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Abstract: Antimicrobial resistance (AMR) threatens the healthcare system worldwide with the rise of
emerging drug resistant infectious agents. AMR may render the current therapeutics ineffective or
diminish their efficacy, and its rapid dissemination can have unmitigated health and socioeconomic
consequences. Just like with many other health problems, recent computational advances including
developments in machine learning or artificial intelligence hold a prodigious promise in deciphering
genetic factors underlying emergence and dissemination of AMR and in aiding development of
therapeutics for more efficient AMR solutions. Current machine learning frameworks focus mainly
on known AMR genes and are, therefore, prone to missing genes that have not been implicated in
resistance yet, including many uncharacterized genes whose functions have not yet been elucidated.
Furthermore, new resistance traits may evolve from these genes leading to the rise of superbugs, and
therefore, these genes need to be characterized. To infer novel resistance genes, we used complete
gene sets of several bacterial strains known to be susceptible or resistant to specific drugs and
associated phenotypic information within a machine learning framework that enabled prioritizing
genes potentially involved in resistance. Further, homology modeling of proteins encoded by
prioritized genes and subsequent molecular docking studies indicated stable interactions between
these proteins and the antimicrobials that the strains containing these proteins are known to be
resistant to. Our study highlights the capability of a machine learning framework to uncover novel
genes that have not yet been implicated in resistance to any antimicrobials and thus could spur
further studies targeted at neutralizing AMR.

Keywords: machine learning; antimicrobial resistance; homology modeling; molecular docking

1. Introduction

Frequent incidences of antimicrobial resistance (AMR) in hospital and community
settings in recent years call for urgent intervention and new strategies to control this bur-
geoning health problem. AMR has also been in the news during the ongoing COVID-19
pandemic, with Centers for Disease Control and Prevention (CDC) reporting increased
instances of hospital-onset antibiotic resistance among COVID-19 patients [1]. This overbur-
dened an already stretched healthcare system in the pandemic. Globally, the mortality due
to AMR is projected to be 10 million per year, with an economic burden of USD 300 billion
that could shoot up to USD one trillion by 2050 [2]. The current arsenal of antibiotics to
combat infections leaves much to be desired due to the festering AMR problem. Loss of
drug efficacy has been exacerbated by the lag in development of new antibiotics since
the late 1990s [3,4]. Unfortunately, the reports on antibiotic research and development
(until 2017) indicate a lack of incentives, where only about USD $46 million per year in
revenue is generated from the sale of antibiotics, while the investment is manifold at USD
$1.5 billion [5]. Due to these factors, there has been an innovation gap in the development
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of antibiotics and as a consequence, alternative therapeutics including various biomolecules
and nucleic-acid based alternative systems such as CRISPR-Cas-based antimicrobials, pep-
tide nucleic acids, bacteriophage therapies, antibodies, bacteriocins, and anti-virulence
compounds have been used [4,6]. Emergence of new resistant strains via creation and
evolution of new resistance genes or acquisition of novel combinations of resistance genes
muzzles the efforts to mitigate AMR. Selection allows the genomic landscapes of superbugs
to be continually re-shaped by mutation, insertions, deletions, horizontal gene transfer, and
genomic rearrangements [7,8].

Considering the current state of affairs in tackling AMR, new strategies to identify
and prioritize yet unknown genetic factors responsible for AMR are urgently needed.
Here, we leveraged the advances in machine learning or artificial intelligence and high-
throughput technologies for genotyping and phenotyping, to uncover novel AMR genes
in bacterial strains. Machine learning models have previously been employed to learn
complex patterns underlying the association between genotypes and phenotypes, followed
by application of the trained models to predict phenotypes given the genotypes. Machine
learning has also shown promising outcomes in the investigations of AMR, where the
prediction of a strain as susceptible or resistant by a model is often based on genetic and
antimicrobial susceptibility testing (AST) data [9–11]. Recently, we proposed a machine
learning framework to predict genetic factors in bacterial pathogens that are responsible
for resistance to specific antibiotics [12]. Most of these studies have focused on known
AMR genes and assessed their roles in the resistance to antibiotics other than those they are
known to be resistant to [12]. This, however, restricts the capability of machine learning in
identifying novel resistance genes that have not yet been implicated in the resistance to any
antibiotics. To tap the full potential of machine learning in deciphering resistance genes,
we considered the full spectrum of genetic data, that is, the entire set of annotated genes
in a genome of interest and used it in conjunction with the respective AST data within
an established machine learning framework, in order to predict novel genes underlying
resistance to different antibiotics.

The known functions of predicted resistance genes hint at their potential roles in
resistance. However, our analysis also uncovered putative resistance genes that are yet
to be characterized for their functions (the so called “hypothetical protein” genes). To
further validate our predictions, we conducted molecular docking studies, which are
frequently used in computer-aided drug design (CADD) to predict interactions between
small molecules (ligands) and proteins (receptors) based on the stability of their docking
conformations [13–15]. The fidelity of the predictions was based on the likelihood of stable
interactions between the predicted proteins as receptors and the respective antibiotics as
ligands, assessed in terms of their binding affinities. Our pipeline thus aids in prioritizing
genes potentially involved in AMR for further downstream analysis in a wet lab setting.

2. Materials and Methods

For each bacterial species and specific antibiotic, genotype and phenotype data down-
load, data filtration, hypothetical protein re-nomenclature, training, testing, and validation,
optimal ML model determination, identification of novel AMR loci, homology modeling,
and molecular docking were performed individually. Details of the data and procedure are
provided below.

