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Junctional adhesion molecules (JAMs) are cell-cell adhesion molecules of the
immunoglobulin superfamily and are involved in the regulation of diverse atherosclerosis-
related processes such as endothelial barrier maintenance, leucocytes transendothelial
migration, and angiogenesis. To combine and further broaden related results, this review
concluded the recent progress in the roles of JAMs and predicted future studies of JAMs
in the development of atherosclerosis.
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INTRODUCTION

A junctional adhesion molecule (JAM) is a member of the immunoglobulin superfamily (IgSF) (1–
3), a large superfamily of cell surface and soluble proteins that are involved in the recognition,
binding, or adhesion of cells. The membrane-located JAMs are immunoglobulin-like single-
span transmembrane molecules expressed by leukocytes, platelets, epithelial and endothelial cells,
localizing to cell-cell contacts and specifically enriched at tight junctions (2, 3).

Atherosclerosis (AS) plaques comprise lipids, fibers, and immune cells in the intima of large and
medium-sized arteries, and immunological components are indispensable in both the initiation and
the chronicity of the lesions (4). Several immune activities such as platelet aggregation and adhesion
and the transendothelial migration (TEM) of monocytes and neutrophils (4, 5) are increasingly
recognized as the leading cause of atherosclerosis. JAMs present more and more association with
AS, as considerable molecules in vascular inflammation.

Thus, we briefly reviewed the classification, structure, primary ligands and receptors, and main
physiological functions of JAMs, and summarized and speculated potential roles of JAMs in AS
based on reported articles.

JUNCTIONAL ADHESION MOLECULES OVERVIEW

Classification and Structure
Current studies have focused on four major JAM molecules: JAM1, JAM2, JAM3, and JAM4 (6), also
known as JAM-A, JAM-B, JAM-C, and JAM4 (7). Moreover, some other proteins are closely related
to JAMs, including JAML (JAM-like) (8), CLMP [CAR (coxsackie and adenovirus receptor)-like
membrane protein] (9), CAR (10), and ESAM (endothelial cell adhesion molecule) (11). Martìn-
Padura et al. first reported JAMs as a new member of the immunoglobulin family concentrating
endothelial and epithelial junctions and identified JAM1 (12). Further studies cloned JAM2 and
JAM3 and identified them as counter-receptor (13–17). The shedding of JAM-A produces soluble
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JAM-A (sJAM-A). For instance, transmembrane-JAM-A was
shed to generate proinflammatory sJAM-A and JAM-A-bearing
microparticles when platelets were activated.

JAM proteins are around 30–50 kDa in size. Kostrewa et al.
and Prota et al. respectively, described the crystal structure
of the recombinant extracellular part of mouse JAM (rsJAM)
and human JAMs (hJAM) (3, 18). There is a linker region
Val127–Leu128–Val129 between the N- and C-terminal domains
and the extensive hydrogen bond network between the main
chain atoms of the linker tri-peptide and both domains. The
side chain of Leu128 is tightly packed in a hydrophobic pocket
formed by the side chains of Gln38, Pro40, Thr126, Pro159, and
Tyr218. Several proline residues (Pro40, Pro130, Pro131, Pro159,
and Pro160) stabilize the main chain conformation around
the linker (3). Interactions involving the membrane-distal Ig-
like domain stabilize the dimer of mJAM1, similar to that
observed in hJAM1. A dimer formed by two hJAM1 molecules is
stabilized by extensive ionic and hydrophobic contacts between
the N-terminal domains (18). These U-shaped dimers and salt
bridges are then formed by a R(V,I,L)E motif (3), which is
important in dimer formation and common among different
JAMs, including rsJAM, hJAM, JAM-1, JAM-2, and JAM-3 (18).
Dimerization and homophilic binding may contribute to both
adhesive function and the junctional organization of JAMs (19).
Figure 1 is a brief structural diagram of JAMs.

Mendoza et al. explored the extracellular domain of the JAM
family and found each member has a unique tertiary structure
despite having similar secondary structures, whose heterotypic
interactions can be greatly favored compared to homotypic
interactions (7).

Interacting Proteins and Signaling
Pathways
The physical and functional interactions with integrins
contribute to the functions of JAMs to a great extent. The
crosstalk between JAM-A and integrin αLβ2 (20–22), JAM-B
and integrin α4β1 (23, 24), and JAM-C and integrin αLβ2
(LFA-1) (25, 26) mediates the transient interactions between
leukocytes and endothelial cells. JAM-C expressed on platelets
and integrin αMβ2 on leukocytes interact during inflammation
(25). Meantime, JAM-integrin interactions in Cis also exert
essential function, including JAM-A and JAM-C and integrin
αVβ3 in endothelial cells (27–30), JAM-A and integrin αIIbβ3
in platelets (31–33), and JAM-L and integrin α4β1 in leukocytes
(34). Accordingly, JAMs function substantially depending on
physical and/or functional JAM-Integrin crosstalk (35).

