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Abstract

An increasing number of studies are focused on the epigenetic regulation of DNA to affect gene expression without
modifications to the DNA sequence. Methylation plays an important role in shaping disease traits; however, previous
studies were mainly experiment, based, resulting in few reports that measured gene-methylation interaction effects via
statistical means. In this study, we applied the data set adaptive W-test to measure gene—methylation interactions.
Performance was evaluated by the ability to detect a given set of causal markers in the data set obtained from the
GAW?20. Results from simulation data analyses showed that the W-test was able to detect most markers. The method
was also applied to chromosome 11 of the experimental data set and identified clusters of genes with neuronal and
retinal functions, including MPPED2I, GUCY2E, NAV2, and ZBTB16. Genes from the TRIM family were also identified; these
genes are potentially related to the regulation of triglyceride levels. Our results suggest that the W-test could be an
efficient and effective method to detect gene-methylation interactions. Furthermore, the identified genes suggest an
interesting relationship between lipid levels and the etiology of neurological disorders.

Background

Genetic variants, such as single-nucleotide polymorphisms
(SNPs), have been found to influence risk for human
diseases. Recent studies show that epigenetics affect SNPs
in genes and subsequently influence the gene function and
disease trait [1]. Epigenetic mechanisms consist of DNA
methylation, histone modifications, and noncoding RNAs,
all of which represent the patterns of chemical and struc-
tural modifications to DNA [2]. There are an increasing
number of laboratory experiments that provide evidence
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of DNA methylation and gene expression regulation
[3-5]. Only a few studies, however, have evaluated the
genome—epigenome interactions through statistical
means, which may potentially provide novel findings for
the joint effects of SNPs and cytosine-phosphate-guanine
(CpQ) sites [6-9]. The search for SNP-CpG epistasis is
usually conducted through multistage or integrated
analyses, where the genome and methylation data are
first analyzed separately and the results then combined
[10, 11]. Some studies apply existing interaction-effect
methods, such as regressions, to perform the joint analysis
of methylation and genome data. The advantages of the
W-test method are data set adaptive probability distribu-
tions and robustness for complicated genetic architectures,
such as moderate data sparsity and population stratifica-
tions [12]. By applying the W-test to gene—methylation data
directly, epistasis can be measured without a preselection
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of biomarkers, while also relying less on significant main
effects for detecting important CpG—SNP interactions. The
GAW?20 provided an opportunity to study methylation and
genome-wide association study (GWAS) data from partici-
pants who have undergone lipid control treatment. The
W-test was applied in the detection of gene—methylation
interactions, resulting in interesting findings with biological
implications.

Methods

GAW?20 experimental and simulated data sets

GAW?20 provided the study data. The study participants
were patients with diabetes who had undergone lipid-
control treatments with the drug fenofibrate and were
recruited from the Genetics of Lipid Lowering Drugs and
Diet Network (GOLDN) clinical trial project. The analyzed
data sets consisted of a simulated and experimental data
sets. The triglyceride (TG) levels were collected at 4
clinical visits, with 2 measurements before treatment and 2
measurements after treatment. Age, sex, smoking status,
and location were recorded. Genome-wide association data
were sequenced with the Affymetrix Genome-wide Human
SNP array 6.0, and DNA methylation profiling was
performed with the Illumina Infinium Human Methylation
450 K Bead Chip Array, using the buffy coat harvest from
blood samples collected at the second and fourth visits. In
the simulated data, the phenotype of the simulated data set
was generated using experimental genetic data under a
hypothetical model [13]. The TG levels were generated
from 5 SNPs with major effects and 5 CpG sites in physical
proximity. A set of 5 SNP-CpG pairs with relatively high
heritability but not related to TG levels was given as noise
for testing the statistical methods. The simulated data
contained 680 subjects after excluding individuals with
missing phenotypes. For simulated data, the 84th replicate
was used as suggested by GAW20. In the experimental
data set, a total of 523 participants had complete genomic
and clinical measurements. Participants with missing
values were removed during the quality-control process,
resulting in a remaining sample size of 476. The method
was applied to chromosome 11 of the experimental data.

