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A B S T R A C T   

Longitudinal models have become increasingly popular in recent years because of their power to test theoreti-
cally derived hypotheses by modeling within-person processes with repeated measures. Growth models consti-
tute a flexible framework for modeling a range of complex trajectories across time in outcomes of interest, 
including non-linearities and time-varying covariates. However, these models can be expanded to include the 
effects of multiple growth processes at once on a single outcome. Here, I outline such an extension, showing how 
multiple growth processes can be modeled as a specific case of the general ability to include time-varying 
covariates in growth models. I show that this extension of growth models cannot be accomplished by statisti-
cal models alone, and that study design plays a crucial role in allowing for proper parameter recovery. I 
demonstrate these principles through simulations to mimic important theoretical conditions where modeling the 
effects of multiple growth processes can address developmental theory including, disaggregating the effects of 
age and practice or treatment in repeated assessments and modeling age- and puberty-related effects during 
adolescence. I compare how these models behave in two common longitudinal designs, cohort and accelerated, 
and how planned missingness in observations is key to parameter recovery. I conclude with directions for future 
substantive research using the method outlined here.   

1. Introduction 

The aim of the developmental sciences is to understand the course, 
cause, and consequence of change across time (Curran et al., 2010). The 
earliest attempts to understand developmental processes utilized 
cross-sectional designs (Fig. 1A), and this approach remains prevalent. 
Cross-sectional designs can either involve comparing age groups or 
sampling ages from a distribution continuously. Known limitations of 
these designs, including the inability to test casual relationships or to 
understand individual differences in trajectories of change (Kraemer 
et al., 2000; Louis et al., 1986; Maxwell and Cole, 2007) stem from the 
between-person nature of estimated effects. Given these limitations, the 
developmental sciences have invested heavily in longitudinal (i.e., 
repeated-measures) designs (Card and Little, 2007) where the same in-
dividuals are observed across multiple occasions. Longitudinal designs 
have increased power to detect developmental effects, allow individuals 
to be compared to their own baseline, and explicitly model within- and 

between-person variability (Kraemer et al., 2000; Louis et al., 1986). A 
common longitudinal design is the cohort design (Fig. 1B), where in-
dividuals are measured at the same initial age and followed roughly at 
equal spacing across time. However, despite the many advantages of 
these studies, one important limitation of this approach (aside from the 
practical challenges of cost and attrition), is a limited ability to model 
correlated developmental predictors (e.g., age, puberty, learning). 
Overcoming this limitation is a key challenge for testing complex 
developmental theory. 

The fundamental limitation of cohort designs is the near or total 
confounding of age and number of observations (Cook and Ware, 1983; 
Telzer et al., 2018). Despite being known for over half a century (Bell, 
1953; Palmore, 1978), relatively little attention has been paid to these 
issues in substantive work since. Failure to quantify the effect of 
repeated measures (e.g., practice, habituation, etc.) presents a threat to 
the internal validity of developmental inferences made from cohort 
longitudinal data. The effects of repeated exposure (e.g., practice 
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effects) to observation could artificially enhance (or entirely account 
for) developmental effects estimated in longitudinal models (Ferrer 
et al., 2004; McArdle et al., 1997; McCormick et al., 2021; Rabbitt et al., 
2001), or conversely interfere and mask the effects of maturation (e.g., 
habituation). Fortunately, an alternative, the accelerated longitudinal 
design (Fig. 1C), offers a potential solution. Accelerated longitudinal 
designs combined features of cross-sectional and cohort studies, 
measuring individuals on several occasions but not at the same initial 
ages (Bell, 1953). While motivations for adopting accelerated designs 
have mostly focused on the cost-efficiency and greater age coverage in 
shorter study durations (Galbraith et al., 2017), these designs also offer a 
solution to the age-experience confounding seen in cohort studies by 
disentangling the effects of repeated observations (i.e., experience) from 
maturational changes (i.e., development) (Cook and Ware, 1983; Van’t 
Hof et al., 1977). 