JAMs build bridges between different cells through their
interaction with PDZ domain-containing proteins, mainly
relying on their COOH-terminal PDZ domain-binding motifs
and adjacent domains (36–40). Besides, JAMs also consist of
two tandem NH2-terminal, ectoplasmic Ig domains as well as
single transmembrane spans (41). JAMs interact with a variety
of cytoplasmic scaffolding proteins (42). Interaction of JAM
with the tight junction (TJ) components of the PDZ domain-
containing proteins ZO-1, cingulin, occluding, and AF-6 is the
earliest evidence (36, 43). ZO-1 directly binds to the COOH

termini of claudins and JAM by its PDZ1 and PDZ3 domains,
respectively (44). In JAM-L cells, L fibroblasts overexpressed
exogenous JAM, ZO-1 is concentrated at cell-cell contact sites
(45). JAM-A resides in the correct localization of proteins
involved in TJ formation, such as PAR-3, ZO-1, and MUPP1
(46). JAM-A interacts with Afadin and PDZ-GEF2 to activate
Rap1A, regulating the levels of integrin β1 subunit and enhancing
cell migration (47). JAM-A regulates epithelial permeability via
association with ZO-2, Afadin, and PDZ-GEF1 to activate Rap2c
and controls the contraction of the apical cytoskeleton (39). JAM-
A is necessary for the development of polarity in cultured hepatic
cells via its possible phosphorylation and recruitment of relevant
PDZ proteins, linking to the apical domain (41). The nectin-
afadin unit plays a role in the localization of JAM-1 at TJs (48),
associated with the PAR-3-aPKC-PAR-6 complex. PAR-3 first
binds to nectin-1 or -3 and is then transferred to JAM-1 during
the organization of the junctional complex in the epithelial cells
equipped with TJs (49). Both JAM2 and JAM1 possess an SFII
or SFLV sequence on their intracellular tails predicted to interact
with PDZ domains and therefore highly like to display similar
binding activities (15, 50). JAM-A/C possibly affects TJ formation
by influencing AF-6/afadin localization and/or function, which
correlates with multiple structural components including nectins,
ZO-1, and ponsin/SH3P12 (46, 51–53). Further research found
ZO-1 and PAR-3 associated with JAM-2/-3 in a PDZ domain-
dependent manner (54). The PAR3-JAM interaction is proposed
to be reversible, but junctions will eventually form even in the
presence of inhibitory PAR6 (55). In normal breast cells, JAM-
A signaling via AF-6 and PDZ-GEF2 leads to a low level of
β1-integrin-mediated cell migration (56). Besides, the RA175
forms a ternary complex with JAM-C via interaction with PAR-3,
facilitating specialized adhesion structures (57).

The PSD95/dlg/ZO-1 (PDZ) domain of calcium/calmodulin-
dependent serine protein kinase (CASK) and the putative PDZ-
binding motif Phe-Leu-Val (COOH) in the cytoplasmic tail
of JAMs is essential for association of the CASK and JAMs
(44). The interaction that occurs between Grasp55 and JAM-
C attributes to PDZ-mediated interaction with the C-terminal
PDZ-binding motifs of protein cargos, playing a central role in
stemness maintenance of hematopoietic and spermatogenic cells
(58, 59). CASK co-localizes with both PMCA4b and JAM-A on
the proximal principal piece, and acts as a common interacting
partner of both to maintain Ca2+ homeostasis in sperm (60).

Hirabayashi et al. group has conducted several studies about
the functional role of JAM4 and observed that JAM4 binds
the scaffold protein MAGUK with inverted domain structure-
1 (MAGI-1) but not to ZO-1 (6, 61–63). Besides, JAM4
directly binds the second PDZ domain of LNX1 through its
carboxyl terminus (64). The newly discovered Mouse V-set
and immunoglobulin domain containing 1 (VSIG1) interacts
with Sertoli cells by heterophilic adhesion via its first Ig-
like domain, critically depending on its binding to ZO-1
through the cytoplasmic domain (65). A PDZ domain-containing
cytoplasmic protein, synaptojanin-2-binding protein (SYNJ2BP)
expressed in human endothelial and epithelial cells was
identified as a cytoplasmic binding partner of transmembrane
and immunoglobulin domain-containing protein 1 (TMIGD1),
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FIGURE 1 | The basic structure of JAMs. JAM family proteins share common structural characteristics: a short N-terminal signal peptide, two extracellular Ig-like
domains, a single transmembrane segment, and a short cytoplasmic tail with consensus phosphorylation sites and a C-terminal PDZ-binding motif (173).