2.1. Bacterial Isolates

The Isolates with genotypic and AST phenotypic data were manually filtered for each
bacterial species from the NCBI Pathogen Detection database: https://www.ncbi.nlm.nih.
gov/pathogens/ (accessed on 15 May 2020). The AST phenotypes here refer to the antibi-
ogram of the BioSample database, which includes the information on antibiotic susceptibil-
ity phenotypic testing, Minimum Inhibitory Concentration (MIC) quantifying the minimum
concentration of an antibiotic inhibiting the growth of a bacterium, or disk diffusions. The
genotype here refers to all annotated genes of a strain, as in the NCBI Pathogen Detection
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Database. The isolate data were retrieved only for those strains that have both genotype
and AST data available, as all the annotated genes present in the strains were considered
as features and the AST phenotypes were considered as “labels” while training a model
to predict the phenotypes. To maintain uniform feature names across all samples, RefSeq
assembly summary and RefGene were used to download the feature table for each isolate
to access all annotated genes for features extraction. The union of genes from all the isolates
comprised the full feature set. Then accordingly, a binary gene presence/absence (gene
presence coded 1 and gene absence coded 0) was entered in the feature table for each gene
from each sample. Similarly, AST phenotypes (resistant/susceptible) for a specific antibiotic
were binarized (resistant coded 1 and susceptible 0), and an AMR-AST matrix was thus con-
structed for each antibiotic–species group combination considered in this study. The final
processed matrix consisted of sample accession numbers, features (genes), and AST labels
(resistant/susceptible) as target classes, for inputting into various machine learning algo-
rithms prepped for a supervised binary classification task. Note that among the phenotypes
of each strain as referenced by the CLSI and EUCAST standard, the “intermediate” (I) has
been dealt as “resistant” (R) in this study. Details on sample size, feature size, and labels are
provided in Table 1, and all processed datasets have been made available at project GitHub
site: https://github.com/Janaksunuwar/AMRprediction_HomologyModeling_Docking.
(accessed on 15 May 2020)

Table 1. Description of species groups with numbers of strains resistant and susceptible to antibiotics
for each group. Also shown are total number of strains and total number of features (genes) for each
species group and antibiotic combination, which were used in training, validation, and testing of
different machine learning models in phenotype (resistance/susceptible) prediction.

SN Bacteria Antibiotics Resistant Susceptible Total Strains No. of Features
(Genes)

1. Klebsiella pneumoniae Doripenem 19 19 38 23,611
Ertapenem 45 45 90 23,611
Imipenem 38 38 67 23,611

Meropenem 69 69 138 23,611
2. E. coli and Shigella Doripenem 14 14 28 18,547

Ertapenem 32 32 64 18,547
Imipenem 22 22 44 18,547

Meropenem 30 30 60 18,547

3. Pseudomonas
aeruginosa Imipenem 41 41 82 12,945

Meropenem 48 48 96 12,945
4. Enterobacter Imipenem 11 11 22 8987

Meropenem 12 12 24 8987
5. Salmonella enterica Gentamicin 91 91 182 22,764

Kanamycin 68 68 136 22,764
Streptomycin 210 210 420 22,764

2.2. Hypothetical Protein Re-Nomenclature

Hypothetical proteins/genes may have different sequences but are all named “hy-
pothetical protein” in the NCBI RefSeq feature table. For our analysis, these sequences
needed to be differentiated, with highly dissimilar ones deemed different features in su-
pervised learning. For each bacterial species considered in this study, sequences of all
hypothetical proteins from each strain were obtained, and all against all protein BLAST
(BLASTp) was performed. A common name was given to hypothetical proteins that were
deemed homologs based on the following BLAST criteria: 70% query coverage and 30%
identity. These re-nomenclatured hypothetical proteins were reassigned to their respective
feature tables to be considered as genetic features for the binary matrix. Note that each
hypothetical protein coding gene has its own accession number assigned to it by NCBI; our
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new nomenclature was not intended to replace the existing standardized nomenclature but
was done solely for the purpose of this focused study.

2.3. Training, Validation, and Testing

For each bacterial species and antibiotic combination, instead of a single round of
split of the dataset for training, validation, and testing, a total of six rounds of split (6-
fold stratified cross-validation [12,16], implemented using StratifiedKFold of scikit-learn
available at https://scikit-learn.org/stable/ accessed on 15 May 2020) were performed on
the dataset to ensure that features were sampled from the entire data for model training
and testing, as further detailed below (Section 2.6). Here for each round of split of the
data, we refer it as a set and have a total of 6 sets. For each set, the data was partitioned
into 6 equal parts, with 5 parts (i.e., 5/6th or 83.33% of the dataset) considered as the
training set and the remaining part (1/6th or 16.66%) considered as the held-out test set.
Then for each 5/6th training, a nested 10-fold cross-validation and a leave-one-out (Loo)
cross-validation were also performed, and the trained model was tested on the held-out
dataset. Performance was assessed by averaging the accuracy scores generated in the
six rounds of cross-validation. Note that the same split strategy was applied uniformly
throughout this study. The workflow illustrating this procedure is shown in Figure 1.

2.4. Machine Learning Algorithms

The following machine learning algorithms available at scikit-learn (https://scikit-
learn.org/stable/ accessed on 15 May 2020) were used in this study: Logistic Regression
(logR), Gaussian Naive Bayes (gNB), Support Vector Machine (SVM), Decision Trees (DT),
Random Forest (RF), K-Nearest Neighbors (KNN), Linear Discriminant Analysis (LDA),
Multinominal Naive Bayes (mNB), AdaBoost Classifier (ABC), Gradient Boosting Classifier
(GBC), ExtraTrees Classifier (ETC), and Bagging Classifier (BC). The default algorithm
parameters, along with custom optimal parameters, are provided with the source code of
the ML framework at the project’s GitHub site (see Data Availability section below), and in
Supplementary Materials (Supplementary Table S15).

2.5. Determination of Optimal Machine Learning Framework

For each bacterial species and antibiotic combination, machine learning algorithms
were trained and tested on whole genome genotype (all genes) and AST phenotype data.
The performance metrics, namely, recall, precision, F1 score, area under the receiver op-
erating characteristic (AU ROC), and area under the precision-recall curve (AUPR) were
computed for both training and test datasets (referred to as training performance and
test performance respectively) under 6-fold, nested 10-fold, and leave-one-out (Loo) cross-
validations. The performance was assessed as the average over n-round accuracies in an
n-fold cross-validation. The model that yielded the maximal overall accuracy (F1 score)
was selected as the optimal model, and following this, the most important features (genes)
were enlisted for further analysis as described below.

2.6. Identification of Novel AMR Genes/Loci

First, the performance of machine learning algorithms was assessed using all genes
in each round of training, validation, and testing under 6-fold cross-validation procedure
(referred to as “All set” henceforth). Second, a set of genes that were deemed important
for prediction consistently in each round, that is, in the discrimination of resistant strains
from susceptible strains, were used along with phenotypes for training, validating, and
testing the machine learning algorithms (“Intersection set”). Third, as many genes as in the
intersection set were randomly sampled from All set and then used for training, validating,
and testing of machine learning algorithms; performance averaged over ten such random
replicates was assessed for each algorithm (“Random set”). This procedure is similar to
that described in our previous study [12]. As the performance with Intersection set is
comparable or better than with All set, we screened the Intersection set for genes that have
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not yet been implicated in AMR and subjected them to homology modeling followed by
computational docking experiments involving the predicted structures of their protein
products and those of the antibiotics that are neutralized by strains containing these genes.
We focused on strains that are resistant to specific antibiotic(s) but lack genes known to
confer resistance to those antibiotics.