The availability of longitudinal data has prompted the development 
of many models for repeated measures data, including a variety of auto- 
regressive (Kessler and Greenberg, 1981) latent curve models, and a 
class of linear regression models known as multi-level (or mixed-effect) 
models (MLMs; (Bryk and Raudenbush, 1987; Raudenbush and Bryk, 
2002). Under conditions common to many cohort designs, LCMs and 
MLMs are mathematically isomorphic (Bauer, 2003; Curran, 2003; 
MacCallum et al., 2010), however, MLMs are particularly well-suited to 
the conditions of accelerated longitudinal studies because of their ability 
to handle the planned-missingness (i.e., individuals are not observed at 
all possible ages) inherent in the design (Galbraith et al., 2017; Little and 
Rhemtulla, 2013; Rhemtulla and Little, 2012). Alternatively, an SEM 
growth modeling approach can accommodate continuous time in the 
SEM through definition variables (Mehta and Neale, 2005; Sterba, 2014) 
but comes with some drawbacks (e.g., lack of a chi-square value and 
associated fit statistics, not currently available in all software imple-
mentations). While MLMs are applicable to a range of questions, 
multilevel growth models specifically take the form where an observed 
outcome is modeled as a function of time (Curran and Bauer, 2011) in a 
level-one (i.e., person specific) equation 

yti = β0i + β1iTimeti + rti (1)  

where y is the outcome at time t for person i, β0 and β1 are the person- 
specific intercept and slope (i.e., effect of time) respectively, and rti is 
the time- and person-specific residual. Individuals are allowed to vary by 
including level-two parameters which model individual variability in 
intercept and rate of change 

β0i = γ00 + u0i
β1i = γ10 + u1i

(2)  

where γ00 and γ10 represent the group-level (i.e., fixed effects) intercept 
and slope, and u0i and u1i represent individual deviations in those terms 
(i.e., random effects). By substitution, we can see that the full equation 
describes a single growth process in the outcome (across Timet) that 
allows for estimating individual variability in the initial level and rate of 
change of yti. 

yti = γ00 + γ10Timeti
⏟̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅⏟

Fixed Effects

+ u0i + u1iTimeti + rti⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
Random Effects

(3) 

This model could be expanded to include more complex effects of 
time (e.g., polynomials or other nonlinear functions; (Cudeck and Har-
ring, 2007; Cudeck and Klebe, 2002)), or additional covariates, but this 
general form constitutes the core of multilevel growth models. 

While these models have primarily been used to characterize single 
growth process (i.e., to model only the effect of time), there are no 
inherent restrictions on including multiple growth processes in the same 
model (Ferrer et al., 2004; McArdle et al., 1997). Note that this is distinct 
from modeling the same growth predictor for multiple outcomes in a 
multivariate model (MacCallum et al., 1997). For instance, modeling 
two growth processes on a single outcome would involve a simple 
expansion of Eq. (3) to include additional predictors, taking the form: 

yti = γ00 + γ10Growth 1ti + γ20Growth 2si
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟

Fixed Effects

+ u0i + u1iGrowth 1ti + u2iGrowth 2si + rti⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
Random Effects

(4)  

where the growth predictors represent separable constructs of change (e. 
g., experience and maturation) that unfold across levels of t and s 
respectively. This model is not fundamentally different from including 
any other time-varying covariate (see (Curran and Bauer, 2011; Curran 
et al., 2012; McNeish and Matta, 2020) for more in-depth treatment of 
the general TVC model), but there are limitations for obtaining proper 
effect estimates under common conditions. That is, if the two growth 
processes are highly collinear, there will be instability in effect estimates 
for either process and standard errors will be inflated (Shieh and Fou-
ladi, 1991), increasing Type II error rates. However, accelerated longi-
tudinal designs offer a potential solution to this limitation since it is 
possible to attenuate the correlation between different growth processes 
through the use of planned missingness (Graham, 2009). Combining 
appropriate sampling designs with the extension to a multilevel, 
multi-growth modeling framework offers a number of opportunities that 
can be flexibly employed depending on the specific research question. 

In this study, I will highlight the promise of multilevel, multi-growth 
models (MLMGMs) for addressing developmental theory. To do so, I will 
develop a series of scenarios where multiple growth processes might be 
highly entangled. For each scenario, I will highlight how cohort designs 
fail to disaggregate between different influences (e.g., age and puberty) 
on developmental outcomes of interest, and how MLMGMs in combi-
nation with accelerated designs address these failures. I show that 
MLMGMs can be flexibly employed for a range of purposes, from con-
trolling for repeated assessments while estimating developmental effects 
to probing interactions between chronological age and pubertal matu-
ration. Finally, I outline how sampling strategies can be optimized to 
take advantage the promise of MLMGMs. While the primary target for 
this work is the developmental sciences, there are undoubtably appli-
cations for these models in other fields where multiple growth processes 
influence outcomes of interest. 

