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An improved understanding of the cystic fibrosis (CF) transmembrane conductance
regulator (CFTR) protein structure and the consequences of CFTR gene mutations have
allowed the development of novel therapies targeting specific defects underlying CF.
Some strategies are mutation specific and have already reached clinical development;
some strategies include a read-through of the specific premature termination codons
(read-through therapies, nonsense mediated decay pathway inhibitors for Class I
mutations); correction of CFTR folding and trafficking to the apical plasma membrane
(correctors for Class II mutations); and an increase in the function of CFTR channel
(potentiators therapy for Class III mutations and any mutant with a residual function
located at the membrane). Other therapies that are in preclinical development are not
mutation specific and include gene therapy to edit the genome and stem cell therapy
to repair the airway tissue. These strategies that are directed at the basic CF defects
are now revolutionizing the treatment for patients and should positively impact their
survival rates.
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INTRODUCTION

Cystic fibrosis (CF) is an autosomal recessive disease that affects approximately 75,000 people in
North America, Europe, and Australia alone. The life expectancy of CF patients has been constantly
increasing because of symptomatic therapies. As our knowledge of the CF transmembrane
conductance regulator (CFTR) structure and the functional consequences of its mutations has
improved, therapeutics to restore CFTR expression and function have begun to emerge. Search
for mutation-specific and mutation-independent tactics have now opened the path toward a
revolutionizing approach in treating CF patients.

BACKGROUND

CFTR Biology and Cystic Fibrosis
The CFTR is a transmembrane chloride (Cl−) and bicarbonate (HCO3

−) ion channel that
is expressed in the apical membranes of the epithelial cells of multiple exocrine organs,
where it regulates salt and fluid homeostasis (Linsdell, 2014). The CFTR glycoprotein has
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multiple membrane-integrated subunits that form two
membrane-spanning domains (MSD), two nucleotide-binding
domains (NBD), and a regulatory (R) domain that acts as
a phosphorylation site (Rowe et al., 2005; Riordan, 2008).
MSD1 and MSD2 form the walls of the channel pore, and their
conformational changes drive the channel’s opening and closing
(Muallem and Vergani, 2009). Phosphorylation of the R domain,
which is driven by cAMP-dependent protein kinase A and
C, enhances adenosine triphosphate (ATP) association to the
NBD domains and hence mediates their conformational change
and their dimerization in a head-to-tail configuration. This
conformation defines the open state of the channel (Riordan,
2008). Inversely, the hydrolysis of ATP drives the channel to a
basal closed state (Vergani et al., 2005).

CFTR protein maturation, which is characterized by complex
domain folding, assembly, and double N-glycosylation of the
MSD2, starts early in the endoplasmic reticulum (ER) during
translation and continues in the Golgi apparatus. This complex
process can be mismatched and retarded at multiple steps,
leading to important (60–80%) degradation of even wild-type
CFTR (WT-CFTR) (Varga et al., 2004) by the ER-associated
ubiquitin-dependent degradation system (Jensen et al., 1995;
Gelman et al., 2002) or autophagy. After reaching the plasma
membrane (PM), the WT-CFTR channel is internalized by
clathrin-dependent endocytosis and recycles back to the cell
surface through recycling endosomes. Because the mature WT-
CFTR is very stable at the PM, a pool of 10% WT-CFTR is
internalized and recycled back to the PM each minute (Sharma
et al., 2004; Pranke and Sermet-Gaudelus, 2014).

Almost 2,000 mutations in the CFTR gene have been found
to cause CF; they decrease the flow of Cl− and HCO3

−

through the epithelia of multiple organs, including the lung,
pancreas, sweat glands, vas deferens, liver, and intestine. As
a consequence, they interfere with their normal functioning.
In the respiratory tracts, the lack of a CFTR function drives
the accumulation of abnormally thick and sticky mucus that
underlies chronic lung inflammation and recurrent bacterial
infections, leading to progressive lung degradation. There is
increasing evidence that airway inflammation and infection are
frequently present before the appearance of symptoms; however,
it is not clear which comes first. Studies on CF animal models
suggest that CF causes congenital airway abnormalities, such
as a narrowed trachea and that the airway surface liquid has
a reduced pH level in CF, leading to an impaired bacteria-
killing potential. The accumulation of mucus gives rise to
sterile inflammation. These pathological conditions initiate
a vicious circle that leads to bronchial wall inflammation
and air trapping. The cumulation of neutrophils further
enhances inflammation through the production of elastase and
proinflammatory cytokines (Nichols and Chmiel, 2015). This
ultimately leads to the formation of bronchiectasis. Lung disease
is responsible for >95% of CF deaths (Davis et al., 1996;
Stoltz et al., 2015). Currently, according to the CF foundation
registry, the median survival age of those born in 2016 is
predicted to be 47.7 years of age (Cystic Fibrosis Registry 2016).
Because the morbidity and mortality of CF patients is mainly
caused by lung disease, the principal focus of research in the

CF domain and therapy development has been targeted at
minimizing lung disease.

Mutations Inducing CF
CFTR mutations are divided into six classes determined by the
specific defect in CFTR protein synthesis, trafficking, function, or
stability (O’Sullivan and Freedman, 2009) (Figure 1 and Table 1),
although many CFTR mutants present multiple defects, such as
F508del-CFTR with deficient trafficking, function, and stability
(Veit et al., 2016).

Class I mutations lead to severely defective protein
production. They are primarily nonsense or frameshift mutations
introducing a premature termination codon (PTC), leading to
unstable messenger RNA (mRNA) degraded by the mRNA
decay pathway (NMD) (Maquat, 2004; Popp and Maquat,
2016; Martiniano et al., 2016). If the mRNA is translated,
PTC decoding results in ribosome disruption and premature
translation termination, usually resulting in synthesis of a non-
functional, shortened CFTR protein. Large insertions/deletions
and splicing mutations resulting in the absence of proteins at the
PM are also included in Class I.

Class II mutations introduce defects in CFTR processing.
The main example of this class is the in-frame deletion of
the 508 amino acid phenylalanine (p.Phe508del, legacy name
F508del) which affects about 80% of patients. Defective folding
of the newly synthesized F508del-CFTR renders NBD1 instable
energetically and impairs the assembly of the interface between
NBD1 and MSD1/MSD2 (Du et al., 2005; Billet et al., 2013).
This misfolding impairs its stability at the ER, promoting
premature degradation by the ubiquitin-dependent proteasome
(Lukacs and Verkman, 2012). Consequently, little or no CFTR
is trafficked to the apical PM. This mutation is also associated
with the impairment of Cl− channel gating and decreased
CFTR stability at the PM because of increased degradation
by a peripheral ubiquitination-related protein quality control
system (Lukacs et al., 1993).

Class III mutations produce CFTR protein localizing at the
PM but with defective activation, leading to a severe decrease in
the ion channel’s open probability. The c.1652G > A mutation,
legacy name G551D (located in exon 11), affects about 2–4%
of patients and is the most frequent in this class. In this case,
the substitution of the amino acid glycine by aspartate occurs at
a crucial point in the NBD1–NBD2 interface, inactivates ATP-
dependent gating, and decreases open probability by ∼100-fold
compared with WT-CFTR.

Class IV mutations induce channel dysfunction by defective
ion conductance; these mutations mostly involve the MSD
regions of the CFTR protein, forming the pore of the channel.
The Class IV missense mutations provide a protein located in
the apical membrane but with only the residual activity of a
cAMP-dependent Cl− secretion. The most common Class IV
mutation is c.350G > A, legacy name R117H (located in exon 4),
which affects 0.7% of patients. This substitution of arginine with
histidine at position 117, which is located in the region of TMD2,
reduces the channel open probability by 75%, and changes Cl−
and HCO3

− conductance (LaRusch et al., 2014). Because Class
IV mutations lead to the biosynthesis of CFTR retaining residual
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FIGURE 1 | Variable CFTR protein defects causing CF disease and the corresponding therapeutic strategies.

function and normal regulation, simple therapies to improve
their activity are efficient.

Class V mutations are characterized by reduced amounts
of normally functioning CFTR at the apical PM. Most of
these mutations affect pre-mRNA splicing. This induces
complete or partial exclusion of the exon, generating
missense, silent, or nonsense mutations and, consequently,
the production of defective CFTR. Class V mutations
are either intronic mutations inducing the incorporation
of cryptic exons or exonic mutations altering splicing
enhancer motifs. The most common mutation from this

class is c.3718-2477C > T, legacy name 3849+10 kb C → T
(located in intron 19), and affecting about 0.58% of patients
but with a higher frequency in specific populations, such
as Ashkenazi Jews.

Class VI mutations result in the decreased stability of CFTR
at the apical membrane as a result of increased endocytosis
or decreased recycling to the PM. An example of Class VI
mutations is c.120del23. This deletion of nucleotides 120 up
to 142 in exon 1 eliminates the translation initiation codon
at nucleotides 133–135, and the translation instead initiates at
sites in exon 4 at M150/M152/M156. This produces N-truncated
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proteins that are unstable and display reduced Cl− channel
activity (Ramalho et al., 2009).