Microorganisms 2022, 10, x FOR PEER REVIEW 5 of 17 
 

 

 
Figure 1. Schematic diagram of AMR trait and gene prediction pipeline that integrates machine 
learning, homology modeling, and molecular docking. The input data matrix contained gene pres-
ence/absence information (Xi for ith gene; 1 denotes presence and 0 denotes absence) and pheno-
type information (Y; 1 denotes resistant and 0 denotes susceptible) for each strain (each row in the 
matrix). Assessment of machine learning (ML) algorithms was conducted using (i) All Set: entire 
gene dataset, (ii) Intersection Set: genes deemed important for discrimination and appeared con-
sistently in all 6 rounds of cross-validation, and (iii) Random Set: randomly sampled genes (same 
number of genes as in Intersection set). Six-fold cross-validation was performed yielding perfor-
mance of machine learning algorithms on respective data sets (i–iii). The Intersection Set genes 
were found to be yielding overall optimal performance and were therefore subjected to homology 
modeling and molecular docking analyses to assess whether protein-products of these genes form 
stable conformations with corresponding ligands (antibiotics) in molecular simulations. 

2.6. Identification of Novel AMR Genes/Loci 
First, the performance of machine learning algorithms was assessed using all genes 

in each round of training, validation, and testing under 6-fold cross-validation procedure 
(referred to as “All set” henceforth). Second, a set of genes that were deemed important 
for prediction consistently in each round, that is, in the discrimination of resistant strains 
from susceptible strains, were used along with phenotypes for training, validating, and 
testing the machine learning algorithms (“Intersection set”). Third, as many genes as in 

Figure 1. Schematic diagram of AMR trait and gene prediction pipeline that integrates machine
learning, homology modeling, and molecular docking. The input data matrix contained gene
presence/absence information (Xi for ith gene; 1 denotes presence and 0 denotes absence) and
phenotype information (Y; 1 denotes resistant and 0 denotes susceptible) for each strain (each row
in the matrix). Assessment of machine learning (ML) algorithms was conducted using (i) All Set:
entire gene dataset, (ii) Intersection Set: genes deemed important for discrimination and appeared
consistently in all 6 rounds of cross-validation, and (iii) Random Set: randomly sampled genes
(same number of genes as in Intersection set). Six-fold cross-validation was performed yielding
performance of machine learning algorithms on respective data sets (i–iii). The Intersection Set genes
were found to be yielding overall optimal performance and were therefore subjected to homology
modeling and molecular docking analyses to assess whether protein-products of these genes form
stable conformations with corresponding ligands (antibiotics) in molecular simulations.

2.7. Homology Modeling with MODELLER

The RSCB Protein Data Bank (PDB) database (https://www.rscb.org accessed on
15 May 2020) was downloaded, and a local BLAST database was created for homology
modeling that entailed alignment of query protein sequences against the database se-
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quences using BLAST. The BLAST “hits” (database sequences with significant similarity to
query sequences) meeting the criteria of query coverage 70% and percent identity 30% were
selected for homology modeling using MODELLER 10.1 (https://saslilab.org/modeller/
accessed on 15 May 2020). Command line align2d was invoked for template alignment
based on dynamic programming algorithm of MODELLER, and of five 3D models con-
structed by AutoModel class; the best model with highest DOPE score was selected for
docking for each target template, as described in the Modeller tutorial [17].

2.8. Receptor/Ligand Preparation and Docking with AutoDock Vina Smina

The AutoDock Vina v1.1.2 (https://vina.scripps.edu accessed on 15 May 2020) was
downloaded and installed locally. The best PDB models for receptors (target proteins)
were then prepped by removing water molecules to avoid interference for ligand docking.
Further preparation was conducted by removing heteroatoms, repairing hydrogens, and
finally adding Kollman/Gasteiger charges as described in AutoDock (https://autodock.
scripps.edu/ accessed on 15 May 2020). The structured data file (SDF) of the respective
antibiotics (ligands) were downloaded from PubChem (https://pubchem.ncbi.nlm.nih.gov
accessed on 15 May 2020) and converted to PDB format file with OpenBabel v2.3.1 [18].
The PDB ligands were also similarly prepared via the command line AutoDock ligand
preparation as described in [19]. Then the homology modeled receptors (target proteins)
were docked with the respective ligands (antibiotics), and ligand-receptor binding free
energy (∆G, kcal/mol) was scored via the AutoDock Vina Smina fork for each docking
experiment [20].

2.9. Method Validation

A redocking analysis to validate the method used was conducted by downloading
262 crystal structures of antimicrobial subclass carbapenem and 586 crystal structures
of AMR protein class aminoglycoside from the PDB. The heteroatoms were filtered via
BIOPython PDB Parser [21], and molecular docking was carried out with the proteins and
the respective ligands (antibiotics). Of the top 5 simulations, the method’s validity was
checked by calculating root-mean-square deviation lower bound (RMSD l.b.) and upper
bound (RMSD u.b.) so as to establish the optimal binding model of the ligand with the
receptor. Then the conformations of highest binding affinity and successful binding were
delimited with a threshold of less than 2Å.

Similarly, a docking experiment was performed with random sampled ligands, with
the goal to examine whether the overall binding affinity between the predicted receptors
and the respective ligands is higher than that between the receptors and randomly sampled
ligands. If this is so, it further validates the predictions. Post docking analyses, visual-
izations of the conformations were conducted using UCSF Chimera v1.15 [22], AutoDock
Tools [23], and Discovery Studio Visualizer v21.1.0.20298 [24].

The machine learning framework and workflow is illustrated in Figure 1.

3. Results
3.1. Performance Assessment of the Machine Learning Framework

Assessment of machine learning algorithms in predicting resistance/susceptibility
traits of bacterial strains in their response to specific antibiotics revealed that overall,
Intersection set yielded optimal performance (assessed based on F1 score). This set contains
genes that were deemed important in discrimination between susceptible and resistant
strains by tree-based machine learning programs in each round of the cross-validation
procedure. This is a very small number of genes compared to all genes in a genome that
were used in All set analysis. One can speculate that using such a small fraction of genes
from a strain may not render a robust classifier due to loss of information, however, our
results show that the performance is comparable, often better than that from the usage of all
genes, by most of the algorithms. This demonstrates that these handful of genes are indeed
among the main players in conferring the traits and using all genes that may confound
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the discriminative capability of machine learning programs. Furthermore, as expected, the
performance yielded by the Random set, with as many genes randomly sampled from All
set as in the Intersection set, is almost always much lower than the performance attained
using the Intersection set, further reinforcing the importance of Intersection set genes in
predicting the traits and could thus be prioritized for further downstream analysis. Note
that, in the Intersection set, a small number of already implicated AMR genes were among
the important (top-ranked) features (genes); however, the proportion was small; only those
important genes that were consistently found in all six rounds of the cross-validation
were reported.