Defining drug response

The TG levels can be used as a measure of drug response.
Because common clinical standards regard a 30% decrease
in TG levels as an effective control of lipids [14], we
adopted the same criteria in this study. First, the average
pretreatment TG levels (TG_pre) were calculated by
averaging the measurements from the first and second
visits. The average posttreatment TG levels (TG_post)
were calculated by averaging the measurements from
the third and fourth visits. Next, a percentage of change
was calculated as: ATG% = (TG_pre—TG_post)/TG_pre.
If the percentage of change was greater than 30%, then
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the drug treatment was defined as effective; if less than
30%, treatment was defined as ineffective. The effective-
ness of the drug response was the outcome variable for
both the simulated and experimental data.

The epistasis measure: The W-test

The W-test measures the probability distributional dif-
ferences for a set of biomarkers between the 2 groups of
participants such as the 2 drug-response groups [12].
Under an additive genetic model, a SNP variable can be
coded into 3 levels with the counts of the minor alleles.
The quantitative CpG variable can be divided into high
and low methylation levels by two-mean clustering. A
SNP-CpG pair can form a genetic combination of 6
categories. The empirical distributions are compared
through a sum of the square of the log odds ratio by:

pll 1 plz :|
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where p,; and p,; are the proportion of cases and controls
in the i category out of total cases or controls, respect-
ively. SE; is the standard error of the log of odds ratios.
The test statistics follows a chi-squared distribution with f
degrees of freedom. Two parameters, # and f, are
estimated using large-sample approximation by drawing
smaller bootstrap samples under a null hypothesis.
Consequently, the testing distribution is robust for
complicated genetic architectures, as it adaptively adjusts to
the data structure of the working data [12]. For detecting
the cis-regulation patterns in the gene-methylation data, the
SNPs and CpG sites located within a 10-kb genome dis-
tance on chromosome 11 were evaluated exhaustively [1].

Two types of logistic-regression models were applied
as accompanying benchmarks to the W-test. The first
logistic-regression model, LR-m1, considered the CpG
site as a binary variable like the W-test, and the second
logistic-regression model, LR-m2, included the CpG sites
as a continuous variable using the original methylation
values. Both logistic-regression models incorporated the
main and interaction effects of SNP and CpG sites. In
short, we denote:

LR-ml: Y= SNP + CpG + SNP x CpG, where CpG is
a binary variable;

LR-m2: Y = SNP + CpG + SNP x CpG, where CpG is
a continuous variable.

The type I error rate is an average false-positive propor-
tion using a permuted phenotype on a pair of gene—methy-
lation markers in 2000 replicates. A total of 140,501 epistatic
pairs were tested, and a Bonferroni correction resulted
in a significance level of 3.56E-7 at a family-wise error
rate of 5%.
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Results

Performance of the W-test with simulated data

In the simulated data set, the W-test, LR-m1, and
LR-m?2 were applied to the given causal and noise pairs.
Table 1 displays the p values obtained from alternative
methods. Generally, the W-test gave smaller p values
than LR-m1 in most answer pairs, and also had comparable
p values to LR-m2. The top 3 answer pairs were all identi-
fied to be significant by the 3 methods. The W-test also
found the fourth answer pair (cg00045910, rs10828412)
with a p value = 0.0475, which was slightly smaller than the
p values from the LR-m1 (p value = 0.0532) and LR-m2
(p value = 0.0597). The results suggested that the W-test
could be sensitive to small signals with lower heritability.
In terms of the performance for the noise pairs, all
methods yielded noise p values greater than 0.05. The
Type I error rate of the W-test was 2.95%, less than the
family-wise error rate of 5%. Meanwhile, the Type I error
rates of LR-m1 was 5.40% and of LR-m2 was 5.43%. The
results showed that the W-test was able to distinguish
between signal and noise in the simulated data set.