FIGURE 2 | The roles of JAMs in atherosclerosis arteries. Representative receptors, pathways, and regulators of JAMs in atherosclerotic plaques. Related cell types
include platelets, leucocytes, endothelial cells, and vascular smooth muscle cells.
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another member of the Ig-superfamily (IgSF) similar to the JAM
subfamily, affecting endothelial function (66, 67). In brain and
muscle blood capillaries, JAM-related endothelial cell-selective
adhesion molecule (ESAM) clearly co-localized with the three TJ
markers occludin, claudin-5, and ZO-1 (68). Some hypothesized
AS-associated JAMs-interacting proteins are shown in Table 1.

Main Physiological Functions
Based on topic IgSF structures and related structure research
above, some ligands and receptors for JAMS have been discovered
and assist the role of AMs in regulating cell motility, polarity,
and proliferation in multiple cell types, including cancer cells,
epithelial, endothelial, fibroblasts, leukocyte, and germ cells.

Various partner molecules and receptors bring about JAMs
to exert their intracellular and intercellular functions within the
body. Tight junctions (TJs) are structurally defined by electron
microscopy and these epithelial intercellular junctions are located
at the most apical region of cell-cell contacts (3, 70). Major JAMs
members such as JAM-1, JAM-2, and JAM-3 are all located in
the TJs of both epithelial and endothelial cells to preserve the
structure of the junctions. These three JAMs molecules adhere
to other tight junction proteins like PAR-3 and ZO-1. JAM-3
is unable to adhere to leukocytes in the manner as other JAMs
do (54, 71). They assist TJs in exerting adhesive properties and
stabilize homophilic cell-cell binding as a dual role in controlling
paracellular permeability and in maintaining cell polarity (3).

But instead, JAM4 formulates TJs with MAGI-1 and plays a
role in enhancing kidney cell branching and scattering (6, 61–
63). Ligand-of-Numb protein X1 facilitates endocytosis of JAM4
and participates in transforming growth factor beta-induced
redistribution of JAM4 in mammary epithelial cells (64). JAML
exhibits its notable function in regulating cell migration via
interacting with the tight junction protein coxsackie-adenovirus
receptor (CAR), encompassing neutrophil [polymorphonuclear
leukocytes (PMN)] transepithelial migration (72, 73), monocyte
transendothelial migration (74), germ cells migration across the
blood-testis barrier (75). The CAR group of proteins, composed
of CAR, CLMP, BT-IgSF, and ESAM, might modulate the

TABLE 1 | Hypothesized atherosclerosis-associated JAMs-interacting proteins.

JAMs Interaction molecules Hypothesized function

JAM-A Integrin αIIbβ3 (33)
Integrin αLβ2 (20–22)
Integrin αVβ3 (27–30)
ZO-2, Afadin, PDZ-GEF1/2 (39, 47)

Mediate interactions of
leukocytes and ECs;
Increase platelet secretion
and aggregation.

JAM-B Integrin α4β1 (23, 24) Mediate interactions of
leukocytes and ECs.

JAM-C Integrin αMβ2 (Mac-1) (25, 69)
Integrin αLβ2 (LFA-1) (25, 26)
Integrin αVβ3 (27–30)

Mediate interactions of
leukocytes and ECs;
Facilitate platelet
phagocytosis.

JAM-L Integrin α4β1 (34)
ZO-1 (45), PAR-3 (54, 57).

Mediate interactions of
leukocytes and ECs.

JAM4 MAGI-1 (6, 61–63) Affect endothelial function.

TMIGD1 SYNJ2BP (66, 67) Affect endothelial function.

ESAM Occludin, claudin-5, ZO-1 (68) Affect endothelial function.

assembly or function of TJs (76). Because of the similar structure
to the CAR group, how JAM groups operate in TJs deserves
further attention.