The overall accuracy of each machine learning algorithm in predicting the resistance
trait, assessed in terms of F1 score (harmonic mean of recall and precision), is shown for
each (species group, drug) combination in Figures 2–5: (Klebsiella pneumoniae, Doripenem)
in Figure 2a, (Escherichia coli and Shigella, Doripenem) in Figure 2b, (Pseudomonas aerug-
inosa, Imipenem) in Figure 2c, (K. pneumoniae, Meropenem) in Figure 3a, (E. coli and
Shigella, Meropenem) in Figure 3b, (Enterobacter, Meropenem) in Figure 3c, (K. pneumoniae,
Ertapenem) in Figure 4a, (K. pneumoniae, Imipenem) in Figure 4b, (E. coli and Shigella,
Ertapenem) in Figure 4c, (E. coli and Shigella, Imipenem) in Figure 4d, (P. aeruginosa,
Meropenem) in Figure 4e, (Enterobacter, Imipenem) in Figure 4f, (Salmonella enterica, Gen-
tamicin) in Figure 5a, (S. enterica, Kanamycin) in Figure 5b, and (S. enterica, Streptomycin)
in Figure 5c. Results show that the Intersection set yielded best overall performance. The
overall accuracy generated by a best performing machine learning classifier was highest
with Intersection set for all species group and drug combinations, except for (E. coli and
Shigella, Imipenem) where the best performing DT classifier generated equivalent overall
accuracy for All set and Intersection set and for (S. enterica, drug) where All set yielded the
best performance (overall accuracy for both All set and Intersection set were over 90%).
Performance assessment results for (species group, drug) combinations using other metrics,
namely, precision, recall, AU ROC, AUPR, and Loo CV are summarized in the Supplemen-
tary Figures S1–S5, (Supplementary Figure S1a–d for (K. pneumoniae, drug), Supplementary
Figure S2a–d for (E. coli and Shigella, drug), Supplementary Figure S3a,b for (P. aeruginosa,
drug), Supplementary Figure S4a,b for (Enterobacter, drug), and Supplementary Figure
S5a–c for (S. enterica, drug)). Assessment based on other metrics (AU ROC, AUPR) or
variants of cross-validation (10-fold, Loo) showed similar trends, with Intersection set
yielding best performance, with close to, or higher than 90% overall accuracy by optimal
classifiers, in most instances.
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high in their importance in discriminating resistant from susceptible strains in each round of cross-
validation, and “Random Set” contains randomly sampled genes from All Set (same number of
genes as in Intersection Set). Performance was assessed for each of three input datasets in a 6-fold
cross-validation setting.
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3.2. Comparison with Our Previous Study Based on Only AMR Genes

In contrast to our previous study that only considered AMR genes, here we used
all genes in a strain. The motivation here was to identify genes that have not yet been
implicated in resistance to any antibiotics, while the motivation of our previous study was
to identify AMR genes, already characterized for resistance, that may be responsible for
resistance to an antibiotic in a strain lacking genes known to be involved in the resistance
to the antibiotic. Because of different motivations of these studies, the current study could
still hold its ground even if not rendering at par, or better, performance than attained in
the previous study, because of its ability to discover genes not yet known to be involved
in AMR that the previous approach can’t. Interestingly, the overall accuracy (F1 score)
attained by the current approach is higher than that by the previous approach in most
of the evaluations, further reinforcing confidence in novel resistance genes predicted
by the current approach. The F1-scores by all the machine learning algorithms for the
Intersection set or All set in this study was higher than the respective F1-scores rendered
by the previous approach for (K. pneumoniae, Doripenem), (K. pneumoniae, Ertapenem),
(K. pneumoniae, Imipenem), (K. pneumoniae, Meropenem) (Supplementary Excel S1, F1-
score for the former rose as high as 0.94 by RF and GBC); (E. coli and Shigella, Doripenem)
(Supplementary Excel S2, Figure S2a; highest F1 of 0.92), (E. coli and Shigella, Imipenem)
(Figure S2c, highest F1 score of 0.97), and (E. coli and Shigella, Meropenem) (Figure S2d,
highest F1 score of 0.966); (S. enterica, Streptomycin) (Supplementary Excel S3, Figure S3b,
highest F1-score of 0.97 by GBC), and (S. enterica, Kanamycin) (Figure S3a, highest F1-score
of 0.95 by ABC). For (E. coli and Shigella, Ertapenem), the F1 score by the previous approach
(AMR only) was higher. For C. jenuni and P. aeruginosa, this comparison couldn’t be made
as not all strains that have AST data have the complete genome data available in the NCBI
pathogen database or the genotypic data were available but the respective AST data were
missing. Note that the data for C. jenuni are no longer available in the database and the
earlier available data for (P. aeruginosa, Doripemen) have now been replaced by new data
for (P. aeruginosa, Imipemen) and (P. aeruginosa, Meropemen).

3.3. Novel AMR Genes

In each round of the 6-fold cross-validation, genes deemed important for discrimina-
tion were obtained. Genes common across all six gene sets were obtained for K. pneumo-
niae in (Supplementary Table S1), E. coli and Shigella (Supplementary Table S2), P. aerug-
inosa (Supplementary Table S3), Enterobacter (Supplementary Table S4), and S. enterica
(Supplementary Table S5). Note the common set only includes both known AMR genes
and novel AMR genes (not yet implicated in AMR). We focused on the latter (only on



Microorganisms 2022, 10, 2102 10 of 15

novel AMR genes) following verification of their presence in the resistant strains (note
the common set may also contain genes that are absent in resistant strains but present in
susceptible strains) and performed homology modeling and molecular docking analyses to
garner support for novel predictions, as described in the following section. Lists of these
novel AMR genes are provided in Table 2 for K. pneumoniae and in Supplementary Tables
S6–S9 for other species groups. Among top ranked novel genes in these lists, are several
modifying enzymes with catalytic functions, such as, acetylation, phosphorylation, and
adenylation that are known to initiate steric hinderance and thus decreases the affinity of
the antimicrobials giving rise to AMR [25–27].

