IL-4 reduces
the secretion of inflammatory cytokines from mononuclear
macrophages, inhibiting local tissue damage resulting from
excessive Th1 immune responses (141, 142). This explains the
previous finding that IL-4 can effectively prevent endometrial
injury caused by C. trachomatis (18). Based on these data,
strongly expressed IL-4 could inhibit Chlamydia infection to a
certain extent, and also effectively prevent tissue damage.
However, the role of IL-4 in Chlamydia infection has not been
adequately investigated and further elucidation is necessary.

IL-13
IL-13 has an amino acid homology of 20%-25% with IL-4, thus
sharing some, but not all functional properties (143). IL-13 can
enhance the host’s resistance to intracellular parasites by
enhancing Th2-type cell response (144). However, this appears
to differ for Chlamydia. The elevated IL-13 levels observed in
vaginal secretions and serum after Chlamydia infection have
been frequently linked to the function of promoting infection
and aggravating lesions (145). In vivo and in vitro experiments
indicate, to a certain extent, that IL-13 may enhance Chlamydia
replication in cell or animal models of infection (16). Together
with TNF-a, IL-13 induces certain cells to produce cytokines
related to scar formation, such as transforming growth factor-b
(TGF-b) (146). In comparison with wild-type mice, C.
muridarum-infected IL-13 KO mice have faster pathogen
clearance, and milder tissue lesions (145). Therefore, it is
hypothesized that IL-13 mediates Chlamydia-related
immunopathology and reflects disease severity after Chlamydia
infection (16). IL-13 thus has the potential to develop as an
evaluation index of Chlamydia-induced disease severity.
Interestingly, in a mouse model of C. trachomatis genital tract
infection, two studies have found that a subset of CD4 or CD8
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cell populations can produce both IFN-g and IL-13 (termed
CD4g13 or CD8g13 T cells, respectively); adoptive transfer of
either Chlamydia-specific CD4g13 or CD8g13 T cells protects
oviducts from immunopathology, suggesting a protective role of
IL-13 during Chlamydia infection (146, 147). The reason for the
contradictory result of IL-13 remains unclear. Perhaps IL-13
secreted by innate immune cells in the early stage of infection is
mainly associated with pathogenicity, while in the late stage of
infection, IL-13 produced by specific T cells, especially those
have immune memory, exert protective effect in anti-infection
immunity. IL-13 from specific CD4g13 or CD8g13 T cells
probably is a very small proportion of the total IL-13
produced, so protective IL-13 doesn’t work well in the context
of pathogenic IL-13. Knockout of IL-13 gene, but not adoptive
transfer of CD4g13 or CD8g13 T cells, may affect important
immune cells in anti-infection immunity. Anyway, targeted
blocking of IL-13 action in Chlamydia infection through
clarification of cell specific IL-13 mechanisms is a critical goal
to aim for in related research.

IL-10
IL-10 is synthesized by a wide range of cell types such as
macrophages, monocytes, Th2, and Treg cells (148). As a
potent anti‐inflammatory cytokine, IL-10 not only limits and
terminates inflammatory responses, but also plays a crucial role
in the control of diseases caused by infectious pathogens; its
levels are inversely correlated with disease incidence and
severity (149).

The functions of IL-10 in chlamydial infection are however
more complex. Chlamydial factors such as heat shock proteins 60
(Hsp60) and LPS interact with TLRs to induce high expression of
IL-10 from host cells (83, 150). IL-10 can be also secreted from
PBMCs infected with C. trachomatis, which is dependent on the
ERK and p38 signaling pathways (116). It has also been found
that the inhibition of TLR2, MyD88, and NF-kB in C. psittaci-
infected HD11 macrophages significantly reduces IL-10 cytokine
production (151). Thus, elevated IL-10 levels can be detected not
only in serum, scar tissue homogenates, bronchoalveolar lavage
fluid, and cervical secretions from Chlamydia-infected hosts
(152–154), but also in the supernatant of Chlamydia-infected
HeLa cells, DCs, and PBMCs (137, 155, 156).