Although mutations of Classes I–III provoke more severe
CF disease with absent or very weak residual CFTR activity,
mutations representing Classes IV–VI lead to relatively high
residual function and are associated with milder forms of CF.

Different Treatment Strategies
Some strategies are specific to the CFTR mutation and
aim to (i) bypass a specific PTC and restore mRNA levels
(read-through therapies, NMD inhibitors therapy for Class
I mutations), (ii) correct CFTR folding and trafficking to
the apical PM (correctors for Class II mutations), or (iii)
increase the CFTR channel function (potentiators therapy for
Class III mutations and any mutant with residual function
located at the PM) (Figure 1 and Table 1). Other therapies in
preclinical development are not mutation specific and include
gene therapy to edit the genome and stem cell therapy to repair
the airway tissue.

The personalization of therapy for a given patient is
based on the paradigm of selecting the most effective
molecule or association of molecules. The functional assays
that directly or indirectly measure the CFTR activity in
in vitro cultures of primary nasal epithelial cells (Pranke
et al., 2017) and the cultures of organoids developed
from intestinal epithelia (Dekkers et al., 2013, 2016)
and nasal/bronchial spheroids (Brewington et al., 2018;
Guimbellot et al., 2018) are promising tools to use as patient-
specific biomarkers, predictive of clinical efficacy of these
novel therapies.

GENETIC THERAPIES

Cystic fibrosis genetic therapies rely on delivering DNA
or RNA, which encodes the CFTR protein or on the
restoration of the CFTR gene (genome editing) or the CFTR
mRNA (mRNA editing).

Gene Therapy
Gene therapy implies the relocation of the proper copies of the
CFTR gene to the epithelial cell layer in the airways with the
goal of replacing the mutated gene and express functional CFTR
protein. For high efficiency of this therapy, DNA coding for
CFTR together with regulatory components must be adequately
administered to the airways, reach the target cells, enter
(transduce) the cell, and express CFTR protein. Because CF
is a monogenic disease, gene therapy is particularly attractive.
Despite the fact that CF is a multiorgan disease, improving
respiratory manifestations will lead to a significant improvement
in the patient’s quality of life and may be associated with a
decrease in mortality. The inhaled route is the easiest way to
access the targeted abnormal zones.

Although gene therapy carries promise, it has several
limitations. First, finding the appropriate plasmid DNA molecule
model is important in terms of clinical potency (Pringle
et al., 2009; Dhand, 2017). Second, natural barriers such as
mucus, versatile immune responses, and intracellular limitations
considerably impair gene transfer into the lungs (Osman et al.,
2018). Finally, because the airway epithelium is constantly
renewing, genetic therapies necessitate repeated administration.
Therefore, the selection of the appropriate delivery method is

TABLE 1 | Classification of CFTR mutations.

Class of
mutation

CFTR defect CFTR
function

CFTR apical
expression

Examples of mutations Potential therapy

I Defective
production

No No G542X, W1282X, R553X,
R1162X, E822X,
1717-1G > A,
711+1G > T, 621+1G > T

Read-through agents, NMD
inhibitors

II Impaired
processing

No No F508del, N1303K, I507del,
R1066C, S549R, G85E

Correctors, Correctors +
Potentiators (C + P),
C + P + next generation
correctors, C + P +
Amplificators,
C + P + Stabilizers Gene therapy,

antisense-
III Defective regulation No Yes G551D, G178R, G551S,

R560T, V520F, G970R,
G1244E, G1349D

Potentiators oligonucleotide
therapy, mRNA
therapy,
CRISPR/Cas9,
Stem cells therapyIV Defective

conductance
Reduced Yes R334W, R117H, R347P,

R1070W
Potentiators

V Reduced amount Reduced Reduced 3272-26A > G,
3849+10 kb C > T, A455E,
D565G

NMD inhibitors, Splicing
modulators, Amplifiers

VI Defect of stability at
the PM

Reduced Reduced 1811+1.6 kb A > G Stabilizers
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FIGURE 2 | In vivo and ex vivo strategies of mutation independent approaches. Modified nucleic acids (upper panel – nucleic acids) are delivered to cells by various
methods (second upper panel – vehicles). In ex vivo cell therapy, stem or progenitor cells are derived from the subject, and after the required modification, the cells
are transferred back into the patient (lower left part of the panel). In in vivo DNA/RNA editing therapy, a direct transfer of genes to the patient is performed by viral or
non-viral methods (lower right part of the panel).

essential. The most commonly used agents in gene therapy
for CF are viral vectors: adenoviruses, adeno-associated viruses,
and lentiviruses, but also non-viral lipoplexes and peptide
nanoparticles (Figure 2).

In 1990, for the first time, Drumm et al. (1990) proved
that it is possible to deliver a healthy CFTR gene into the
adenocarcinoma cell of a CF patient by means of retrovirus
transduction. Expression of a normal CFTR gene was linked to
a cAMP-dependent Cl− channel regulation in CF epithelial cells.

The first ever use of viral and subsequent non-viral gene
transfer factors on nasal and bronchial epithelium was seen
in clinical trials in 1993 (Zabner et al., 1993; Crystal et al.,
1994; Caplen et al., 1995). Many subsequent trials have
demonstrated evidence of CFTR expression but have not
achieved clinical efficacy.

Viral Vectors—Adenoviruses
Rosenfeld et al. (1992) showed that the adenovirus-mediated
transfer of DNA coding for human CFTR to a cotton-rat
model by intratracheal introduction resulted in mRNA and
functional protein expression. In turn, Zabner et al. (1993)
performed adenoviral gene therapy tests in humans. Although
neither the CFTR mRNA nor the protein were detectable after
a single nasal application of the CFTR gene-containing vector,
the nasal potential difference showed a limited improvement
of the conductivity of the Cl− channel. Crystal et al. (1994) was
the first to detect CFTR protein in the lung and nose tissue
after adenoviral vector administration. Additional surveys on
gene transfer by adenovirus transduction of the nasal epithelium
proved that the expression of CFTR mRNA and/or CFTR protein
is transient and that the Cl− transport was not fully recovered, as
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shown by the nasal potential difference (Hay et al., 1995; Knowles
et al., 1995; Zabner et al., 1996; Bellon et al., 1997).

Despite preliminary promising data from preclinical models
of nasal and pulmonary tissues (Katkin et al., 1995; Scaria et al.,
1998) and a good tolerance at low-to-intermediate doses (Harvey
et al., 2002), adenovirus-mediated gene transfer proved inefficient
in CF patients (Joseph et al., 2001). This mostly occurred because
of the lack of the coxsackie-adenovirus receptor, which is absent
from the apical surface of most human airway epithelial cells
(HAE) (Walters et al., 1999). The transduction efficiency was
increased by a tight junction opener (Gregory et al., 2003) and the
association of the adenovirus to the 2-(diethylamino) ethyl ether
(DEAE) dextran. However, clinical use of these tight junction
openers could introduce the risk of systemic invasion when
considering the significant presence of bacteria in the CF lung.

Adeno-Associated Virus (AAV) Vectors
The substantial achievement in gene therapy by using rAAV
for congenital blindness, hemophilia B, and lipoprotein
lipase deficiency boosted scientists’ interest in more carefully
investigating a possible rAAV-based gene therapy approach for
CF (Vidović et al., 2015). Here, rAAV is a derivate of wild-type
AAV and is not related to human pathology; this vector holds
promise because it is perceived to be a safe vector due to its
low immunogenicity, lack of viral genes, and non-integrating
character (Dismuke et al., 2014). Vidović et al. (2015) showed
that the rAAV-mediated gene delivery of a shortened R domain
deleted-CFTR led to the correction of the CF phenotype in
CF mice nasal mucosa and in the intestinal organoids derived
from CF patients. Scientists must now focus on methods to
enlarge AAV tropism and to diminish its immunogenicity while
improving CFTR expression and perseverance in the lungs. The
efforts to improve the AAV vector efficacy in significant animal
models of CF and the confirmation of the potent transduction of
human epithelia for therapeutic use still remain challenging, but
not unreachable (Hart and Harrison, 2017).

Another way to tackle packaging restraints and expand AAV
tropism is the use of human Bocavirus-Type-1 (HBoV1) with
AAV2 genome. Like AAV, the HBoV1 is a parvovirus that exhibits
a high level of tropism for both transduced human cells polarized
in the air–liquid interface cultures and for the apical membrane of
the human airway epithelium. HBoV1 possesses a bigger capsid,
allowing for the packing capacity of 5543 nt compared with
an AAV of 4679 nt. The chosen animal model for exploring
therapeutic approaches with rAAV2/HBoV1 vector has been CF
ferrets because these animals mimic very well the physiological
aspects of CF lung disease. The study by Yan et al. (2017)
confirmed that in vitro and in vivo ferret epithelium is susceptible
to transduction by the rAAV2/HBoV1 vector. Moreover, the
experiments showed that repetitive dosing in vivo was efficient
in sustaining transgene expression (Yan et al., 2017).