Table 2. Top ranked putative novel AMR genes in K. pneumoniae, not yet implicated as carbapenem
resistant genes, following the verification of their presence in the resistant strains for each antibiotic
(Doripenem, Ertapenem, Imipenem, and Meropenem). These novel AMR genes appeared among
top ranked genes of importance by machine learning in each round of the 6-fold cross validation for
K. pneumoniae.

Doripenem Ertapenem Imipenem Meropenem
SN. Accession Protein

Name/Description Accession Protein
Name/Description Accession Protein

Name/Description Accession Protein
Name/Description

1 WP_00414
4294.1

AlpA family phage
regulatory protein

WP_04021
5863.1

(2,3-dihydroxy
benzoyl)adenylate

synthase EntE

WP_00415
2650.1

DUF1833 family
protein

WP_00415
2389.1

DUF2913 family
protein

2 WP_04899
9684.1

Cu(+)/Ag(+)
sensor histidine

kinase

WP_01633
8366.1

DUF2913 family
protein

WP_00421
8558.1

DUF2560 family
protein

WP_07118
2194.1

DUF551
domain-containing

protein

3 WP_00008
5883.1 DNA methylase WP_00045

4193.1

DUF3330
domain-containing

protein

WP_00415
2389.1

DUF2913 family
protein

WP_00418
4301.1 DinB family protein

4 WP_00421
8558.1

DUF2560 family
protein

WP_00417
1440.1

hypothetical
protein

WP_06295
5115.1 GABA permease WP_00419

9358.1 hypothetical protein

5 WP_03242
7884.1

hypothetical
protein

WP_00415
1678.1

phosphodiester
glycosidase family

protein

WP_01506
5545.1 hypothetical protein WP_00421

7321.1
IS6-like element IS26
family transposase

6 WP_02328
2973.1 arsenic transporter WP_00021

9391.1

Mph(A) family
macrolide 2’-

phosphotransferase

WP_02330
0766.1

L-2-
hydroxyglutarate

oxidase

WP_07155
7814.1

IS6-like element
IS6100 family
transposase

7 WP_00414
4136.1

bifunctional
phosphoribosyl-

AMP
cyclohydrolase/phosphoribosyl-
ATP diphosphatase

HisIE

WP_00414
1234.1

NAD(P)-binding
domain-containing

protein

WP_00419
9843.1

MetQ/NlpA family
ABC transporter
substrate-binding

protein

WP_01536
7306.1

MAPEG family
protein

8 WP_00415
2357.1

DNA polymerase
III subunit theta

WP_13915
3029.1

Tn3 family
transposase

WP_02329
0921.1

PD40
domain-containing

protein

WP_03270
6418.1

PTS-dependent
dihydroxyacetone

kinase operon
transcriptional
regulator DhaR

9 WP_00099
7453.1

type VI secretion
protein

WP_01624
0610.1

TraM recognition
domain-containing

protein

WP_06881
5603.1

PTS-dependent
dihydroxyacetone

kinase operon
transcriptional
regulator DhaR

WP_00016
6328.1

Rop family plasmid
primer RNA-binding

protein

10 WP_03981
7891.1

IS21 family
transposase

WP_06416
2557.1

UDP-N-
acetylmuramate
dehydrogenase

WP_01570
3570.1

YqjK-like family
protein

WP_01972
5280.1

SAM-dependent
DNA

methyltransferase

11 WP_00001
8330.1

aminoglycoside O-
phosphotransferase

APH(3’)-Ia

WP_00417
5424.1 YebG family protein WP_00415

0845.1
dimethylsulfoxide

reductase subunit B
WP_01536

5583.1
alanine transaminase

AlaA

12 WP_00415
2392.1

IS3-like element
Tn4401 family

transposase

WP_00290
1627.1 YniB family protein WP_00948

5658.1

glycerol
dehydratase

reactivase
beta/small subunit

family protein

WP_01536
5705.1 arsenic transporter

13 WP_00421
8009.1

glycosyl hydrolase
family 2

WP_00288
8321.1

bis(5’-nucleosyl)-
tetraphosphatase

(symmetrical)

WP_02080
2362.1

multidrug/biocide
efflux PACE
transporter

WP_01570
4003.1

bifunctional
biotin–[acetyl-CoA-

carboxylase]
ligase/biotin operon

repressor BirA

14 WP_00419
8233.1

zinc-binding
domain of

primase-helicase
family protein

WP_00415
2235.1

dimethylsulfoxide
reductase subunit B

WP_00084
3500.1

DUF2933
domain-containing

protein

WP_01570
3802.1 deacetylase

15 WP_00101
0162.1

arsenical
pump-driving

ATPase

WP_00419
1677.1

helix-hairpin-helix
domain-containing

protein

WP_00948
3845.1

SLC13/DASS family
transporter

WP_00036
1389.1

plasmid
partitioning/stability

family protein
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3.4. Binding Affinity of Proteins Encoded by Novel AMR Genes with Respective Antibiotics

The best models of proteins of interest, inferred using homology modeling, were used
as receptors for respective antibiotics as ligands in molecular docking experiments. Energet-
ically most stable ligand–receptor conformations displaying greatest affinity are provided in
Table 3 for each species group considered in this study. We observed that proteins encoded
by novel AMR genes identified in this study have high binding affinity with the respective
antibiotics, comparable to that from simulated docking between known AMR proteins and
respective antibiotics. In contrast, the overall binding affinities between randomly sampled
proteins and respective antibiotics were significantly less (Supplementary Tables S10–S14
for K. pneumoniae, E. coli and Shigella, P. aeruginosa, Enterobacter, and S. enterica respectively).
This suggests that the proteins encoded by novel AMR genes form stable complexes with
the respective antibiotics. Kanamycin and N-acetylneuraminate epimerase (WP_001643598)
docked with the binding energy ∆G of −12.8 kcal/mol, displaying greatest affinity among
all protein–drug combinations tested. The docking conformation for K. pneumoniae with re-
ceptor protein O-phosphotransferase (WP_000018330.1) and ligand Doripenem is shown in
Figure 6, with interacting amino acids with hydrogen bond distance (Å), and hydrogen and
hydrophobic interaction types indicated. Complete data generated from the docking exper-
iments including details on interacting amino acids involved in hydrogen bonding, Affinity
∆G (Kcal/mol), RMSD lower bound, and RMSD upper bound are provided in Table 3. All
other conformations displaying the mapped amino acids of the receptors docking with the
respective ligands are shown in Supplementary Figures S6–S10 for K. pneumoniae, E. coli
and Shigella, P. aeruginosa, Enterobacter, and S. enterica respectively.