In addition to findings about changes in expression and the
possible roles of IL-10 in chlamydial infection, some deeper
insights into the roles of IL-10 were gained. Yang and his co-
workers revealed that C57BL/6 mice with lower levels of IL-10
had faster clearance of the organism from the lungs after
infection with MoPn than BALB/c mice (35). Furthermore,
IL-10 KO mice also presented faster clearance of MoPn
in lung and genital tract than wild-type mice (157, 158).
It’s possible that IL-10 inhibits pro-inflammatory cytokine
production for chlamydial clearance by regulating the
activation of certain signaling pathways (150, 159). Further, IL-
10 down-regulates the expression of MHC I molecules,
impairing the presentation of MHC-bacterial epitopes and
eliminating activity of CD8+ T cells against infected cells, thus
reducing the clearance of Chlamydia (19). In addition, IL-10
enhances the survival of Chlamydia by inhibiting apoptosis
Frontiers in Immunology | www.frontiersin.org 7
of DCs or controlling its antigen presentation function and
weakening the immune response (160, 161). Therefore, IL-10
can suppress inflammation-related immune responses against
Chlamydia species.

Inflammatory processes are responsible for complications
induced by Chlamydia infections, and IL-10 is hypothesized to
be involved in the processes. IL-10 levels in cervical secretions
were higher in C. trachomatis-infected infertile women than in
fertile women (162). The reason could be that IL-10, as an anti-
inflammatory factor, reduces local inflammatory infiltration and
attenuates the pathological damage such as mice tubal edema due
to C. trachomatis infection (71). It also decreases the activity of
CD8+ T cells against infected cells and thereby reduces tissue
damage (19). IL-10 is however also responsible for the severe
damage, such as tubal infertility and ectopic pregnancy, induced
by Chlamydia infection (71, 140, 162). These findings are in
contrast to the observed mild pathologies induced by IL-10
in Chlamydia infection, which may be due to the differences in
pathogenesis of Chlamydia species in infectious models.

IL-10 is an important factor for balancing the immune system
after Chlamydia infection, and the modulation of its expression
in Chlamydia-infected hosts is cautiously performed. Although it
can eliminate or promote infection with differing intensity and
duration at different infectious phases, the presence of IL-10
decreases Chlamydia eradication via anti-inflammatory action,
and is helpful for controlling and minimizing Chlamydia-
induced diseases and complications. Moreover, genetic
variations in IL-10 gene may be associated with its different
expression and the polymorphisms within IL-10 gene may
explain interindividual variation in host immune responses to
Chlamydia infection (150). However, researchers have different
opinions on the association between IL-10 polymorphisms and
the outcome of Chlamydia infections (163). Future investigations
regarding the role of IL-10 polymorphisms in Chlamydia
infections are required.

Members of the IL family play important roles in Chlamydia
infection, either promoting infection and accelerating the
disease, or suppressing Chlamydia and alleviating tissue
injures. One of our main tasks now is to make the best use of
information on ILs for the prevention and treatment of
Chlamydia infection. A potential method is to identify the
function of a certain IL in Chlamydia infection by using KO
mice, siRNA/chemical inhibition or antibody blockade: this work
has already been done for some ILs; second, to generate cells/
tissue-specific IL gene-KO mice, and determine the main
environmental conditions in which the IL functions optimally.
Based on the former two steps, aiming at specific cells/tissues, the
relevant IL or antibody/inhibitor of the harmful IL may be used
to control Chlamydia infection. It might be possible to extend
this technique to other diseases in the future.
OTHER CYTOKINES