Computing time

Computing time was calculated on a laptop computer
with a 1.6 GHz chipset and 4 GB of random access
memory using 2000 replicates on 1 pair of markers. The
W-test was 4 times faster than logistic regression on a
general laptop (2.28 s by the W-test, 10.12 s by the
LR-m1, and 9.37 s by the LR-m2).

Identification of gene-methylation interaction in
experimental data

The W-test was applied to test the gene—methylation
interactions for GAW?20 experimental data on chromosome
11. No significant interaction pair passed the Bonferroni
correction significance level of 3.56E-07 (Table 2). We
checked the functions of the top 15 identified epistatic pairs

Page 189 of 258

and found interesting biological implications. The top 3
SNP-CpG pairs all resided in the gene MPPED2
(11p14.1; p value = 8E-06), which encoded the protein
metallophosphoesterase and was reported to be related
to neuronal function [15]. Previous GWAS studies and
biomedical experiments reported that MPPED2 was
associated with chronic kidney disease, and knockdown
of this gene in zebrafish embryos suggested a role for it
in renal function [16]. GUCY2E was ranked fourth and
has been reported to function in the central nervous
system and retinal [17, 18]. NAV2 (ranked 6th; p value =
1.78E-05) is a neuron navigator that induces neurite
outgrowth for all-frans retinoic acid, and plays an essential
role in the development of the cranial nerve and the
regulation of blood pressure in humans [19]. ZBTBI6 at
11q23.2 (ranked 15th; p value = 7.04E-05) also has been
reported as an inhibitor of neurite outgrowth in the adult
central nervous system [20]. Other genes in the top 15
identified pairs include TRIMS, TRIM6-TRIM34, and
TRIM3 (smallest p value = 5.22E-05), which were highly
correlated with TG levels in mice [21]. The quantile—
quantile (Q-Q) plot of the gene—methylation tests showed
no inflation in spurious relations for the experimental data
(Fig. 1).

Discussion and conclusions

There has been increasing evidence for the contribution
of epigenetics in regulating gene expressions implicated
in diseases. Previous studies were mainly focused on
experimentally studying gene—methylation interactions.
In this study, we demonstrated that the W-test can be
used as an effective method to identify the epistatic
interactions between SNPs and CpG sites in the GAW?20
simulated and experimental data sets. One common
obstacle in the analysis of epistasis in the genome and
epigenome is the large number of pairwise tests, the
volume of which is determined by the size of the

Table 1 p Values of 5 answers and 5 noises by the W-test and the logistic regression models LR-m1 and LR-m2 in simulated data

No Marker information p Value
CpG SNP Heritability Chr W-test LR-m1 LR-m2
Answer 1 cg00000363 1s9661059 0.125 1 493E-5 1.88E -4 237E-5
2 g 10480950 1736004 0.075 6 6.61E—4 217E-3 372E-4
3 cg18772399 rs1012116 0.1 8 767E -4 204E—-4 824E—-4
4 cg00045910 110828412 0.025 10 475E-2 532E-2 597E-2
5 cg01242676 154399565 0.05 17 3.76E-1 6.33E-1 495E-1
Noise 6 cg00703276 rs2953763 - 3 511E-1 1.84E -1 132E-1
7 cg01971676 1s6960763 - 7 6.30E—1 6.72E—-1 419E-1
8 cg11736230 152494731 - 14 161E-1 2.06E -1 1.10E-1
9 cg00001261 154786421 - 16 4.18E-1 146E—1 556E—1
10 €g12598270 1323312 - 18 733E-1 803E—1 419E-1
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Table 2 Top 15 gene-methylation pairs identified by the W-test in experimental data®