It is noteworthy that the role JAMs play in cell migration
is high-profile, covering endothelial cells, epithelial cells, germ
cells, keratinocytes, tumor cells, hematopoietic stem, progenitor
cells, and leukocytes such as lymphocytes, platelets, neutrophils,
monocytes, and dendritic cells. The participation of JAMs in
TJs supports a variety of biological processes both during
development and in the adult organism, including developmental
and physiological processes such as epithelial cell differentiation,
hematopoiesis, germ cell development, and development of
the nervous system, epithelial barrier formation, inflammation,
angiogenesis, and hemostasis (35, 42, 77). As these functions
exhibit potential links with AS, we focused on their functions
directly related to AS in this review.

JUNCTIONAL ADHESION MOLECULES
AND ATHEROSCLEROSIS

Platelet Activation and Thrombosis
The adherence of platelet to inflamed endothelium is one
of the most important initiated stages of plaque formation
in blood vessels. Platelet activation also plays a pivotal
role in atherothrombosis and related physiological processes
involving clotting, fibrinolysis activation, and binding to the
sub-endothelial matrix (78). Naik et al. first illustrated JAM-
1, the F11-receptor (F11R), as a novel platelet membrane
surface glycoprotein and a stimulatory monoclonal antibody,
mAb F11, recognized JAM-1 and induced aggregation, adhesion,
and potentiation in human platelets (79, 80). Kornecki team
validated that sF11R (an F11R recombinant protein) inhibited
this induction by two functional domains: the N-terminus
domain and the 1st Ig-fold domain (81, 82). JAM-1 was proved
to be selectively expressed at intercellular junctions between
endothelial cells and platelets (68, 83, 84). There are type 1 and
type 2 mRNAs of JAM1. Type 1 mRNAs exist in endothelial cells,
platelets, leucocytes, and several cancer cells, while type 2 mRNAs
are especially present in ECs, indicating their different functions
in different cell types (85). Several amino acid residues including
serine, threonine, and tyrosine within the external domain of
JAM-1 can be phosphorylated (81, 82), and phosphorylation of
Ser284 might engage platelet activation (86). JAM-1 increases
platelet secretion and aggregation via promoting the assembly
of the actin filament, relying on phosphoinositide-3 kinase
activation and dimerization, phosphorylation of the 32 and
35 kDa forms, and combination with GPIIIa and CD9 (33).

The role of JAMs in platelet-endothelial adhesion in AS
has also been extensively studied. Babinska et al. from
the State University of New York devoted to studying the
nexus between JAM-A (F11R) and AS, and observed high
expression of JAM-A mRNA and protein in AS plaques
from patients and ApoE−/− mice (87). Plasma soluble JAM-
A (sJAM-A) independently correlated with the severity of
coronary arterial disease (CAD) defined by angiographic score
and plasma levels of Tumor necrosis factor-α (TNF-α) (88).
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More interestingly, transmembrane-JAM-A and sJAM-A from
platelet act as homophilic interaction partners to exacerbate
thrombotic and thrombo-inflammatory interactions between
platelet and monocyte (89). JAM-A expressed and adhered
to cultured cytokine-inflamed ECs from human aortic and
venous vessels (90), which was inhibited by treatment with
actinomycin, parthenolide, or AG-480, similar to the result
caused by Jam-A siRNAs, which related to NF-kappaB and
JAK/STAT pathways (91). Crosslinking of platelet F11R/JAM-A
with the FcγRII by monoclonal antibody F11 (M.Ab.F11) caused
platelet aggregation, resulting from phosphoinositide-3 kinase-
triggered actin filament assembly (33, 90). JAM-A mediates
platelet adhesion and spread through filopodial extensions and
lammelipodia development (33). Alternatively, supersensitivity
of platelets to natural agonists thrombin and collagen with JAM-
A stimulation is independent of the Fc gammaRII (33). Babinska
et al. group developed F11R/JAM-A antagonistic [peptide 2HN-
(dK)-SVT-(dR)-EDTGTYTC-CONH2, F11R peptide 4D] as a
potential anti-atherosclerotic and/or anti-thrombotic therapeutic
drug and confirmed that the F11R peptide 4D inhibited
M.Ab.F11-induced platelet aggregation and cytokine-inflamed
platelets adhesion to ECs, remarkably, reduced atherosclerotic
plaque formation and inhibited platelet adhesion to the cytokine-
inflamed arterial endothelium in ApoE−/− mice (92–94). Naik
et al. reported thrombotic function of platelets was enhanced
in Jam-A−/− mice in vivo and JAM-A suppressed integrin
αIIbβ3 outside-in signaling to limit platelet accumulation
and prevent premature platelet activation (31, 32). When
stimulated by an agonist, the dephosphorylation of JAM-A
on the tyrosine residue allowed the dissociation of JAM-
A-recruited Csk from the integrin-c-Src complex and thus
facilitated outside-in signaling (31, 32). Koenen group generated
platelet-specific (tr) Jam-A-deficiency in ApoE−/− mice (trJam-
A−/− ApoE−/−) and observed gain-of-function in platelets with
more αIIbβ3 signaling-related proinflammatory effects, increased
aortic plaque formation, and accelerated neointima formation in
earlier stages after vascular injury (95, 96). JAM-A is associated
with hypertension in humans, and JAM-A protein is upregulated
in the brainstem microvasculature and brain endothelium in
hypertensive rats models, possibly activated by AT (1) receptor-
mediated signaling (97, 98). In rats injected with ADP-activated
platelets, JAM-A and CD41 co-localized in the microvessels (98).