Fig. 1. Examples of A) Cross-Sectional, B) 
Cohort, and C) Accelerated Longitudinal 
developmental designs. While cross-sectional 
designs rely on one measurement per subject 
and rely on between-person change to estimate 
developmental effects (dashed line), cohort 
longitudinal designs relay on within-person 
changes across repeated measurements. Accel-
erated longitudinal designs combine these ap-
proaches by using both between- and within- 
person change to estimate developmental 
effects.   
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2. Methods 

2.1. Simulation design 

For each scenario, I simulated data consistent with growth along one 
or more separable processes (e.g., using variants of Eq. (4)). For a given 
scenario, I simulated data to have the structure of both cohort and 
accelerated longitudinal designs. I then fit both a properly-specified and 
mis-specified model (described in each scenario) and demonstrated both 
how parameters are distributed across different designs and how theo-
retical inferences would be impacted. To test these questions, I simu-
lated 1000 replicants of each design for each scenario. Data were 
simulated in R, and all relevant code for replicating data and analyses 
are available online (https://osf.io/65sdw/). I plotted results for each 
scenario in terms of ages that are reasonable for each hypothetical for 
ease of interpretation and discussion, but they are neither intrinsically 
meaningful nor meant to directly reflect particular results from real 
data. 

2.1.1. Sample size and number of observations 
The limitations of common developmental models highlighted in this 

investigation are not ones that reasonable increases in sample size or 
number of observations can easily solve. As such, I simulated 750 total 
observations for each simulated dataset to avoid issues of power and 
highlight the challenges inherent in confounding age and observations. 
To mimic real data features, I set 5 observations per person for the 
cohort design (n = 150), and 3 observations per person for the accel-
erated data (n = 250), with approximately one year between observa-
tions (jittered to prevent perfect collinearity N ∼ [0,0.1]). Both of these 
sample sizes represent reasonably-powered studies for the respective 
developmental design (Fang et al., 2008). 

2.1.2. Missing data 
Similar to issues of sample size, I simulated most scenarios to have 

complete data to focus the scope of the investigation towards issues of 
theory and inference. This is because planned missing data is accom-
modated in multilevel models generally and indeed it is what enables 
their use in accelerated longitudinal data in the first place (Card and 
Little, 2007). Furthermore, to the extent that missing data influences 
correlations among growth processes, the most likely contributor to 
unplanned missing data in longitudinal designs (i.e., attrition) actually 
attenuates correlations between number of observation and other 
growth processes. However, one feature of interest to the current 
investigation is the additional instability that missingness can introduce 
to parameter estimates in longitudinal data, especially with predictors in 
the model are highly correlated. To highlight this point, I simulated a 
separate iteration of one condition in Scenario 1 to have 10 % missing 
data at random (~ 75 of 750 total observations). The results did not 
substantively change with the inclusion of missing data, and results are 
reported in supplemental material (Table S1). 

2.1.3. Fixed effects parameters 
Unless otherwise indicated, I simulated regression parameters for the 

fixed effects to show moderately strong effects (|γx| = 0.3). This type of 
effect should be easily detected at the sample sizes shown and clearly 
highlights the effects of interest in plots. Parameters associated with 
interactions and polynomials were simulated with weaker absolute ef-
fects, and specifics can be found in the description for each scenario 
below. 

2.1.4. Random effects parameters 
Finally, I generated random effects to allow for individual variability 

in initial level (i.e., intercept, u0i) and residual variability at level 1 (i.e., 
rti). For simplicity, I excluded random effects of slope (i.e., u0i) from the 
data generating model; however, MLMGMs, like multilevel, single- 
growth modes, can be easily expanded to include these effects. Unless 

otherwise specified, I generated random intercepts (N ∼ [0,0.5]). and 
residuals (N ∼ [0, 1]) from normal distributions. Note that the random 
effects are expressed as deviations from the fixed effects rather than 
absolute locations on the scale of the outcome. In later scenarios, I also 
simulated random slope effects and those effects are described there. 