Non-viral Vectors
The anxiety concerning unwanted immunogenic reactions,
possible transgene miss-insertions, difficulty in packing a nucleic
acid of an excessive size, and issues in bulk-production have
shed light on non-viral vector alternatives (Foldvari et al.,

2016). Advancements in liposomal vectors have demonstrated
the secured and feasible delivery of bulky DNA molecules
(Foldvari et al., 2016; Hart and Harrison, 2017). A randomized,
double-blind, placebo-controlled Phase 2b trial carried out in the
United Kingdom with a repeated nebulization of non-viral CFTR
gene showed a modest improvement in FEV1 (forced expiratory
volume in 1 s) compared with placebo at 1 year, demonstrating
the stabilization of the lung function in treated patients (Alton
et al., 2015). The conclusion is speculative because the difference
was mainly a consequence of decrease in the placebo group.
Moreover, there was no evidence of WT-CFTR expression in
respiratory cells (Mottais et al., 2017). Although disappointing,
this trial demonstrated that dosing repetition is harmless, so there
is a necessity to improve nucleic acid delivery to the target cell
(Hart and Harrison, 2017).

To protect the DNA from extracellular factors such as mucus,
bacteria, or inflammation and physical deterioration during
inhalation, DNA nanoparticles can be shielded by biodegradable
poly(b-amino esters) (PBAEs) polymers with a thick sheet of
polyethylene glycol (Mastorakos et al., 2015). Furthermore, a
cationic lipid labeled GL67A38 has shown endosomal discharge
of plasmid DNA and stabilization during aerosol implementation
although transfection efficiency was low (Dhand, 2017). Recent
preclinical work has also demonstrated the ability of transferring
circular pieces of DNA that retain transgene and regulatory
elements by nanoparticles (Hart and Harrison, 2017). The use of
synthetic vectors may also be considered when trying to decrease
immunogenicity and improve integration (Lentz et al., 2005;
Catanese et al., 2012).

CRISPR/Cas9 Approach
The CRISPR (clustered regularly interspaced short palindromic
repeats)/Cas9 approach is a gene-editing strategy in which the
specific mutated sequence of the defective CFTR gene is corrected
by changes introduced into the DNA (Figure 3). CRISPR/Cas9
technology has been developed based on the bacterial defense
mechanisms against “foreign” DNA (e.g., virus) (Alapati and
Morrisey, 2017). In this mechanism, “foreign” DNA incorporates
multiple small pieces into a locus consisting of short palindromic
repeats, called CRISPR. Upon re-exposure to the introduced
DNA, the CRISPR locus is transcribed into small RNAs that
lead the Cas9 endonuclease to a particular spot in the added
DNA, based on the DNA–RNA sequence complementarity,
which creates a double-stranded opening and protects the
host bacterium. CRISPR/Cas9 technology uses a protein-RNA
complex composed of an enzyme—Cas9 endonuclease bound
to a guide RNA (gRNA) molecule. Engineered Cas9 (Type
II bacterial endonuclease) cleaves the DNA in a sequence-
specific mode defined by the gRNA component that recognizes
through the complementarity the mutated sequence and creates
a specific double-stranded break (Figure 3). The cell can then
fill the excised portion with the correct gene sequence through
homologous directed repair (HDR), which is the desirable
plan of action but can fail occasionally as in the case of
the non-homologous end joining (NHEJ), which results in
insertions/deletions formation. CRISPR has been recognized as
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FIGURE 3 | The CRISPR/Cas9 system. Cas9 endonuclease binds to the target site using a guide RNA to precisely cut DNA allowing genome editing. CRISPR/Cas9
may drive to gene correction or DNA insertion through HDR or modify the sequence through NHEJ, which results in insertions/deletions.

the most powerful gene-editing tool when compared with zinc-
finger (ZFN) and transcription activator-like effector (TALEN)
endonucleases. The designed gRNA has an identical sequence as
the desired site in the genome, which allows for intervention at
the level of the DNA sequence with high precision, acting with
molecular “scissors” to cut the DNA at the desired point and
replace it with the correct sequence (White et al., 2017).

The two main benefits of this precision-made correction of the
faulty gene are as follows: (i) the modified gene prevails under
control of its endogenous promoter, allowing life-long expression
and natural adjustment in the cell; (ii) gene repair has the ability
to bypass the engagement of the external DNA, hence decreasing
the chance of insertional mutagenesis.

Non-viral (lipidic or polymeric) vectors seem suitable
for achieving CRISPR/Cas9 expression probable transgene
integration or secondary tumor initiation (Li et al., 2015). These
vectors also prevent immune responses, which has been observed
in the case of viral vectors, and limit off-target activity. The
optimal mode of CRISPR/Cas9 introduction into the lungs is
aerosol delivery devices combined with nanoparticle suspensions.
Nevertheless, inhaled therapy can become entrapped and unable
to cross the dense and viscous pathological mucus layer.
Despite the fact that the CRISPR approach is in its early
beginnings, it presents possible significant outcomes for future
CF therapy benefits.

The first studies on CRISPR/Cas9 to develop a potential
therapy for CF were published in 2013. Schwank et al. (2013)
tested the recovery of a functional CFTR protein in intestinal

organoids obtained from CF pediatric patients carrying the
F508del mutation. After lipofectamine-mediated transfection of
intestinal stem cells, CRISPR/Cas9 gene editing repaired the
mutation at the CFTR locus through the CFTR gene substitution
approach (HDR), improving the forskolin-induced response and
prompting organoid swelling. The same group suggested colonic
transplantation of genetically corrected organoids as a probable
perspective (Yui et al., 2012). Another successful delivery of
CRISPR/Cas9 was reported by Bellec et al. (2015). They knocked-
down the CFTR gene in HAE cells and Calu-3 cells using
the CRISPR/Cas9 approach delivered with HIV-1 lentivirus.
CRISPR/Cas9-directed gene modification was associated with a
decline of transepithelial Cl− secretion and a decrease in response
to a CFTR inhibitor, as measured in polarized cell cultures in
Ussing chambers.

Two other groups showed gene correction in CF-specific
iPSCs (induced pluripotent stem cells) with the use of gene
editing (Firth et al., 2015; Crane et al., 2015). Firth et al.
(2015) used CRISPR technology and a piggyBac-based donor
to obtain footprint-free gene correction at the CFTR locus in
patient-derived iPSCs. The recovery of expression and function
of CFTR, as measured by patch-clamp, in lung epithelial cells that
were differentiated from edited iPSCs was demonstrated (Firth
et al., 2015). Crane et al. (2015) used ZFN technology, which
is less efficient than CRISPR, to correct the CFTR gene. When
the repaired CF-iPSCs were differentiated into lung epithelial
cells, a mature CFTR glycoprotein was expressed, which in turn
recovered CFTR Cl− channel activity (Crane et al., 2015).
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Sanz et al. (2017) investigated the application of a
CRISPR/Cas9-based NHEJ method to edit a small number
of CF-causing mutations: c.1679 + 1634A > G, c.3140-
26A > G, and c.3718-2477C > T CF, which create alternative
splice sites that produce pseudo-exons or extend existing
exons. The group demonstrated that CRISPR Cas9/gRNA
pairs are useful for successful excision via a NHEJ pathway.
NHEJ-mediated excision took place in ≥25% of transfected
cells, a degree of editing that is 10-fold higher than their
previous study of homology directed repair gene editing,
with Cas9/gRNA in the same locus in the same cells
(Hollywood et al., 2016).

Antisense-Oligonucleotide-Mediated
Therapy
Antisense oligonucleotides (ASOs) are single-stranded synthetic
RNA-like molecules that can selectively change gene expression
by means of various techniques regulated by their chemistry
and antisense oligomer design. Because these mechanisms of
action are based on the complementary base pairing to the
target sequences, oligonucleotides are highly specific compounds.
Antisense oligonucleotides are being chemically modified to
improve cellular uptake and intracellular stability and to decrease
cell toxicity. From a pharmacological point of view, they are
attractive forms of medication because they are resistant to
nucleases and have good pharmacokinetic properties.

Zamecnik et al. (2004) constructed a modified
oligodeoxyribonucleotide to replace the three missing bases
caused by F508del mutation in the CFTR mRNA. This treatment
in vitro showed improved CFTR function (Zamecnik et al.,
2004). The company ProQR employs single-stranded antisense
RNA-based oligonucleotides that encompass the lacking
bases and behave as guide sequences to restore the targeted
abnormal mRNA in cells carrying the F508del mutation. Phase
II clinical trials with this modified RNA oligonucleotide QR-010
(Eluforsen), which is dedicated to F508del mutation, showed
increased CFTR function in patients’ nasal mucosa, good drug
tolerance, and improved quality of life.