Table 3. List of novel AMR genes with their NCBI nomenclatures that were identified in this study.
Each receptor–ligand interaction based on highest binding affinity is tabulated. Details regarding
RMSD lower bound, RMSD upper bound, and respective interacting amino acids are also provided.

SN. Bacteria Ligand Receptor NCBI Nomenclature Affinity, ∆G
(Kcal/mol)

RMSD
lb

RMSD
ub

Interacting Amino Acids
with the Ligand

1 Klebsiella
pneumoniae Doripenem WP_000018330.1 MULTISPECIES:

O-phosphotransferase −7.9 0 0 ThrA66, Asp67, Arg71,
Ser143, Arg219, Phe271

Ertapenem WP_049116479.1 MULTISPECIES: porin OmpK35 −10.6 0 0 Val16, Ala17, Trp133,
Gly135, Ala347

Imipenem WP_064146913.1 PD40
domain-containing protein −7.4 0 0 Tyr39, Leu88,

Ala132, Pro197,

Meropenem WP_125961907.1 haloacid
dehalogenase-like hydrolase −8.9 0 0

Asp63, la111, Gly114,
Ser254, gly256, ASer295,

Gly296, Lys297,

2 E. coli and
Shigella Doripenem WP_004201167.1 MULTISPECIES: bleomycin

binding protein Ble-MBL −7 0 0 Arg40, gly42, Gln44,
Cys62, Arg65

Ertapenem WP001394742.1 MULTISPECIES: 6-phospho-
beta-glucosidase BglA −11.2 0 0

Gln20, His132, Asn177,
Tyr315, Asn318, Phe333,

Glu375, Trp423

Imipenem WP_004152394.1
MULTISPECIES: IS21-like

element ISKpn7 family helper
ATPase IstB

−7.2 0 0
Lys71, Asp77, Tyr76,

Gly113, His116, Gly111,
Lys114, Arg242,

Meropenem WP_032488579.1 MULTISPECIES:
N-acetyltransferase −8.7 0 0 Trp33, Ile99, Gln101,

Pro138, Tyr149, Asp164

3 Pseudomonas
aeruginosa Imipenem WP_031628187.1 autoinducer binding

domain-containing protein −7.7 0 0 Cys81, Asp103, Val112,
gly115, Gln120,

Meropenem WP_023097121.1 MULTISPECIES: outer
membrane protein OmpK −8.9 0 0 His37, Glu57, Tyr72, Phe93,

Lys248„ Asn277, Trp235

4 Enterobacter Imipenem WP_061096807.1 alpha, alpha-trehalase −7.9 0 0
Glu171, Tyr173, trp175,

Asn212, Gln223, Gly324,
Ala321, Phe532, Trp534

Meropenem WP_023337592.1 MULTISPECIES: leucyl
aminopeptidase family protein −8.7 0 0 Trp488, Arg495, glu70,

Arg161, Arg77, Gln110

5 Salmonella
enterica Gentamicin WP_025766410.1 MULTISPECIES: class 1

integron integrase IntI1 −9.4 0 0 Arg114, Gln120, Glu185,
Arg186, Tyr188,

Kanamycin WP_001643958.1 N-acetylneuraminate epimerase −11.8 0 0 Ser89, Ser226, Ala282,
Gly346, Ser350, Ser348,

Streptomycin WP_000465133.1 MULTISPECIES:
thermonuclease family protein −10.2 0 0

Asp36, Thr39, Ile40, Asp44,
Asp91, Tyr93,
Arg95, Tyr120
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Figure 6. Homology model of protein O-phosphotransferase (WP_000018330.1) based on PDB
template, and molecular docking with ligand (Doripenem) for Klebsiella pneumoniae. (A) Atomic
resolution of target protein and its three-dimensional structure. (B) Protein ligand complex docked
model (top view). (C) Binding surface plot of protein and ligand docking. (D) Interacting amino
acids with interpolated charges inside the interacting pocket. (E) Details of residue, amino acids, and
H-bond distance. (F) 2D interaction model with interaction bond types.
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4. Discussion

Applications of machine learning in biology and medicine have gained momentum
in recent years due to technological advances resulting in accumulation of mountains of
biological or biomedical data. Machine learning has proved to be one of the most effective
approaches in deciphering these data. In our studies of drug resistant bacterial pathogens,
we leveraged the power of machine learning in deciphering genetic elements underlying
resistance to various drugs. Previously, we focused on known AMR genomic loci and
employed machine learning to uncover their yet unknown roles in conferring resistance to
various antibiotics. This study focused on identifying novel AMR genes, that is, those that
have not yet been implicated in resistance to any antibiotics. By taking an unbiased whole
genome approach that allowed consideration of all protein-coding genes in a genome of
interest, we demonstrated the power of machine learning in discovering new putative AMR
genes, which was further supported by computational molecular docking experiments.

Whereas there are challenges abounding in identifying novel resistance elements
in bacterial pathogens and machine learning is a step forward in right direction, these
efforts could be confounded by intriguing mechanisms such as heteroresistance, where
a subpopulation of strains might demonstrate variable phenotypes [28]. Switching of
phenotype (resistant/susceptible) may occur with a change in environment, with genotype
being invariant. Clearly, the gene–environment interaction also needs to be accounted
for and perhaps, machine learning models, when presented with this new dimension of
information, may learn new features to predict the phenotypes. In addition, non-protein-
coding genes and regulatory sequences may also be significant players in imparting these
differential phenotypes, and future machine learning based studies could focus on these
elements as well, in addition to the protein-coding genes.