In addition to the above cytokines, other cytokines such as IL-12,
IL-5, and GM-CSF have also been reported in studies on
chlamydial infection, although sufficient data are not available.
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IL-12 coordinates its functions with IFN-g in Chlamydia
infection to collectively prevent neonatal pneumonia caused by
C. pneumonia (164). If either IL-12 or IFN-g is deficient, the
other correspondingly decreases and Chlamydia clearance is
affected (12, 164). A positive feedback loop exists between the
effects of IL-12 and IFN-g, which strengthens the host’s ability to
resist infection. However, excessive IL-12 has a negative impact
on the development of CD8+ T memory cells, which is not
conducive to the host’s resistance to Chlamydia reinfection (33).
In addition, high levels of IL-5 are closely related to C.
pneumonia-caused asthma (165). It has also been reported that
Th2 type DTH-related immunity and pathology to Chlamydia
infection is associated with high levels of IL-5 and IL-4 (140).
Elevated GM-CSF expression is also observed during Chlamydia
infection, although the mechanism is not quite clear (166).
CONCLUSION

Here, we summarized the effects and interactions of important
cytokines involved in Chlamydia infection (Figure 2), and
offered some valuable insights into the potential mechanisms
and proposed countermeasures. A range of factors contribute to
cy tok ine produc t ion dur ing Chlamydia in fe c t ion
(Supplementary Table 1). First, Chlamydia species (with
different components), the number of Chlamydia (or dose of
Frontiers in Immunology | www.frontiersin.org 8
their products) and the route of infection are implicated in
cytokine production (167). A certain chlamydial strain and the
corresponding products exert effects on their cytokine
production, which related to the varied toxicity in host (168).
For example, plasmid might partially explain the different
pathological features and cytokine production in plasmid-
deficient and plasmid-competent Chlamydia (169). In C.
trachomatis D/UW-3/CX strain, MOMP, CPAF and HSP60
are all important cytokine inducers, while CPAF and MOMP
are more potent in triggering IL-1b, as compared to HSP60
(109). Second, major factors influencing cytokine variation in
hosts include host genetics, non-heritable factors and the
microbiome (167). Host genetic variation accounts for a
significant part of variability in cytokine production by
different strains of mice. For example, 27 oviduct cytokines
were significantly higher in highly susceptible (hydrosalpinx)
CBA/J than those of resistant A/J mice (170). 16 oviduct
cytokines were significantly higher in C5-competent than those
of C5-deficient mice (171). Some cytokine coding genes are
known to be highly polymorphic, which are also regarded as a
possible cause for difference in the cytokine production and
contribute to various pathological conditions (172). In addition,
non-heritable factors, including age, body weight and gender,
and gut microbiome may also engage in variation in cytokine
production during Chlamydia infection (167). The variability of
cytokine production makes their biological function to be
FIGURE 2 | The regulatory network and function of different cytokines upon Chlamydia infection. The host cells produce a variety of cytokines after chlamydial
infection. Cytokines induce cell immunity response and produce more cytokines. As descripted in text, the impact of all the cytokines on the host chlamydial infection
can be divided into two aspects: favorable and unfavorable.
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systemic or tissue-specific, complementary (several cytokines
work together) or pleiotropic (a cytokine with different
functions). Further identifying the causes and consequences of
variation in cytokine production is a crucial step to better
understand the pathogenesis of Chlamydia infection.

In chlamydial infection, the behavior of some cytokines is a
double-edged sword in inflammation and immune-mediated
pathogenesis (Figures 1, 2; Table 2). Although the role of
cytokines at different stages of Chlamydia infection has been
extensively studied, still some important questions warrant
further exploration. For instance, how do different cytokines
coordinate their roles in chlamydial pathogenesis? Why do
cytokines from different cells play different roles in chlamydial
infection (32, 173)? The intestinal tract, which is colonized by
more virulent Chlamydia strains and a higher chlamydial
burden, might also take part in the pathogenesis and
development of chlamydial diseases. Whether cytokines from
innate lymphoid cells (ILCs), especially ILC3 play a role in
Chlamydia caused diseases. How does gut microbiota affect the
host cytokine network during chlamydial infection? How to
dynamic remodeling cytokine network for clearing Chlamydia
infection or promoting body recovery? With the solution of these
important questions, we believe that manipulation of key
cytokines in chlamydial infection will represent a novel
strategy to treat chlamydial diseases.
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