Antisense oligonucleotides can repair abnormal mRNA
or alternatively target an RNA transcript for degradation
through RNaseH activation. Recently, Crosby et al. (2017)
tested ENaC-specific antisense oligonucleotides delivered by
inhalation in mouse models for the prevention and reversal of
lung symptoms in CF. Aerosol-delivered ENaC ASOs down-
regulated ENaC and mucus marker expression, ameliorated
goblet cell metaplasia, inflammation status, and airway hyper-
responsiveness (Crosby et al., 2017).

Most of the efforts in antisense oligonucleotides research focus
on splicing alteration to skip an exon enclosing a nonsense
or frameshift mutation or alternatively recover the reading
frame, expecting here that the end isoform will retain improved
function compared with the mutated protein. ASOs have also
been shown to modulate splicing in cells with the CFTR
splicing mutation c.2657+5G > A, which causes exon 16 to be
omitted along the splicing (Igreja et al., 2016). Single-stranded
DNA oligonucleotides of 19 nucleotides having 2′-O-methyl

modified ribose and a phosphorothioate backbone were modeled
to hybridize to pre-mRNA and correct aberrant splicing in
HEK293 cells expressing the c.2657+5G > A mutant CFTR
minigene (Igreja et al., 2016). A similar correction was achieved
for 3849 + 10 kb C → T, a mutation identified in 5% of
Ashkenazi Jewish patients, which constitutes a novel donor
site in intron 19, causing an 84 base-pair pseudo-exon to be
incorporated into the mRNA, and generating a downstream PTC
(Friedman et al., 1999).

mRNA-Mediated Therapy
Whereas conventional gene therapy targets the nucleus, in
mRNA therapy, a right nucleotide sequence coding for CFTR is
targeted at the cell cytoplasm. In both cases, a normal protein
is produced, though the concepts based on mRNA delivery are
more convincing because they are not required to overcome
the nuclear membrane barrier. Apart from this, chemically
changed mRNA displays various benefits over other nucleic
acids. The most valuable characteristics are a transient protein
expression, decreased immunogenicity, superior translation
efficacy, enhanced stability, and pharmaceutical safety because
modified mRNA is not incorporated into the host genome (Kuhn
et al., 2012). The mRNA can be delivered to the cell by using
liposomal or polymeric non-viral vector formulations that are
administered via several routes, for example, intraperitoneally,
intravenously, or intratracheally.

The transfection of chemically modified WT-CFTR mRNA
in CFBE41o-cells homozygous of the F508del mutation re-
established cAMP-induced CFTR currents (measured in Ussing
chambers) similar to WT cells as a result of the mRNA-
driven replacement of functional channels (Bangel-Ruland et al.,
2013). Immunofluorescence and biochemical approaches have
confirmed the expression of apically located WT-CFTR after
optimized WT-CFTR mRNA transfection. Primary cultured
human nasal epithelial cells were characterized by nearly a
twofold improvement in the cAMP-stimulated CFTR current
after mRNA transfection.

Robinson et al. (2018) used a clinically relevant lipid-based
nanoparticle (LNP) for the packaging and transport of large
chemically modified CFTR mRNA (cmCFTR) to bronchial
epithelial cells derived from patients. The experiments showed an
increase in membrane-localized CFTR and rescue of its primary
function as a Cl− channel. Nasal application of LNP-cmCFTR
recovered CFTR-mediated Cl− secretion to conductive airway
epithelia in CFTR knockout mice for at least 14 days. The CFTR
activity peaked on the 3rd day post-transfection, retrieving up to
55% of the net Cl− efflux that is distinctive for the healthy mice
(Robinson et al., 2018).

STEM CELL THERAPY

The biggest obstacle to overcome in regenerative medicine is
to determine the relevant cells that will be capable of repairing
a defect. The desired cell should be non-immunogenic, patient
specific, easy to make proliferate, and easy to modify (Guo
et al., 2017). Because endogenous progenitor cells are difficult to
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recognize and insufficient in their quantity and activity, focus has
been directed on exogenous cell sources (McQualter et al., 2010;
Rock and Königshoff, 2012). The discovery of iPSCs inspired
a discussion about whether iPS cells are a copy of embryonic
stem cells (ESCs). Yamanaka’s group first obtained the iPS cells
by reprogramming mouse fibroblasts and next confirmed the
results with the use of human fibroblasts (Takahashi et al., 2007).
Nowadays, the existing therapeutic probability of ESCs is even
more alluring when combined with the CIRSPR/Cas9 approach
(Wagner et al., 2016). Indeed, repairing a CFTR mutation
has been demonstrated in human iPSC cells by means of
CRISPR/Cas9. Skin fibroblasts derived from CF individuals were
reprogrammed toward iPSCs, transfected with the CFTR/Cas9
gRNA vector, corrected to their WT phenotype, and further
entirely differentiated into cells of proximal and distal airways
(Crane et al., 2015; Pollard and Pollard, 2018). This suggests that
theoretically, stem lung cells restored to their WT phenotype
could be regrafted to lung niches to further redifferentiate them
into respiratory cells.

Moreover, the CRISPR/Cas9 method showed the total
recovery of CFTR protein function in organoids—intestinal
stem cells placed in culture—derived from children with CF
(Schwank et al., 2013). The possibility to engraft cultured colon
organoids was tested in a mouse by using effective transplantation
into a superficially damaged mouse colon. The integration of
grafted cells into the mouse colon resulted in a coating with
epithelium in the deprived area of the damaged colon (Yui et al.,
2012; Firth et al., 2015). However, this technology is time- and
labor-intensive and challenging in terms of obtaining entirely
differentiated lung-specific cell subsets (Wagner et al., 2016).

Presumably, ESCs/iPSCs assays will become a potent method
to better forecast patients’ clinical responses to CFTR modulators.
The creation of an array of iPS cell lineages possessing the
characteristics of different CF mutations will provide a powerful
tool for selecting the potential drug to repair functional
deficiencies (Schmidt et al., 2016; Simsek et al., 2016; Conese
et al., 2018). Importantly, safety concerns about ESC- and iPSC-
based cell grafts, including the transmission of possible genetic
abnormalities and tumor risk, may hamper potential clinical
therapeutic purpose. A clear answer is needed to define if the
mutations were already pre-existing in the cells of origin or if
they were introduced during the reprogramming process. Future
preclinical risk assessments need to better establish tumor and
disease risk related to the therapeutic use of iPSC derivatives
(Martin, 2017).

READ-THROUGH THERAPIES AND NMD
INHIBITORS

Read-through agents (Table 2) are directed at in-frame nonsense
mutations. Some PTCs are more “permissive” than others to
NMD, leading to residual levels of mRNA. This residual level of
mRNA is the target for “read-through” agents, whose goal is to
reduce the ribosomal ability to proofread and enable ribosomes
to skip the PTC, leading to the formation of functional protein.
Several factors are challenging when it comes to read-through

treatment efficacy: (i) the level of drug-induced read-through,
(ii) the amount of target transcripts, and (iii) the activity of the
recoded protein (Pranke et al., 2018).

Aminoglycosides were the first read-through agents tested for
CF disease (Howard et al., 1996). Aminoglycoside antibiotics
are amino sugars that interact with the ribosome at the A-site
and imitate a conformational change in the ribosomal RNA that
normally is induced by codon–anticodon pairing; therefore, this
promotes near-cognate tRNA incorporation and increases the
number of PTC misreading, allowing translation to continue to
the correct termination codon. Gentamicin and geneticin present
read-through potential (Wilschanski et al., 2000; Wilschanski
et al., 2003; Kandasamy et al., 2012). Gentamicin was found
to display beneficial effects in patients with at least one Class
I mutation, as assessed by an improvement in nasal potential
difference after topical nasal application (Wilschanski et al., 2003)
and intravenous administration (Sermet-Gaudelus et al., 2007).
These small-scale clinical trials provided a proof-of-concept
for read-through efficiency. However, gentamicin and geneticin
cannot be used in clinics because of serious renal toxicity and
ototoxicity. Several studies have been performed to develop
chemically modified aminoglycosides to provide higher activity
and less toxicity (Nudelman et al., 2009; Rowe et al., 2011;
Xue et al., 2014). NB124 (ELX-02, ELOXX Pharmaceuticals) is
a derivative of aminoglycoside that is modified to provide a
higher level of read-through activity than gentamicin (Xue et al.,
2014). It has been shown that NB124 restores CFTR function
to roughly 7% of WT levels. Its read-through potency has been
shown in respiratory cell lines for the most prevalent PTCs—
G542X, R553X, R1162X, and W1282X—and in primary human
bronchial epithelial (HBE) cells from patients carrying the G542X
mutation. Moreover, tests of ototoxicity in the tissue-based model
showed that this compound is also less cytotoxic than gentamicin.
Lower levels of toxicity and a higher level of PTC suppression
by NB124 are achieved through a strong preference for cytosolic
versus mitochondrial ribosomes. A Phase II clinical trial will
begin in 2019 in Belgium.