Since 1982, computational docking has been employed as an apparatus to predict
protein–ligand interaction in CADD research; the lower the free energy change ∆G, the
thermodynamically more stable is the target protein and ligand complex [14,29–31]. There
are, however, challenges to address as molecular simulations ignore water molecules,
which in a biological environment have substantial role in how biomolecules interact with
each other [32]. For example, the strength of H-bonds between protein and ligand varies
at neutral (pH 7), and molecular docking programs often ignore the polarity of strong
and weak H-bonds that negates the orientation of water molecules in ligand and receptor
interaction [33]. However, the main purpose of molecular docking is to assess interactions
that yield most stable conformations, which of course need further validation in a wet
lab setting. Note further, that not all resistance proteins could be interacting directly with
antibiotics; although ML methods may identify such genes, they cannot be validated based
on molecular docking. Functional genomics may aid in placing confidence over these
predictions. One approach could be to assess their expression during resistance or use
gene co-expression networks for understanding their role in resistance (see, for example,
refs. [34,35] for such an approach that was used to characterize stress responsive genes).
Novel resistance genes prioritized using computational approaches could be the candidates
for experimental verification using wet lab assays, which may also provide insights into
yet unknown mechanisms of resistance. We further emphasize that the machine learning
approach presented here is applicable to not just pathogens, but could also be utilized
for deciphering antimicrobial resistance in commensal microorganisms, which may serve
as an AMR gene reservoir supplying AMR genes to pathogenic bacterial strains through
horizontal gene transfer and thus rendering them resistant to drugs. Future studies can
focus on these aspects as well.

Supplementary Materials: Supporting information can be downloaded at: https://www.mdpi.com/
article/10.3390/microorganisms10112102/s1.

https://www.mdpi.com/article/10.3390/microorganisms10112102/s1
https://www.mdpi.com/article/10.3390/microorganisms10112102/s1


Microorganisms 2022, 10, 2102 14 of 15

Author Contributions: Conceptualization, R.K.A..; methodology, J.S and R.K.A..; software, J.S.;
validation, J.S.; formal analysis, J.S. and R.K.A.; investigation, J.S. and R.K.A.; resources, J.S.; data
curation, J.S.; writing—original draft preparation, J.S. and R.K.A.; writing—review and editing,
R.K.A.; visualization, J.S.; supervision, R.K.A.; project administration, R.K.A. All authors have read
and agreed to the published version of the manuscript.

Funding: The authors didn’t receive funding from any grant agencies for this work.

Informed Consent Statement: Not applicable.

Data Availability Statement: Custom programs and the associated datasets have been made avail-
able at https://github.com/Janaksunuwar/AMRprediction_HomologyModeling_Docking, accessed
on 24 August 2022.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Srinivasan, A. COVID-19 & Antibiotic Resistance|CDC. Available online: https://www.cdc.gov/drugresistance/covid19.html

(accessed on 4 August 2021).
2. Dadgostar, P. Antimicrobial Resistance: Implications and Costs. Infect. Drug Resist. 2019, 12, 3903–3910. [CrossRef] [PubMed]
3. Majumder, M.A.A.; Rahman, S.; Cohall, D.; Bharatha, A.; Singh, K.; Haque, M.; Gittens-St Hilaire, M. Antimicrobial Stewardship:

Fighting Antimicrobial Resistance and Protecting Global Public Health. Infect. Drug Resist. 2020, 13, 4713–4738. [CrossRef]
[PubMed]

4. Gao, D.; Zhu, X.; Lu, B. Development and application of sensitive, specific, and rapid CRISPR-Cas13-based diagnosis. J. Med.
Virol. 2021, 93, 4198–4204. [CrossRef] [PubMed]

5. Plackett, B. Why big pharma has abandoned antibiotics. Nature 2020, 586, S50. [CrossRef]
6. De la Fuente-Nunez, C.; Torres, M.D.; Mojica, F.J.; Lu, T.K. Next-generation precision antimicrobials: Towards personalized

treatment of infectious diseases. Curr. Opin. Microbiol. 2017, 37, 95–102. [CrossRef] [PubMed]
7. Dobrindt, U.; Hochhut, B.; Hentschel, U.; Hacker, J. Genomic islands in pathogenic and environmental microorganisms. Nat. Rev.

Microbiol. 2004, 2, 414–424. [CrossRef]
8. Davies, J.; Davies, D. Origins and Evolution of Antibiotic Resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [CrossRef]
9. Liu, Z.; Deng, D.; Lu, H.; Sun, J.; Lv, L.; Li, S.; Peng, G.; Ma, X.; Li, J.; Li, Z.; et al. Evaluation of Machine Learning Models for

Predicting Antimicrobial Resistance of Actinobacillus pleuropneumoniae From Whole Genome Sequences. Front. Microbiol. 2020,
11, 48. [CrossRef]

10. Larrañaga, P.; Calvo, B.; Santana, R.; Bielza, C.; Galdiano, J.; Inza, I.; Lozano, J.A.; Armañanzas, R.; Santafé, G.; Pérez, A.; et al.
Machine learning in bioinformatics. Brief. Bioinform. 2006, 7, 86–112. [CrossRef]

11. Maguire, F.; Rehman, M.A.; Carrillo, C.; Diarra, M.S.; Beiko, R.G. Identification of Primary Antimicrobial Resistance Drivers in
Agricultural Nontyphoidal Salmonella enterica Serovars by Using Machine Learning. Msystems 2019, 4, e00211-19. [CrossRef]

12. Sunuwar, J.; Azad, R.K. A machine learning framework to predict antibiotic resistance traits and yet unknown genes underlying
resistance to specific antibiotics in bacterial strains. Brief. Bioinform. 2021, 22, bbab179. [CrossRef]

13. Salmaso, V.; Moro, S. Bridging Molecular Docking to Molecular Dynamics in Exploring Ligand-Protein Recognition Process:
An Overview. Front. Pharmacol. 2018, 9, 923. [CrossRef]

14. Afriza, D.; Suriyah, W.H.; Ichwan, S.J.A. In silicoanalysis of molecular interactions between the anti-apoptotic protein survivin
and dentatin, nordentatin, and quercetin. J. Phys. Conf. Ser. 2018, 1073, 032001. [CrossRef]

15. Forli, S.; Huey, R.; Pique, M.E.; Sanner, M.F.; Goodsell, D.S.; Olson, A.J. Computational protein-ligand docking and virtual drug
screening with the AutoDock suite. Nat. Protoc. 2016, 11, 905–919. [CrossRef]

16. Westerhuis, J.A.; Hoefsloot, H.C.J.; Smit, S.; Vis, D.J.; Smilde, A.K.; Van Velzen, E.J.J.; Van Duijnhoven, J.P.M.; Van Dorsten, F.A.
Assessment of PLSDA cross validation. Metabolomics 2008, 4, 81–89. [CrossRef]

17. Šali, A.; Blundell, T.L. Comparative Protein Modelling by Satisfaction of Spatial Restraints. J. Mol. Biol. 1993, 234, 779–815.
[CrossRef]

18. O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox.
J. Cheminform. 2011, 3, 33. [CrossRef]

19. Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient
optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [CrossRef]