JAM-C was expressed mostly on human platelets in mono-
and dimeric forms and endothelial JAM-C was supposed to
function in synergy with platelets JAM-C in the development
of CAD (99). Direct interaction of human platelet JAM-C
with myelomonocytic U937 cells, neutrophils, and dendritic
cell β2-integrin Mac-1 (integrin αMβ2, CD11b/CD18) was
corroborated to facilitate DC activation and platelet phagocytosis,
aggravating the progression of atherosclerotic plaque (25, 69).
sJAM-C markedly reduced the adhesion of DCs to platelets,
purified JAM-3 blocked the platelet-neutrophil interaction and
anti-JAM-C decreased platelet activation, platelet-neutrophil
aggregation, and platelet macroaggregates, but greatly increased
neutrophil degranulation (25, 69, 100). Antibodies against
JAM-C thereby served as a prospective antibody to prevent
atherothrombosis and AS.

In summary, the expression of JAM-A and JAM-C in platelets
mediate the aggregation and adhesion of platelets and potentiate
their role in atherothrombosis and AS. Soluble JAM-A correlates
with the severity of CAD. Antibodies against JAM-A and JAM-C
are promising for anti-atherosclerosis drug development.

Vascular Inflammation and Leukocyte
Infiltration
Vascular inflammation is critically important in AS, one of the
characteristics is the recruitment of leukocytes into the inflamed
artery wall (101). Monocytes and the derived macrophages
contribute to all stages of AS, including the recruitment into the
intima, secretion of inflammatory cytokines, lipid accumulation,
plaque progression, maturity, and break (102). JAMs play
important roles in inflammation in various diseases. More
serious steatohepatitis emerged in Jam-A−/− mice fed with a
diet high in saturated fat, fructose, and cholesterol (HFCD)
(103). Tyrosine phosphorylation of JAM-A (p-Y280) caused
loss of epithelial barrier function during intestinal inflammation
(104). JAM-A stably expressed on iPSC-cardiomyocytes (iPSC-
CM) contributes to iPSC-CM inflammation (105). JAM-A
is also necessary for peripheral mononuclear cells (PMN)
infiltration into the heart upon ischemia-reperfusion injury
(106). For vascular inflammation, Kiessling depicts JAM-A as
the indicator of inflammatory arterial areas exposed to acutely
alternated flow, as determined by molecular ultrasound imaging
(107). TNF stimulates the disassembly of JAM-A from the
TJs and subsequent redistribution as well as dispersal on the
endothelial cell surface, which was reduced by fibronectin (108).
Nonetheless, the loss and/or redistribution of JAM-A induced
by the combined treatment of TNF-α and IFN-γ in ECs
scarcely regulated leukocyte adhesion or transmigration (109).
In some cases, endothelial JAM-A seems to not contribute
to leukocyte adhesion or transcellular migration (110, 111).
Shedding of soluble JAM-A (sJAM-A) on inflamed vascular
endothelium mediated predominantly via ADAM17 and slightly
by ADAM10 may signal vascular inflammation (112). ADAM17
surface expression and JAM-A cleavage are increased by
flow cultivation (113), which results in impaired endothelial
wall shear stress (WSS) mechanosensing (114). Jam-C−/−

mice and mice treated with anti-JAM-C antibody present
a significant reduction in intranodal homeostatic chemokine
secretion, which in turn suppressed naive T cell exit from lymph
nodes (115). Likewise, JAM-C antibodies substantially curtailed
systemic and lung inflammatory cytokines and chemokine as
well as pro-inflammatory aged neutrophils (116). Imaginably,
the cyclic nitroxide 4-MethoxyTEMPO treatment minimized
inflammatory cell recruitment into human aortic EC via JAM-C
blockade (117).