High-throughput screening (HTS) identified PTC124
(Ataluren R©, TranslarnaTM PTC Therapeutics) (Welch et al.,
2007). The systemic administration of PTC124 in CF mice
expressing a human CFTR-G542X transgene induced CFTR
function rescue. This small molecule was tested in a Phase
II clinical study (Kerem et al., 2008; Sermet-Gaudelus et al.,
2010) with contradictory results. A first Phase III trial did not
deliver any significant changes in FEV1 although there was
a positive trend favoring Ataluren R©(−2.5% change) over the
placebo (−5.5% change; p = 0.124) (Wilschanski et al., 2011).
New clinical placebo-controlled Phase III trials excluding inhaled
tobramycin, which could antagonize the effect that PTC124
has on the ribosome, demonstrated no evidence in improving
FEV1, nor any benefit in bronchial exacerbations. The clinical
development of the compound is now stopped in the field of CF
(Kerem et al., 2014).

Other factors may also influence the read-through efficiency,
for example the PTC identity, the neighboring mRNA sequence,
the NMD efficiency controlling the level of mRNA, the geometry
of the tRNA-mRNA complex in the presence of the drug at
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the ribosome-decoding center, and the function of the protein,
which is neoformed.

Therefore, new tracks of research for PTC-associated
mutations are now being explored, including (i) NMD
inhibitors, (ii) the association with CFTR modulators to
improve CFTR expression/function of the neoformed protein,
and (iii) factors that force mismatched base pairs to adopt a
Watson–Crick geometry.

ReCode Therapeutics has been developed as an innovative
therapeutic approach that utilizes suppressor transfer RNA
(tRNAs) with the goal of correcting CF-causing nonsense
mutations. RCT101 is a therapeutic nucleic acid actively studied
in preclinical models. This modified tRNA is transported
to cells by patented nanoparticles to correctly “recode” the
translating protein. The unpublished data from experiments
on human HBEs from patients with genotypes G542X/G542X
and F508del/G542X showed that RCT101 significantly increased
CFTR-dependent Cl− secretion as a single active agent or in
combination with VX-809 and VX-770 (Hagemeijer et al., 2018).

CFTR MODULATOR THERAPIES

A CFTR modulator is a pharmaceutical agent that targets a
specific defect in the CFTR protein that is caused by mutation
in the CFTR gene. This modulator does not correct mutations
in the gene but rather targets the errors that occur post-
transcriptionally, either during protein folding, trafficking up to
the PM, or CFTR functioning.

The CFTR modulators are classified into four main groups:
potentiators, correctors, amplifiers, and stabilizers (Table 2).

They are different in their mechanisms of action, which can
be determined by the type of protein defect they target
(Sloane and Rowe, 2010).

Potentiators
Therapeutic agents that improve the channel-open probability
and potentiate mutated CFTR gating are called potentiators.
A large number of proof-of-concept studies have been published
to demonstrate that ATP analogs and small-molecule agents have
good potentiation activity. Chemically modified analogs of ATP
have demonstrated a significant increase in the open probability
of CFTR, with P-ATP [N6-(2-phenylethyl)-ATP] having the
highest affinity and efficacy (Zhou et al., 2005; Bompadre et al.,
2008). It has been demonstrated that P-ATP increases the
open probability of G551D-CFTR and F508del-CFTR (Miki
et al., 2010). Another ATP analog 2’-dATP (2′-deoxy-ATP)
also enhances the gating of WT-CFTR and G551D-CFTR
(Aleksandrov et al., 2002; Cai et al., 2006). Remarkably, both
modifications in ATP have synergic effects in the potentiating
gating of G551D- and F508del-CFTR (Miki et al., 2010).
Nevertheless, issues with bioavailability and potential unspecific
binding to other proteins involved in multiple physiological
functions limit the utility of ATP analogs in clinics.

The agents that increase the intracellular concentration of
cAMP and hence amplify PKA activity and the phosphorylation
level of the R domain might also improve the activity of defective
CFTR. First, Drumm et al. (1991) found that IBMX (3-isobutyl-1-
methylxanthine), a compound that increases intracellular cAMP
by inhibiting phosphodiesterase, increases PKA activity and
makes F508del-CFTR more responsive to activation. Second, an
isoflavone derivative genistein is a tyrosine kinase inhibitor that

TABLE 2 | Strategies of treatment for personalized CF medication and compounds tested pre-clinically and clinically.

Therapy Compounds

Read-through agents
Pre-clinical Geneticin, RCT101

Clinical Gentamicin ↓, NB124 (ongoing), PTC124 ↓

Potentiators

Pre-clinical ATP analogs (P-ATP, 2′-dATP, P-dATP), IBMX, PG-01, VRT-532, dihydropyridine
blockers of L-type calcium channels, CO-068, CB subunit of crotoxin, P5, G01,
A01, A02, H01, H02, H03

Clinical Genistein ↓, curcumin ↓, VX-770 ↑, PTI-808 (ongoing in triple combination),
GLPG1837 (ongoing)

Correctors

Pre-clinical Curcumin, HDAC inhibitors (SAHA), Corr-4a, VRT-325, glafenine, RDR1,
407882, FDL169,

Clinical 4PBA ↓, miglustat ↓, sildenafil ↓, VX-809 (Orkambi R©) ↑, VX-661 (Symdeko R©) ↑,
VX-440, VX-152, VX-659, VX-445 (ongoing in triple combinations), cavosonstat
(ongoing), GLPG2222, GLPG2851, GLPG2737, GLPG3221 (ongoing in triple
combinations), PTI-801 (ongoing in triple combination)

Amplifiers Clinical PTI-428 (ongoing in triple combination)

Stabilizers
Pre-clinical HGF (hepatocytes growth factor), VIP (vasoactive intestinal peptide)

Clinical Cavosonstat

↑-indicates succesfull clinical outcome and the FDA approval, ↓-indicates unsuccesfull clinical attempt.
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can also activate CFTR in intact cells (Illek et al., 1995, 1996).
Illek et al., (1995 1996) proposed that this effect was mediated
by increasing intracellular cAMP; however, other independent
studies have demonstrated that genistein directly targets and
binds to the CFTR protein (French et al., 1997; Hwang et al.,
1997; Weinreich et al., 1997). Genistein entered the clinical
study as a duo therapy with phenylbutyrate; however, the results
were not satisfying. Other flavonoids (apigenin, kaempferol, and
quercetin) have been found to enhance the currents in vitro and
in vivo by increasing the CFTR channel’s open probability (Illek
and Fischer, 1998). Naturally existing curcumin also extends the
channel opening duration of WT-CFTR (Berger et al., 2005),
F508del-CFTR (Berger et al., 2005), and G551D-CFTR (Wang
et al., 2007) although data from clinical investigations have
not been conclusive. Similarly, it was proposed that sildenafil,
a phosphodiesterase (PDE5) inhibitor, activates the guanylate
cyclase and increases the intracellular cGMP and hence CFTR
activity (Lubamba et al., 2008).

First cell-based fluorescence HTSs by Verkman’s laboratory
(Yang et al., 2003; Pedemonte et al., 2005b) and Vertex
Pharmaceuticals (Van Goor et al., 2006), applying a Fischer rat
thyroid (FRT) cell line stably expressing F508del-CFTR and an
YFP sensitive to iodide, led to the discovery of several classes
of small-molecule potentiators (Yang et al., 2003). Screening
realized by Pedemonte et al. (2005b) showed the ability of
the phenylglycine molecule PG-01 to restore the opening of
F508del-CFTR almost to the level of WT-CFTR. Van Goor et al.
(2006) identified VRT-532 (pyrazole). As shown by Pasyk et al.
(2009) and Wellhauser et al. (2009), VRT-532 potentiates the
gating of G551D- or F508del-CFTR through direct interaction
with CFTR and the restoration of its defective ATPase activity
(Pyle et al., 2011).

In 2009, Vertex Pharmaceuticals discovered VX-770
(Ivacaftor), which potentiates CFTR activity. First, they showed
that VX-770 increases the activity of F508del- and G551D-CFTR
using the patch-clamp technique and Cl− secretion measures in
bronchial epithelial cell cultures sampled from patients carrying
these mutations (Goor et al., 2009). VX-770 prolongs the opening
duration of WT-CFTR (Hwang and Sheppard, 2009), acting
independently of ATP hydrolysis and NBD domain dimerization,
because VX-770 efficiently potentiates G551D-CFTR (Van Goor
et al., 2009; Eckford et al., 2012; Jih and Hwang, 2013), E1371S-
CFTR (Jih and Hwang, 2013), and WT-CFTR in the absence
of ATP (Eckford et al., 2012; Jih and Hwang, 2013). Eckford
et al. (2012) suggested that VX-770 interacts directly with CFTR
and induces an unconventional mode of gating. Although
VX-770 increased the residual forskolin-stimulated channel
activity in HBE cell cultures from some F508del-homozygous
patients (Van Goor et al., 2009), a Phase II investigation of
F508del-homozygous patients showed no improvement in FEV1
(Flume et al., 2012).