20. Koes, D.R.; Baumgartner, M.; Camacho, C.J. Lessons Learned in Empirical Scoring with smina from the CSAR 2011 Benchmarking
Exercise. J. Chem. Inf. Model. 2013, 53, 1893–1904. [CrossRef]

21. Cock, P.J.A.; Antao, T.; Chang, J.T.; Chapman, B.A.; Cox, C.J.; Dalke, A.; Friedberg, I.; Hamelryck, T.; Kauff, F.; Wilczynski, B.;
et al. Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 2009, 25,
1422–1423. [CrossRef]

22. Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera-A visualization
system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [CrossRef]

https://github.com/Janaksunuwar/AMRprediction_HomologyModeling_Docking
https://www.cdc.gov/drugresistance/covid19.html
http://doi.org/10.2147/IDR.S234610
http://www.ncbi.nlm.nih.gov/pubmed/31908502
http://doi.org/10.2147/IDR.S290835
http://www.ncbi.nlm.nih.gov/pubmed/33402841
http://doi.org/10.1002/jmv.26889
http://www.ncbi.nlm.nih.gov/pubmed/33599292
http://doi.org/10.1038/d41586-020-02884-3
http://doi.org/10.1016/j.mib.2017.05.014
http://www.ncbi.nlm.nih.gov/pubmed/28623720
http://doi.org/10.1038/nrmicro884
http://doi.org/10.1128/MMBR.00016-10
http://doi.org/10.3389/fmicb.2020.00048
http://doi.org/10.1093/bib/bbk007
http://doi.org/10.1128/mSystems.00211-19
http://doi.org/10.1093/bib/bbab179
http://doi.org/10.3389/fphar.2018.00923
http://doi.org/10.1088/1742-6596/1073/3/032001
http://doi.org/10.1038/nprot.2016.051
http://doi.org/10.1007/s11306-007-0099-6
http://doi.org/10.1006/jmbi.1993.1626
http://doi.org/10.1186/1758-2946-3-33
http://doi.org/10.1002/jcc.21334
http://doi.org/10.1021/ci300604z
http://doi.org/10.1093/bioinformatics/btp163
http://doi.org/10.1002/jcc.20084


Microorganisms 2022, 10, 2102 15 of 15

23. Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4:
Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [CrossRef]

24. BIOVIA. Dassault Systemes; Discovery Studio Visualizer v21.1.0.20298; BIOVIA: San Diego, CA, USA, 2020.
25. Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance. Microbiol. Spectr. 2016, 4, 15. [CrossRef]
26. Van Hoek, A.H.; Mevius, D.; Guerra, B.; Mullany, P.; Roberts, A.; Aarts, J.M.H. Acquired antibiotic resistance genes:an overview.

Front. Microbiol. 2011, 2, 203. [CrossRef]
27. Bhagirath, A.Y.; Li, Y.; Patidar, R.; Yerex, K.; Ma, X.; Kumar, A.; Duan, K. Two Component Regulatory Systems and Antibiotic

Resistance in Gram-Negative Pathogens. Int. J. Mol. Sci. 2019, 20, 1781. [CrossRef]
28. Band, V.I.; Weiss, D.S. Heteroresistance: A cause of unexplained antibiotic treatment failure? PLoS Pathog. 2019, 15, e1007726.

[CrossRef]
29. Du, X.; Li, Y.; Xia, Y.; Ai, S.-M.; Liang, J.; Sang, P.; Ji, X.-L.; Liu, S.-Q. Insights into protein-ligand interactions: Mechanisms, models,

and methods. Int. J. Mol. Sci. 2016, 17, 144. [CrossRef]
30. Sousa, S.; Ribeiro, A.; Coimbra, J.; Neves, R.; Martins, S.; Moorthy, N.H.N.; Fernandes, P.; Ramos, M.J. Protein-Ligand Docking in

the New Millennium—A Retrospective of 10 Years in the Field. Curr. Med. Chem. 2013, 20, 2296–2314. [CrossRef]
31. Huang, S.; Zou, X. Advances and challenges in protein-ligand docking. Int. J. Mol. Sci. 2010, 11, 3016–3034. [CrossRef]
32. Ball, P. Water is an active matrix of life for cell and molecular biology. Proc. Natl. Acad. Sci. USA 2017, 114, 13327–13335. [CrossRef]
33. Pantsar, T.; Poso, A. Binding Affinity via Docking: Fact and Fiction. Molecules 2018, 23, 1899. [CrossRef] [PubMed]
34. Anahtar, M.N.; Yang, J.H.; Kanjilal, S. Applications of machine learning to the problem of antimicrobial resistance: An emerging

model for translational research. J. Clin. Microbiol. 2021, 59, e01260-20. [CrossRef] [PubMed]
35. Burks, D.J.; Sengupta, S.; De, R.; Mittler, R.; Azad, R.K. The Arabidopsis gene co-expression network. Plant Direct. 2022, 6, e396.

[CrossRef] [PubMed]

http://doi.org/10.1002/jcc.21256
http://doi.org/10.1128/microbiolspec.VMBF-0016-2015
http://doi.org/10.3389/fmicb.2011.00203
http://doi.org/10.3390/ijms20071781
http://doi.org/10.1371/journal.ppat.1007726
http://doi.org/10.3390/ijms17020144
http://doi.org/10.2174/0929867311320180002
http://doi.org/10.3390/ijms11083016
http://doi.org/10.1073/pnas.1703781114
http://doi.org/10.3390/molecules23081899
http://www.ncbi.nlm.nih.gov/pubmed/30061498
http://doi.org/10.1128/JCM.01260-20
http://www.ncbi.nlm.nih.gov/pubmed/33536291
http://doi.org/10.1002/pld3.396
http://www.ncbi.nlm.nih.gov/pubmed/35492683

	Introduction 
	Materials and Methods 
	Bacterial Isolates 
	Hypothetical Protein Re-Nomenclature 
	Training, Validation, and Testing 
	Machine Learning Algorithms 
	Determination of Optimal Machine Learning Framework 
	Identification of Novel AMR Genes/Loci 
	Homology Modeling with MODELLER 
	Receptor/Ligand Preparation and Docking with AutoDock Vina Smina 
	Method Validation 

	Results 
	Performance Assessment of the Machine Learning Framework 
	Comparison with Our Previous Study Based on Only AMR Genes 
	Novel AMR Genes 
	Binding Affinity of Proteins Encoded by Novel AMR Genes with Respective Antibiotics 

	Discussion 
	References