As a biomarker of cell adhesion, JAM-A was independently
associated with the endpoint of stable patients with chronic
heart failure (CHF) (118). Also, sJAM-A secreted from
cardiac progenitor cells attenuated neutrophil infiltration after
myocardial infarction. Accumulating evidence has indicated
that JAM-A accelerates the formation of AS lesions in
mice. Oxidized low-density lipoprotein (ox-LDL) up-regulates
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Jam-A mRNA expression in human macrophages and human
umbilical vein endothelial cells (HUVECs), stimulates the
redistribution of JAM-A in ECs, and subsequently increases
the transmigration of monocytes, which could be counteracted
by statins (119–122). Christian Weber’s group conducted long-
term studies on the role of JAM-A in AS. In ApoE−/− mice
fed with an atherogenic diet, endothelial JAM-A expression was
upregulated, while JAM-A deficient mice displayed decreased
neointima hyperplasia, reduced macrophage content, and
attenuated monocyte arrest and transmigration in carotid
arteries (123, 124). Atherosclerotic lesion formation in ApoE−/−

mice was reduced by endothelial JAM-A deficiency with
limited monocyte recruitment into the arterial wall but
was aggregated by myeloid JAM-A deficiency with impaired
monocyte de-adhesion (122). Compared to ApoE−/−Ldlr−/−

mice, ApoEh/hLdlr−/− mice showed decreased endothelial JAM-
A expression in the aortic arch (125). sJAM-A effectively blocked
the recruitment of monocytes to atherosclerotic endothelium
(123). Mechanically, the treatment of JAM-A siRNA in aortic
endothelial cells inhibited the transmigration of monocytes
(121). JAM-A was repressed by microRNA (miR)-145, which
was upregulated under atheroprotective laminar flow (122).
miR-145-rich exosomes inhibited the development of AS by
downregulating JAM-A (126). JAM-A was suppressed by miR-
156a in human aortic endothelial cells, which in turn depressed
inflammatory monocyte adhesion induced by cytokines (127).
Bilberry anthocyanin-rich extract is observed to attenuate AS
development in ApoE−/−mice by downregulating the expression
of Jam-A (128). Ginkgolide B almost abolished the upregulation
of JAM-A expression in HUVECs induced by ox-LDL (119). In
the Ldlr−/− mice fed with fish oil, the atherosclerotic lesions
were diminished, which was accompanied by reduced circulating
endothelial cell JAM-A expression (129).

An antibody against JAM-C reduced monocyte accumulation
at vascular inflammation sites by increasing reverse
transmigration instead of reducing transmigration (130).
Exosomal miR-146a-5p bound to the 3’-untranslated region of
JAM-C mRNA to curb monocyte transendothelial migration
(131). In ApoE−/− mice, JAM-C expression was upregulated
as spontaneous early lesions developed (132). Anti-JAM-C
antibody caused increased reverse transendothelial migration
(rTEM) of monocyte-derived cells as well as decreased neointima
hyperplasia and neointima macrophage induced by wire injury
of carotid arteries and atherogenic diet (133, 134). oxLDL
upregulated JAM-C expression and induced disorganization of
JAM-C localization on ECs (132). Blockage of JAM-C diminished
monocyte arrest and adhesion to carotid artery smooth muscle
cells (SMCs) under flow conditions (133). Unexpectedly,
overexpression or gene silencing of JAM-C in human ECs under
flow conditions showed similar higher rates of monocyte rTEM
(134). JAML was induced during the differentiation of myeloid
leukemia cells and promoted integrin-mediated adhesion of
leukocytes to ECs (8, 34). JAML expression also correlated
with the adhesion and TEM of monocytes (74). JAML was
highly expressed in atherosclerotic plaques of ApoE−/− mice
and AS patients as well as macrophages exposed to oxLDL
(135). Silencing JAML expression attenuated the formation of

atherosclerotic lesions and promoted plaque stability, possibly
resulting from decreased expression of inflammatory cytokines
(135, 136).

Overall, the expression of JAM-A, JAM-C, and JAML in
ECs was increased in an atherosclerotic environment. These
molecules play important roles in the recruitment and TEM
of leucocytes into the intima. Related mediators and pathways
remain to be investigated in deep. Soluble JAM-A and the
antibody against JAM-C blocked the recruitment of monocytes to
inflamed atherosclerotic endothelium. Silencing the expression of
Jam-A and JamL attenuated AS.