2.2. Parameter recovery 

Observed variables from the data generation step were fit with a set 
of linear mixed effects models with the lme4 package in R (version 
1.1–21; Bates et al., 2015) and significance levels were obtained using 
the lmerTest package (version 3.1− 1) (Kuznetsova et al., 2017). I first fit 
a single growth process MLM (i.e., mis-specified model) as would 
conventionally be done for the scenario in question (e.g., including only 
age effects), and then fit an MLMG model with all relevant growth 
processes included. I extracted both point estimates for the relevant 
effects, as well as standard errors and significance decisions (i.e., 
adjusted and unadjusted p < or > 0.05). Significance adjustment was 
done within each model using a Bonferroni correction, and accounted 
for the number of predictors in a given model (i.e., 1–3 predictors 
depending on the scenario). Based on the point estimate and standard 
error for each parameter, I also calculated a standardized measure of 
bias: 

Biasstd =
1

SE
(

θ̂j

) ∗

⎛

⎜
⎜
⎜
⎝

∑N

j=1
θ̂ j

N
− θ

⎞

⎟
⎟
⎟
⎠

(3) 

Bias was calculated as the difference between the mean parameter 
estimate (θ̂ j) across replications (j) and the true generating parameter 
(θ), scaled by the standard error (Collins et al., 2001; Gottfredson et al., 
2014). Values represented the distance between the estimated and true 
parameter as the percentage of the standard deviation of the sampling 
distribution. For example, a value of .500 would represent a distance of 
half a standard deviation away from the true parameter. This metric has 
advantages over significance testing, since differences are very likely to 
be statistically significant given the large number of iterations, or simple 
differences that do not take into account the spread of parameter esti-
mates. Previous work has suggested that absolute values above .400 
begin to introduce challenges for model performance (Collins et al., 
2001). To take a conservative approach, I considered absolute bias 
values greater than .250 to reflect poor performance. However, no 
substantive conclusions were altered by the choice of a .250 versus .400 
threshold. 

3. Results 

3.1. Scenario set 1: age and practice retest effects 

Perhaps the most common candidate for a confounding growth 
process in developmental research is the effect of repeated across mul-
tiple occasions on task measures. At each observation, individuals in the 
sample are not only older (roughly indicating maturation), but they have 
been further exposed to the specific task or instrument being used to 
assess outcomes. Retest effects can take many forms (e.g., practice, 
habituation, sensitization) that can confound developmental effects 
(Salthouse, 2014). Here, I use the example of a difficult cognitive control 
task. Previous research has shown performance gains across adolescence 
(Luna et al., 2010; Somerville and Casey, 2010), but these total effects 
may confound potentially separable impacts of developmental matura-
tion and repeated exposure to the task. 

3.1.1. Practice effects only 
Using this framework, I first simulated longitudinal data with no 

effect of development, but a positive effect of practice (γprac = 0.3). In 
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other words, individuals improve their ability to inhibit automatic re-
sponses solely through practicing the task, and this practice effect is 
consistent across age. An exemplar replicant of cohort and accelerated 
longitudinal data are plotted below (Fig. 2A & B respectively). As ex-
pected, the correlation between age and practice was consistently near 
perfect (Mρ = .998, SE < .001) for the cohort design, leading to high 
levels of variance inflation (MVIF = 201.58, SE = 10.22) and standard 
errors ~14-times larger than expected. In contrast, these effects were 
attenuated for the accelerated data with moderate correlations (Mρ =

.379, SE = .015) and little inflation of standard errors (MVIF = 1.17, SE =

.016; standard error inflation = 1.08 times). 
I then fit a traditional, single-growth process model (using age as a 

predictor) to each dataset and extracted parameter estimates and 
compared them with their population value (Fig. 2C & D). For the cohort 
data, the practice effect completely aliased as an age effect in the model, 
whereas there was much less bias in the accelerated data (2.98 vs 11.46; 
see Table 1 for full parameter details) in the estimate of the age effect 
due to the attenuated correlation between the two growth predictors. 
When fitting the correctly-specified multi-growth model, the challenges 
of disentangling these effects in traditional longitudinal data became 
clear. While the effects are unbiased (i.e., the distribution center on their 
respective population values; all bias < .050) even in the presence of 
high multi-collinearity (Shieh and Fouladi, 1991), the estimates across 
samples were highly unstable for the cohort data and the distributions of 
effects for age and practice overlap considerably (Fig. 2E). This insta-
bility did not lead to inflated false positive rates for the effect of age (age 
effects were only significant for 4.8 % of replicants; 2 % when correcting 
for multiple predictors in the model), but there was a significant 
elevation of false negatives for the effects of practice, only being sig-
nificant for 12.6 % of replicants without correction (8.2 % with 
correction). This was due to both the increased instability in effect point 
estimates, as well as inflated standard errors for hypothesis testing. 