A Phase II and Phase III study in patients carrying the G551D
mutation showed that ivacaftor efficiently improved predicted
FEV1 in as early as 15 days, reaching a 10.6% increase in
FEV1 at 24 weeks of treatment (p < 0.001). Ivacaftor decreased
sweat chloride concentration by 48 mmol/l compared with
the placebo (p < 0.001), reduced the frequency of pulmonary

exacerbations by 55% (p = 0.001), and increased the weight
of patients to 2.7 kg (p < 0.001) (Ramsey et al., 2011). Phase
II trials also showed significant improvements of the channel
function in the nasal and sweat gland epithelia (within-subject)
(Accurso et al., 2010). Children with “silent lung disease,” which
is characterized by normal initial FEV1, also demonstrated a
significant improvement in FEV1 and lung clearance index. These
results demonstrated that correcting CFTR at the molecular
level can translate into outstanding clinical improvements. VX-
770 (trade name Kalydeco R©) became the first CFTR modulator
approved for use in clinics and was initially approved in the
United States (beginning of 2012), then in Europe and Canada
(end of 2012), Australia, and New Zealand (2013).

Further development of ivacaftor demonstrated its clinical
benefit in eight additional Class III gating mutations, including
S549N and G551S, confirming improvement in lung function,
BMI, sweat chloride, and CFQ-R; in addition, this method did
not have safety concerns (De Boeck et al., 2014). Ivacaftor
proved effective in a preschool population in open-label studies,
highlighting an increase in fecal elastase and potential reversal in
early pancreatic insufficiency status. An important concern was
abnormalities of liver function tests in this population. Finally,
ivacaftor demonstrated substantial activity in the non-gating
mutation R117H, with amelioration in sweat chloride and CFQ-
R scores in all age groups, whereas respiratory improvement
was significant only in adults, perhaps because of the disease
being more established in these patients (Yu et al., 2012;
Carter et al., 2015).

Given these outstanding clinical benefits, the Food and
Drug Administration (FDA) approved ivacaftor for marketing
authorization based on in vitro assays for a number of mutations
with residual function. Nowadays, ivacaftor is approved by the
FDA for patients aged 1 and older who have one of the following
gating mutations: G178R, S549N, S549R, G551D, G551S,
G1244E, S1251N, S1255P, or G1349D; one of the following
residual function mutations: A455E, E193K, R117C, A1067T,
F1052V, R347H, D110E, D110H, F1074L, R352Q, G1069R,
R1070Q, D579G, K1060T, R1070W, D1152H, L206W, S945L,
D1270N, P67L, S977F, E56K, or R74W; one of the following splice
mutations: 711+3A→G, 3272-26A→G, E831X, 2789+5G→A,
or 3849+10 kb C→T; or the conduction mutation R117H.

Since the approval of ivacaftor, many other potentiators
have been found. A number of these are still in preclinical
development. A screen of the approved drugs performed by
Galietta’s laboratory picked out dihydropyridine blockers of
L-type calcium channels to have the potentiation activity of
F508del-CFTR (Budriesi et al., 2011); however, their clinical
usefulness is unclear because of side effects (e.g., off-target
cardiac effect). In turn, Faure et al. (2016) showed that a CB
subunit of crotoxin from Crotalus durissus terrificus interacts
with the NBD1 domain of both WT- and F508del-CFTR and
increases their Cl− channel currents. To identify the potentiators
that act synergistically with correctors, Verkman’s laboratory
screened the analogs of previously found P5 potentiators and
unrelated synthetic small molecules. They found 12 of the most
active compounds, including a thiophene (G01), a 2-thioxo-4-
amino-thiazoles (A01 and A02), and pyrazole-pyrrole isoxazoles
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(H01, H02, and H03), with a higher potentiating efficacy in FRT
cells than VX-770.

An investigational CFTR potentiator proposed by Proteostasis
Therapeutics—PTI-808—was found to enhance the function
of F508del-CFTR (2018 ECFS Conference, New Frontiers in
Basic Science of Cystic Fibrosis) and is currently in Phase
I clinical trials together with PTI-801 and PTI-428 as a
combination therapy.

Interestingly, dihydro-5H-thieno[2,3-c]pyran-2-yl)-1H-
pyrazole-3-carboxamide) GLPG1837, a more recent potentiator
developed by Galapagos, exhibits a higher efficacy than VX-
770 for G551D-CFTR (Van der Plas et al., 2018). Similar to
VX-770, GLPG1837’s underlying mechanism is independent of
NBD domain dimerization and ATP hydrolysis. By applying
GLPG1837 with VX-770 together, Yeh et al. (2017) provided
evidence that these two molecules probably act in competition
for the same site of action, whereas GLPG1837 and the ATP
analog P-dATP work synergistically through two different sites.
Two Phase II clinical studies are now conducting enrollment
to test the GLPG1837 compound in patients with a S1251N
mutation and G551D mutation.

Correctors
The CFTR correctors are small molecules that improve
the trafficking of mutated CFTR (Class II mutations, e.g.,
F508del) from ER to the apical PM and increase CFTR
cell surface expression. These correctors improve defective
CFTR folding and cellular processing by direct binding
(called pharmacological chaperones) or modulate protein
homeostasis and the quality control system of the cell to
modify the recognition and processing of misfolded CFTR
(called proteostasis regulators). Because F508del-CFTR presents
multiple defects, the development of correctors is a greater
challenge than the development of potentiators (Thibodeau
et al., 2010). Indeed, correction of F508del-CFTR requires the
following: (i) rescue to native folding by the restoration of
NBD1 energetics and interface instability; (ii) evasion of the
protein from ER quality control; (iii) enhancement in the apical
cell membrane localization; and (iv) improvement in CFTR-
dependent Cl− secretion. Hence, a strategy to combine the
correctors with potentiators and even an amplifier or stabilizer
into a “combination therapy” was tested in vitro and in
clinical trials.

The initial studies focused on the regulation of proteostasis
for F508del-CFTR. Early studies have shown that some drugs
approved for other diseases have the corrector activity for
F508del-CFTR. The compound 4-phenylbutryate (Buphenyl,
4PBA), a chemical chaperone that stabilizes the folding of
proteins, has been found to increase F508del-CFTR PM
expression in cell culture models (Rubenstein and Zeitlin, 2000).
However, this clinical trial failed to confirm the correction
activity, as measured by nasal potential difference (Zeitlin et al.,
2002). Curcumin (Egan et al., 2004; Lipecka et al., 2006) blocks
calcium from entering into the ER and thus may interfere
with the calcium-dependent chaperones that are involved in
the degradation of the CFTR. Initial tests in patients failed
to confirm any efficacy. Miglustat (n-butyldeoxynojyrimicin) is

an alpha-glucosidase inhibitor that may interfere with F508del-
CFTR misfolding quality control (Noël et al., 2008; Robert
et al., 2008; Norez et al., 2009). Although Miglustat efficiently
corrected the functional cell surface expression of F508del-
CFTR in cell culture models and mice, a small clinical study
did not confirm the corrector activity. Wang et al. (2006)
demonstrated that increased PM localization of F508del-CFTR
can be achieved by the down-regulation of Aha1 (an Hsp90
cochaperone), whereas Hutt et al. (2010) proposed that the
inhibition of histone deacetylase HDAC7 activity with HDAC
inhibitors (Suberoylanilide Hydroxamic Acid, SAHA) facilitates
F508del-CFTR folding and stability and corrects F508del-CFTR.
However, a later study by Bergougnoux et al. (2017) had
contradictory conclusions, with experiments in human nasal
epithelial (HNE) cells showing that SAHA decreased CFTR
transcript and protein levels.

A second strategy was based on the HTSs of small molecules.
The first corrector identified with this methodology was
bithiazole Corr-4a (bisaminomethylbithiazole, C4) (Pedemonte
et al., 2005a), whose later analogs have improved potency (Yu
et al., 2008). Corr-4a stabilizes both ER- and PM-localized
F508del-CFTR. This improves the domain assembly (Loo et al.,
2008, 2009) rather than NBD1 stability (Farinha et al., 2013;
Okiyoneda et al., 2013). HTSs by Vertex Pharmaceuticals
introduced new correctors (Van Goor et al., 2006), including
VRT-325 (quinazolinone, C3), which stabilizes both the ER-
and PM-localized F508del-CFTR by improving domain assembly
(Loo et al., 2008, 2009). Both Corr-4a and VRT-325 may not
function through direct binding to CFTR because they are not
specific to CFTR (Van Goor et al., 2006, 2011). Although Corr-4a
and VRT-325 present a correction activity in vitro, they did not
find a pharmacological use because of the high toxic effects and
low in vivo efficacy.