Endothelial Barrier and Angiogenesis
Damage to the endothelial barrier and angiogenesis are essential
events for plaque formation. The changes in the expression of
related angiogenic factors, blood flow, nutrients, O2, and other
events caused by neovascularization may take part in plaque
progression, remodeling, destabilization, and thromboembolic
events (137). JAM-A mediates human CD34+ progenitor
cells differentiating into endothelial progenitor cells through
interaction with LFA-1 (138). In the rat cortical cold injury
model, JAM-A co-localized with occludin at TJs in the lesion
vessels with blood-brain barrier (BBB) breakdown and expressed
decreasingly at 12 h only (139). Although human brain EC
(HBMEC) released sJAM-A into culture supernatants with non-
inducibility, which favors protecting brain EC from inflammatory
stimuli, sJAM-A was still speculated unsuitable as a biomarker
of BBB breakdown (140). Mechanism study showed that JAM-
A promoted CCAAT/enhancer-binding protein-α (C/EBP-α)
expression by suppressing β-catenin transcriptional activity and
by activating exchange protein directly activated by cAMP
(EPAC), thereby increasing transcription of downstream target
Claudin-5 to decrease endothelial permeability and enhance
vascular barrier function (141). Moreover, Insulin-like growth
factor-1 (IGF-1) was reported to upregulate JAM-A expression
and further protect endothelial barrier function in human aortic
endothelial cells (142). Similarly, Tongxinluo (a special formula
of Chinese traditional medicines) reversed the endothelial barrier
breakdown with enhanced expression of JAM-A (143, 144).
JAM-A was proposed to disassemble the junctions caused by
TNF (108). Strikingly, the levels of plasma sJAM-A and EC-
expressed JAM-A protein were reduced by the tumor inducers
Tβ4 and TGF-β1, and the F11R/JAM-A antagonistic peptide
4D (P4D) showed a prospective barrier-protecting effect (145).
The junction structure reorganization for JAM-A changed under
low laminar flow conditions (146). Of note, JAM-A rearranged
from interendothelial TJs to the luminal surface of blood vessels
under acute blood flow variations, which implied JAM-A as a
marker of acute endothelial activation and dysfunction (147).
Melatonin upregulated the expression of tight junction proteins
to maintain the rat inner blood-retinal barrier (iBRB) integrity,
such as ZO-1, Occludin, JAM-A, and Claudin-5 (148). In mouse
retinal vascular, JAM-C deficiency increased the spreading of
fibronectin and consequently enhanced endothelial cell sprouting
and vessel normalization in vitro, dependent on β1-integrin and
the small GTPase Rap1 activation (149). Consistently, VEGF or
PDGF-C induced JAM-C translocating from cytoplasm to the
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cytomembrane to maintain the normal function of the human
iBRB, while increased serum sJAM-C was identified as a potential
marker of wet age-related macular degeneration (wAMD) (150).
Besides, JAM-A, JAM-B, and especially JAM-C have readily been
detected in liver sinusoidal endothelial cells (LSECs), as a part of
special mixed-type intercellular junctions (151).

JAM-A is expressed prominently in embryonic vasculature
and on the surface of hematopoietic precursors and has the
potential to mark isolate long-term reconstituting HSC (LTR-
HSC) (152, 153). JAM-A blocking mAb inhibited angiogenesis
in vitro, in the embryo, and in vivo (154). FGF-2-induced
microvessel sprouting failed in Jam-A−/− mice (155). JAM-A
cleavage-mediated abnormal arterial remodeling in aging was
also regulated by ADAM17 (114). Transfection with Jam-b siRNA
promoted vessel sprouting, and intraperitoneal administration
of anti-JAM-B antibody increased tumor blood vessel density,
as unanimously observed in JAM-B-heterozygous mice (156).
On the contrary, anti-JAM-C monoclonal antibody decreased
vessel development from aortic rings in vitro and angiogenesis in
the model of hypoxia-induced retinal neovascularization without
pathological side effects in vivo (157). Unexpectedly, disrupting
the interactions of JAM-B and JAM-C cytoplasmic tails and PAR3
with antibodies, siRNA, or dominant-negative mutants fully
interferes with EC lumen formation and tubulogenesis (158).

Even though JAMs were proved to be functional in endothelial
barrier and angiogenesis, there is still insufficient evidence
supporting their key roles in atherosclerotic vascular endothelial
barrier and angiogenesis in AS. The potential is worthy of
further exploration.

Shear Stress and Cell Motility
Of equal concern for the development of AS and complications
is wall shear stress (WSS). Chronically low oscillating WSS is
most susceptible to causing local AS. However, stenosis-induced
high WSS pushes plaque rupture (159, 160). As several of above
mentioned AS-related events such as vascular inflammation,
disruption of endothelial barrier, and angiogenesis are closed
related to flow-induced shear stress, we made a separate summary
in this section.