Neither of these issues were present in the accelerated longitudinal data, 
as there was virtually no bias in either effect estimates and false positive 
(3.8 % for effects of age without correction; 1.5 % with correction) and 
false negative (0% for effects of practice) rates were appropriately low. 
All models correctly captured the variance of the residual (rti) and 
person-level (τ00) random effects, with some downward bias (Shieh and 
Fouladi, 1991). When I simulated only an effect of age instead of prac-
tice, age-only models were unbiased, but results were otherwise com-
parable to those here (see Supplemental Material; Fig. S1). 

3.1.2. Additive effects of age and practice 
Combining the previous two simulations, I then simulated data to 

contain effects of both age and practice (γ’s = 0.3). This is a more 
plausible scenario than the two previous conditions as both maturity and 
exposure likely contribute to increases in task performance. However, 
based on results thus far, we would expect that effects in cohort models 
with only an age predictor would be inflated relative to the true effect 
due to the high correlation (Mρ = .998, SE < .001) and unstable due to 
the variance inflation (MVIF = 202.18, SE = 10.67) if both predictors 
were included. Indeed, in this additive-effects model, a single growth 
model with the effect of age substantially inflates the predicted effect 
(Biasstd = 11.32, SE = .026) in the cohort data, while inflating the effect 
much less in the accelerated design (Biasstd = .2.91, SE = .022; Fig. 3C & 
D). The MLMG models show unbiased effect estimates for both age and 
practice for both design types, but false negatives are controlled 
appropriately only in the accelerated data (Fig. 3; Table 2). In a real data 
application (McCormick et al., 2021), we observed that an unmodeled 
effect of repeated practice artificially inflated the effects of age on 
learning performance (compare estimates in Tables 1 and 3) exactly as 
these results would suggest. 

Fig. 2. Practice Effects Only: Example replicants for Cohort (A) and Accelerated (B) designs. Distribution of parameter estimates across replicants are presented for 
mis-specified models where age is the sole predictor (C & D), and properly-specified models where age and practice are included (E & F). Only a MLMG model with 
accelerated data showed unbiased and precise beta estimates. Generating parameters for each predictor are denoted by vertical dashed lines. 
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Table 1 
Estimated Effects for Growth Models from Scenario Set 1: Single Effects.   

Cohort Design Accelerated Design  

Mean Est. Std. Err. Min Max Std. Bias Prop. Sig.(adj.) Mean Est. Std. Err. Min Max Std. Bias Prop. Sig.(adj.) 

Practice Effects Only            
ρgrowth  .998 .000 .997 .998   .379 .015 .335 .426   
VIF 201.6 10.2 171.7 233.8   1.17 .015 1.13 1.22   
γage (mis)  .298 .026 .223 .385 11.46 1 .067 .023 .002 .162 2.98 .865 
σ (mis)  1.00 .029 .903 1.09 .011  1.03 .033 .920 1.15 .784  
̅̅̅̅̅̅̅τ00

√
(mis)  .496 .054 .303 .669 − .082  .497 .062 .245 .660 − .042  

γage  .003 .395 − 1.31 1.12 .008 .048 (.020) .000 .023 − .068 .089 .014 .038 (.015) 
γprac  .296 .396 − .777 1.60 − .009 .126 (.082) .298 .051 .147 .470 − .034 1 (1) 
σ  1.00 .029 .903 1.08 − .005  .999 .032 .888 1.12 − .021  
̅̅̅̅̅̅̅τ00

√ .496 .054 .302 .663 − .082  .498 .057 .290 .648 − .035  
Age Effects Only            

ρgrowth  .998 .000 .997 .998   .378 .014 .335 .417   
VIF 202.1 10.7 171.7 243.4   1.17 .015 1.13 1.21   
γage (mis)  .299 .025 .218 .373 − .024 1 .301 .021 .233 .361 .040 1 
σ (mis)  1.00 .029 .893 1.10 .021  1.00 .031 .924 1.09 .008  
̅̅̅̅̅̅̅τ00