Other small-scale screenings have provided further correctors,
such as the drug glafenine (Robert et al., 2010), phenylhydrazone
RDR1 (Sampson et al., 2011), and candidate molecules from
computational screening (Kalid et al., 2010). These compounds
are relatively less efficacious and have not been tested in
clinical studies. Finally, a structure-based virtual screening
by Odolczyk et al. (2013) developed other small compounds
that rescue F508del-CFTR functional cell surface expression
by inhibiting the interaction of F508del-CFTR with keratin 8
(Colas et al., 2012).

Following HTS by Vertex Pharmaceuticals and chemical
optimization, the most promising compound VX-809
(lumacaftor, VRT-826809) became the first corrector approved
for clinical use as a combined oral treatment with VX-770
(trade name of combination Orkambi R©). VX-809 has a higher
potency and efficacy than VRT-325 and Corr-4a (Van Goor
et al., 2010, 2011; Farinha et al., 2015). In F508del-homozygous
HBE cells, VX-809 rescued total Cl− secretion up to ∼14% of
WT-HBE cells (Van Goor et al., 2011) and even up to ∼25%, as
evaluated in HBE/HNE cells (Pranke et al., 2017). The VX-809
correction effect on F508del-CFTR is additive to VRT-325 and
Corr-4a, suggesting a different mode of action (Van Goor et al.,
2011). Interestingly, the correction effect of VX-809 can also be
unmasked in HAE cells carrying only one copy of the F508del
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mutation: F508del/D1152H, F508del/394delTT, F508del/1717-
1G > A (Pranke et al., 2017), F508del/G542X (Awatade et al.,
2015; Pranke et al., 2017), F508del/Y1092X (Awatade et al.,
2015), F508del/R117H, F508del/W1282X, or F508del/E60X
(Gentzsch et al., 2016). Conversely, N1303K-CFTR, another
Class II mutant, was not corrected by VX-809 in HBE cells,
but R117H- (Gentzsch et al., 2016) and A561E-CFTR (Awatade
et al., 2015) efficiently improved PM localization and function.
The mechanism of action is not yet fully known; however, it
has been shown that VX-809 stabilizes TMD1 (Loo et al., 2013;
Okiyoneda et al., 2013), improves TMD1 folding (Ren et al.,
2013), and stabilizes interdomain interactions between TMDs
and NBDs (He et al., 2012; Loo and Clarke, 2017). Studies on
in vitro liposomes and C18 analogs of VX-809 (Eckford et al.,
2014) applying the alkyne-containing VX-809 derivatives (Sinha
et al., 2015) have shown that VX-809 may bind to CFTR directly;
however, the exact binding site has not been found. Evidence
that VX-809 binds directly to CFTR is based on the precipitation
of the VX-809-bound CFTR and on the visualization of VX-
809-CFTR association in cells, thanks to the fact that the alkyne
group of VX-809 derivatives can be conjugated to biotin-azide
molecules through Cu’-catalyzed cycloaddition and by applying
the conjugated biotin moiety.

As a whole, F508del-CFTR correctors in a single compound-
treatment present modest effectiveness in CFTR rescue. It has
been proposed that this limited efficacy is caused by the necessity
to rescue multiple defects in F508del-CFTR at the same time
(folding, activity, and stability defects) (Sloane and Rowe, 2010).
This was illustrated by a clinical trial testing efficiency of VX-
809 alone in F508del homozygote patients, which failed to
demonstrate any improvement (Clancy et al., 2012).

Considering the unsatisfying results of the VX-809 corrector,
Vertex Pharmaceuticals proposed to combine the potentiator
(VX-770) and corrector (VX-809) because the in vitro analysis
demonstrated that ivacaftor increased the open probability
of F508del-CFTR by fivefold. Acute administration of VX-
770 to VX-809-corrected primary HAE cells increased the
F508del-CFTR function (Van Goor et al., 2011). However, later
analysis of HBE cells showed a reduction in the correction
efficacy of VX-809, as well as VX-661 when VX-770 was
applied chronically (Cholon et al., 2014; Veit et al., 2014).
Chronic co-treatment with VX-809 and VX-770 affected
the folding efficiency of F508del-CFTR at the ER and its
metabolic stability in Golgi apparatus and PM, reducing
the F508del-CFTR density at the apical PM and function
(Veit et al., 2014).

Initially, two Phase III clinical studies (TRAFFIC and
TRANSPORT) were designed to assess the efficacy and safety
of two different doses of VX-809 in combination with VX-
770 in F508del-homozygous patients (Wainwright et al., 2015).
Phase III clinical trials were shown to provide a benefit for
patients. Patients over 12 years of age treated with the VX-
809/VX-770 combination therapy for 24 weeks showed a mean
absolute improvement in FEV1 between active treatment and
placebo ranging from 2.6 to 4.0 percentage points (P < 0.001),
a statistically significant weight gain, reduction in pulmonary
exacerbations, and fewer hospitalizations. There were no major

safety concerns. However, some increases in blood pressure and
chest tightness/bronchospasm were reported (Wainwright et al.,
2015). In 6–11-year-old patients, VX-770/VX-809 combination
therapy demonstrated a statistically significant improvement in
the lung clearance index (LCI) (−1.09 Unit; p < 0.0001), FEV1
(+2.4%; p = 0.02), sweat chloride (−21 mm/l; p < 0.0001) and
body mass index Z-scores (+0.15, p < 0.0001) (Ratjen et al.,
2017). Importantly, long-term follow up of patients on VX-
770/VX-809 now show a slower decline in lung function over
the study period compared with the rate of decline anticipated
from registry data of patients not on VX-770/VX-809 (Konstan
et al., 2017). Although the improvements seen with VX-770/VX-
809 in F508del homozygotes were lower than those seen in
VX-770 responsive mutations, the FDA and EMA approved this
combination therapy (trade name Orkambi R©) in 2015 for patients
ages 12 and older who have two copies of the F508del mutation.
In 2016, the FDA extended the license to patients aged 6–11 years
and in August 2018 patients 2 years of age and older. However, it
must be pointed out that clinical studies with Orkambi R©showed
a variable clinical responsiveness among patients. Less than 50%
of patients had a FEV1 improvement by more than 5%, and
only 25% of patients improved by more than 10% (Wainwright
et al., 2015). This issue underlies the importance of the preclinical
evaluation of CFTR modulators for each patient with the use of
patient-specific biomarkers predictive of clinical efficacy.

A subsequent corrector developed by Vertex
Pharmaceuticals—VX-661 (Tezacaftor)—has a structure
similar to VX-809 but optimized pharmacokinetic properties.
As reported by Van Goor et al., VX-661 increases Cl− transport
in F508del-homozygous HBE cells (from 2.5 to 8.1% of normal
levels in WT-HBE) and in other additional CFTR mutant HBE
cells (including mutations associated with gating defects and
residual CFTR function) (Fidler et al., 2017). The combination
of VX-661 and VX-770 increases Cl− transport to 15.7% of
normal Cl− transport and improves ciliary beat frequency and
fluid transport. Pranke et al. (2017) confirmed these results
in HBE/HNE cells from F508del-homozygous patients and
showed that Cl− secretion increased up to 27.4% of normal
WT cells. An increase of Cl− transport was also measured in
HBE cell cultures from heterozygous patients with genotypes
F508del/394delTT and F508del/1717-1G > A (Pranke et al.,
2017). After successful preclinical tests of VX-661, Vertex
Pharmaceuticals next proposed a combination therapy of
VX-661 and VX-770 originally for patients with two copies
of the F508del mutation. Two separate multicenter clinical
studies assessed the efficacy and safety of VX-661/VX-770 in
patients 12 years of age and older: the EVOLVE study (Phase
3, randomized, double-blind, placebo-controlled, parallel group
study) for patients homozygous for the F508del mutation;
and the EXPAND study (Phase 3, randomized, double-blind,
placebo-controlled, crossover study) for patients with one
mutation that results in residual CFTR function in trans with
the F508del mutation. The mean absolute improvement in
FEV1 in the EVOLVE study was 4% from baseline for those
treated with active compounds compared with the placebo.
The rate of pulmonary exacerbation was 35% lower in the
VX-661/VX-770 group than in the placebo group (Taylor-Cousar
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et al., 2017). In the EXPAND study, the combination treatment
demonstrated a mean absolute improvement of 6.8% compared
with the placebo. VX-770 alone improved FEV1 only by 4.7%
compared with the placebo (Rowe et al., 2017). Additionally,
VX-661/VX-770 did not induce the chest tightness or drug–drug
interactions observed with Orkambi R©. At the beginning of 2018,
the FDA approved combination VX-661/VX-770 (trade name
Symdeko R©) to treat CF in people ages 12 and older who have
two copies of the F508del mutation and those who have at least
one residual function mutation from the following: A455E,
E56K, R74W, A1067T, E193K, R117C, D110E, F1052V, R347H,
D110H, F1074L, R352Q, D579G, K1060T, R1070W, D1152H,
L206W, S945L, D1270N, P67L, or S977F; or one following splice
mutations: 711+3A→G, 3272-26A→G, E831X, 2789+5G→A,
or 3849+10kbC→T. A Phase III trial is ongoing to evaluate the
safety and efficacy of Symdeko R©in patients ages 6–11.