SNP CpG Distance (kb) Gene MAF p Value
1 1512288568 €g13342435 1.27 MPPED?2 0.003 749E - 06
2 rs11031153 €g13342435 3.86 MPPED2 0.003 749E - 06
3 rs16921036 €g13342435 135 MPPED2 0.001 8.68E—06
4 rs11237066 €g13340272 452 GUCY2E 0.120 1.57E =05
5 rs7119411 cg17432267 375 Cllorf63 0430 1.65E - 05
6 rs11025246 €g08550026 8.63 NAV2 0395 1.78E—-05
7 rs4347345 €g16454587 2.50 - 0.016 2.78E—-05
8 16927166 €g04054921 560 TNNT3 0.007 3.94E-05
9 rs2165313 €g11007153 243 B3GAT1 0237 4.06E — 05
10 rs11025246 cg04916810 9.60 NAV2 0.395 4.86E - 05
1 rs3740996 €g23217386 4.60 TRIMS, TRIM6-TRIM34,TRIM3 0.131 522E-05
12 16921012 €g13342435 799 MPPED?2 0.001 5.86E-05
13 rs10895360 €g03879971 578 LOC100128088 0.024 6.04E - 05
14 rs900865 €g23454003 087 - 0464 6.17E - 05
15 rs1455650 €g25744613 827 ZBTBI16 0.155 7.04E - 05

“Bonferroni corrected significance threshold: 3.56E — 7

cis-regulatory region. Existing methods solve the challenge
by using stage-wise and integrated analyses, in which the
SNPs are separately selected and then the epistatic inter-
actions with CpG sites are jointly evaluated in regression-
based approaches [10, 11]. The stage-wise analysis may
potentially miss the markers that have weak main effects
but strong epistasis effects. Previous studies also made
a linear assumption about the relationship between the
epistatic pairs and a transformed form of the response
variable, while having the advantages of covariate and
population structure control. Some nonparametric methods,
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Fig. 1 Q-Q plot of gene-methylation interaction using
experimental data

such as the Mann-Whitney U-test, have been applied for
the analysis of methylation data [22]. However, these non-
parametric tests cannot handle the potential complicated
genetic architectures such as sparse data or population
stratification. The W-test has the advantage of being model-
free and does not assume any form of interaction effect. It
also follows a chi-squared distribution in which the degrees
of freedom is estimated from the working data by boot-
strapped sampling. In this way, the W-test is able to correct
potential bias of the probability distribution caused by
complicated data structures. This method is very efficient
such that it can be applied directly on SNP-CpG evaluations
without prior filtering with the main effect.

Application of this method on the experimental data
from patients who had undergone treatment for managing
TG levels via fenofibrate identified genes that played roles
in renal function, the central nervous system, and retinal
functions. The enriched signals found in neuronal-related
genes suggest that the blood lipid levels could be related
to the neurological dysfunction in the brain, which is the
most cholesterol-rich organ in the body. By performing an
epistatic evaluation between SNPs and CpG sites, we
identified MPPED2, GUCY2E, NAV2, and ZBTBI6 as
associated with hyperlipidemia. Among these 4 genes,
MPPED2 was the most significant; it plays a role in
neural development, and genetic variations in this gene
are reported to be related to migraines, a common disease
of the neural system disease [23]. Furthermore, mutations
of CUCYZ2E are reported to be related to retinal disorders
[24, 25]. ZBTB16 encodes a protein that is highly
expressed in the brain, and polymorphisms in this gene
are used as a marker for attention deficit hyperactivity
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disorder, a neuropsychiatric condition [26]. It is intriguing
to note that the enriched signaling in neuronal and retinal
genes are identified through epistasis evaluation between
SNPs and CpG sites, but not through separate analysis of
the main effect in those data sets. This shines light on the
importance of integrated analysis of omics data: consider-
ing multiple facets or measurement of a common object
may improve the chance of catching the underlining
signal. Further studies on these threads are necessary to
discover the underlying biological mechanism.
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