Without shear stress, Jam-A knock-out accelerated cell
motility by enhanced directional persistence. Under shear
stress, Jam-A knock-out escalated protrusion extension at the
flow direction and elevated downstream cellular displacement
(161). JAM-A shedding could be increased with ADAM17
maturation. Responded to flow exposure, the shedding of JAM-
A increased but the Jam-A mRNA expression was retained (113).
Noteworthy, ADAM17-activation and JAM-A/F11R cleavage
impaired endothelial WSS mechanosensing (162).

Under high shear stress, JAM-A was expressed on human
CD34+ progenitor cells and significantly decreased adhesion
over immobilized platelets or inflammatory endothelium (138).
The Mian Long group found that JAM-A and JAM-C were
the ligands of Mac-1 when mediating PMN adhesion. Under
high shear stress, LFA-1/Mac-1-JAM-C bonds hastened PMN
crawling (163). Under shear flow at the physiological level, the
high bond strength between LFA-1 and JAM-A raised a strong
Ca2+ response in adherent PMNs especially (164). Rolling and

sticking interactions of immobilized JAM-B protein with human
T lymphocytes were barely observed at a high shear stress
(1.0 dyn/cm2) but readily observed at a lower shear stress (0.3
dyn/cm2) (24).

Taken together, it is necessary to consider the flow-induced
shear stress when discussing the roles of JAMs in AS, especially
related to endothelial inflammation and leucocytes motility.
More precise conditions of shear stress deserved to be explored.

Vascular Intercellular Interactions
Essentially, AS is caused by a series of cellular interactions.
Multiple scRNA-seq data of plaques from mice and humans
demonstrated the development of atherosclerosis resulting from
the combined action of various types of cells (165, 166). As
described above, monocytes TEM plays a vital role in the
development of AS. At the same time, some additional research
revealed the importance of other interactions. T cells are the
second key leukocyte population in atherosclerotic lesions (167).
JAM-A functioned in the interactions between CD4+ T cells
and DC, possibly concerning vascular inflammation (168). sJAM-
A can diminish the chemotaxis of activated T cells triggered
by stromal cell-derived factor (SDF)-1α-transendothelial (123).
Moreover, JAM-A expressed by human CD34+ cells regulated
the interactions between platelets and endothelial cells to mediate
the adhesion of platelet to inflammatory endothelium (138).
Neutrophils play a role in vascular inflammation and plaque
formation as well (169). JAM-A was also supposed to be an
endothelial receptor of neutrophil transmigration (170). The
JAM-C mediated neutrophil transmigration is dependent on
Mac-1 (171). As a subsequent event in plaque formation, the
proliferation and migration of inflamed smooth muscle cells
seem to be inseparable from JAM-A (172).

CONCLUSION AND PROSPECTIVE

Taken together, a large body of evidence supports the crucial
role of JAMs in AS. JAM-A and JAM-C were typically highly
expressed in cellular components of atherosclerotic plaques
from patients and ApoE−/− mice, including platelets, leucocytes,
endothelial cells, and vascular smooth muscle cells (25, 69,
87). Representative receptors, pathways, and regulators were
delineated in Figure 2. There are many issues needed to be
studied. JAMs are expressed in different types of cells in AS
plaque, but the similarities and differences between these JAMs
are ambiguous. What are the downstream effects of different
JAMs in different cells? Do JAMs mediate the interactions
between these cells? If they do, how do they achieve that? How
do environmental factors change those functions? The above
questions still need to be answered in future studies.

Various models of animals and reagents have been developed
in the functional study of JAMs. Jam-A−/− mice, Jam-
C−/− mice, Jam-B-heterozygous mice (156), platelet-specific
(tr) Jam-A-deficiency mice (trJam-A−/−) (95, 96), and their
hybrid mice crossed with ApoE−/− mice have been used to
illustrate the related mechanisms. sJAM-A and sJAM-C have
been purified to demonstrate their physiological functions.
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Antibodies against JAM-A, JAM-B, and JAM-C have been also
prepared and validated.

The value of JAMs in AS is reflected as potential anti-
atherosclerotic and/or anti-thrombotic therapeutic targets.
F11R/JAM-A antagonistic (F11Rpeptide 4D) developed by the
Babinska et al. group (92–94) and antibodies against JAM-
C demonstrated the potential to prevent the development of
atherothrombosis and AS. The plasma level of JAM-A correlates
with the severity of CAD, which indicates a potential biomarker
for the disease (88). More data are awaited to show their value in
clinical application.
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