A study presented by Zawistoski et al. (2016) introduced a
novel F508del-CFTR corrector—FDL169—whose potency and
efficacy is comparable to VX-809. FDL169’s mechanism of action
could possibly be similar to that of VX-809 because combining
FDL169 and VX-809 does not further increase F508del-CFTR
activity. Interestingly, the inhibitory effect of VX-770 on FDL169
activity is weaker than on VX-809. This new corrector could be
an alternative for VX-809.

The Galapagos Company has developed novel correctors
through HTS: GLPG2222 and GLPG2851 (C1). The chemical
structure of GLPG2222 (Wang et al., 2018) is similar to the
structures of VX-809 and VX-661; however, it was reported
to be more potent. In vitro characterization demonstrated that
GLPG2222 is highly functional in primary patient cells carrying
two copies of the F508del mutation. The first one—GLPG2222—
is currently being evaluated in a Phase II clinical study, whereas
the second—GLPG2851—is currently in a Phase I study.

The modest efficacy of Orkambi R©and Symdeko R©triggered the
development of next-generation drugs. Vertex Pharmaceuticals
performed HTS on a cell model treated with VX-809 or VX-661
to search for more potent correctors, which yielded compounds
that have additive rescue activity. VX-440, VX-152, VX-659, and
VX-445 have been tested in separate Phase II clinical trials as a
triple-combination therapy, together with VX-661 and VX-770,
in adult CF patients carrying two copies of the F508del mutation
or one copy of F508del and one copy of minimal CFTR function
mutation. The initial results of the Phase II trials presented a
significant increase in FEV1 for all groups of patients treated
with the triple-combination therapy when compared with the
placebo (up to 13.3% for VX-659 and 13.8% for VX-445), and
a significant reduction in Cl− levels in the sweat test. The triple-
combinations of VX-661/VX-770 with VX-445 or VX-659 have
been tested in Phase III trials (Davies et al., 2018; Keating et al.,
2018). In vitro functional tests in F508del-homozygous HBE cell
cultures demonstrated that the triple combination treatment of
VX-661/VX-770/VX-152 improved CFTR activity up to ∼75%
and VX-661/VX-770//VX-440 up to ∼67% of normal HBE
cells. Subsequently, HBE cells with one copy of the F508del
mutation were corrected up to∼47% with the triple combination
containing VX-152 and up to ∼43% with the triple combination
including VX-440. Interestingly, an important correction over

50% of normal CFTR function was also observed in cells with
genotypes “F508del/minimal function” on triple-combination
regiments VX-661/VX-770VX-152, -VX-440, or -VX-659, with
the highest improvement measured for VX-659.

Other next-generation correctors were introduced by
Galapagos and Proteostasis Therapeutics. The initial results
demonstrated that adding GLPG2737 to VX-809/VX-770
enhances the effectiveness of the treatment. The GLPG3221
(Galapagos) compound is under Phase I evaluation in healthy
volunteers. Galapagos reported also that combinations of their
first-generation correctors (GLPG2222 and GLPG2851) with
their next-generation correctors (GLPG2737 and GLPG3221)
and a potentiator GLPG1837 significantly increases Cl− transport
in vitro compared with the effect of Orkambi R©. GLPG2222
passed early phase clinical trials and displayed improvement
in potency and drug–drug interaction compared with VX-
809 and VX-661 (Radar, 2016). GLPG2222 and GLPG2737
correctors together with the GLPG2451 potentiator are currently
being tested in Phase II clinical trials as a triple-combination
therapy (FALCON).

The PTI-801 (Proteostasis Therapeutics), a third-generation
corrector, showed superior in vitro efficacy over known
correctors and synergy. PTI-801 in triple combination together
with Orkambi R©and the PTI-428 amplifier is currently in a
Phase I clinical evaluation of safety and tolerability. Initial
positive results have been announced by Proteostasis company
(Proteostasis Announces Positive Data from Ongoing Phase 1
Study of PTI-801 in Cystic Fibrosis Patients on Background
Orkambi R©Therapy, 2018). Proteostasis Company reported that
potentiator PTI-808 enhanced the function of mutated F508del-
CFTR in vitro and restored it to almost normal levels when
combined with PTI-428 and PTI-801. This second triple therapy
obtained fast-track status from the FDA.

Recently, Veit et al. (2018) identified new compounds—4172,
6258, 3151—stabilizing specific folding defects of F508del-CFTR.
These rationally designed compounds lead to ∼50–100% of
wild-type-level correction in immortalized and primary human
airway epithelia and in mouse nasal epithelia. The strategy to use
compounds that synergistically aim at distinct structural defects
proved to be efficient to rescue mutant expression and function at
the PM. Therefore, the combination of correctors could translate
into improved clinical benefit in patients with CF.

Amplifiers
Therapies to treat CF induced by mutations leading to decreased
CFTR synthesis (Class V) requires agents that stimulate protein
expression. The compounds enhancing the expression of CFTR
protein, with a following increase of its quantity in the ER and
the PM, are called amplifiers. Amplifiers could also be used as
a therapy for other CFTR mutants when in combination with
correctors and potentiators.

The PTI-428 compound from Proteostasis Therapeutics
is a first-in-class CFTR amplifier that showed an in vitro
increase in CFTR protein levels across genotypes. The amplifier
could potentially improve mRNA stability and/or assist the
processes surrounding CFTR transcription or translation. As
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reported by Molinski et al. (2017), PTI amplifier enhanced
correction achieved with VX-809 and VX-770 treatment in
CF cells and tissues from patients with rare CFTR mutations
(1I1234_R1239-CFTR).

Stabilizers
Class VI CFTR mutants and corrected Class II mutants, including
F508del-CFTR localized to the PM present a reduced half-life
because of increased endocytosis and decreased recycling. The
instability of CFTR in the PM requires compounds that anchor
mutant proteins in the membrane. Stabilizers are molecules
that rectify the intrinsic protein instability and increase the
CFTR residence time at the PM/decrease protein degradation
rate from the PM.

It has been shown (Moniz et al., 2013) that hepatocytes
growth factor (HGF) stimulated Rac1 signaling and contributed
to F508del-CFTR anchoring at the cell surface through
interactions with NHERF-1. Co-treatment of cells with HGF
and lumacaftor improved the rescue of F508del-CFTR and
stimulated CFTR stabilization at the apical membrane compared
with lumacaftor treatment alone (Loureiro et al., 2015). An
increase in CFTR interaction with NHERF-1 and subsequent
stabilization of the CFTR mutant at the PM was also observed
in airway cells treated with vasoactive intestinal peptide (VIP)
(Rafferty et al., 2009).

Other strategies to stabilize CFTR at the PM by decreasing
its endocytosis rate include cAMP signaling through EPAC1
(a guanine nucleotide exchange factor exchange protein
directly activated by cAMP) (Lobo et al., 2016) and an
inhibition of S-nitrosoglutathione reductase with S-nitrosylating
agents, such as the endogenous S-nitrosoglutathione
(GSNO). This latter strategy prevents CFTR interactions
with Hsp70/Hsp90 chaperones (Marozkina et al., 2010;
Zaman et al., 2016).

Cavosonstat (N91115, Nivalis)—an inhibitor of
S-nitrosoglutathione reductase (GSNOR) through inhibiting
GSNOR—increases S-nitrosoglutathione levels and leads to
CFTR maturation and PM stability (Donaldson et al., 2017).
A phase II clinical study is now being conducted to test
Cavosonstat for patients with two copies of the F508del mutation

in combination therapy with VX-809/VX-770 or for patients with
gating mutants and receiving VX-770.

CONCLUSION

New light has been shed on the molecular targets and pathways
for therapeutic strategy thanks to the increasing comprehension
of the cellular consequences of CFTR mutations.

The astonishing results of clinical trials with protein
therapy demonstrate the clinical efficacy of mutation-
personalized therapy. Nowadays, scientists are convinced that
an improvement of CFTR function at the molecular level
can translate into an improvement in lung function and
significantly improve the daily life of the patients and, most
likely, their survival. It is expected that the near future will
herald an era when therapeutic options will be motivated by
personalized information.

Future perspectives are to develop mutation-specific and
mutation-independent therapies that achieve near wild-type
processing and function, as in case of the triple-combination
therapy for the F508del-CFTR mutant. Further studies, however,
will be needed to assess long-term efficacy and tolerance.
Importantly, DNA or mRNA editing in preclinical development
may allow for correct non-rescuable mutations and ultra-rare
genotypes that are not targeted by current protein therapies. The
next challenge is to implement those therapies in newborns with
the aim of targeting the basic defect that prevents organ injury in
this population.
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