√
(mis)  .498 .053 .314 .646 − .031  .497 .058 .257 .658 − .057  

γage  .298 .387 − .848 1.64 − .005 .114 (.071) .301 .025 .223 .379 .041 1 (1) 
γprac  .001 .388 − 1.41 1.15 .004 .045 (.023) − .001 .051 − .150 .166 − .016 .044 (.020) 
σ  1.00 .029 .893 1.10 .022  1.00 .031 .924 1.09 .008  
̅̅̅̅̅̅̅τ00

√ .498 .054 .314 .646 − .030  .497 .058 .257 .658 − .057  

Note: Mean Est. is the expected parameter value across replicants and the Std. Err is the standard deviation of the sampling distribution. The proportion significant 
(Prop. Sig) represents the number of inferential tests that return a significant result for each parameter (unadjusted first, adjusted in parentheses). Std. Bias is the 
standardized bias estimate; values > .25 are bolded and represent unacceptable bias. The proportion significant only includes significant results where the inference is 
correct (e.g., significant negative effects are not included of the population parameter is positive). Rhos (ρgrowth) represent the correlation between growth predictors, 
VIF represents variance inflation factor, gammas (γ) represent the fixed effects, sigma (σ) is the square-root of the residual random variance, and tau (τ00) is the person- 
level random variance (square-root shown for consistency). The (mis) denotes parameters from the mis-specified (i.e., age-only) model. 

Fig. 3. Additive Practice and Age Effects: Example replicants for Cohort (A) and Accelerated (B) designs. Distribution of parameter estimates across replicants are 
presented for mis-specified models where age is the sole predictor (C & D), and properly-specified models where age and practice are included (E & F). Only a MLMG 
model with accelerated data showed unbiased and precise beta estimates. Generating parameters for each predictor are denoted by vertical dashed lines. 
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3.1.3. Shifting quadratic effects of age 
For more-complex trends across time (e.g., quadratic) the impacts of 

correlated growth predictors can seep into additional model-based in-
ferences. Of particular concern is the increased instability in model- 
implied inflection points when correlated growth processes are 
included in the same model, making inferences about developmental 
transitions highly unreliable (for complete details, see Table 2; Fig. S3). 

3.2. Scenario set 2: interference retest effects 

Of course, the effects of repeated assessments can go beyond prac-
tice, which can generally be assumed to boost task performance. Other 
confounders may operate against the axis of the primary growth process 
of interest. In the next simulations, I considered cases when multiple 
growth processes interfere with one another, using examples common in 
developmental research. 

3.2.1. Habituation effects 
A prime example of this kind of interferences is the process of 

habituation in brain reactivity to a set of stimuli. This could take the 
form of a conflict (e.g., dorsal anterior cingulate) or threat (e.g., 
amygdala) response that decreases once stimuli are less unexpected 
(Breiter et al., 1996; Denny et al., 2014; Ellwanger et al., 2003). In 
contrast, we might expect general developmental increases in negative 
emotionality (e.g., depression) across some periods of development (e. 
g., adolescence; Cyranowski et al., 2000; Garber et al., 2002), which 
habituation effects could work to attenuate. To demonstrate this kind of 
masking by the confounder, I simulated data to have a positive effect of 
age (γage = 0.3) but a negative effect of exposure (γexp = − 0.3) indi-
cating habituation of a hypothetical brain response across repeated 

measures (Fig. 4A & B). As seen with the additive models, the age-only 
growth model in the cohort data showed substantial bias (Biasstd =

− 12.17, SE = .025), and results would infer that there is no change in 
reactivity across age. In the age-only model with the accelerated data, 
the correlation between age and exposure does attenuate the true effect 
of age somewhat, but much less (Biasstd = − 3.02, SE = .022) and all 
replicants showed a significant positive effect of age despite this atten-
uation (see Table 3 for full details). With the correctly-specified MLMGM 
model, the effect estimates showed the same instability as previously 
shown, while in the accelerated design, the two were well-separated. 
Additionally, the MLMGM with accelerated data provided appropriate 
false negative control. For the inverse condition (i.e., a negative effect of 
age and positive effect of practice), see Table 3 for similar performance 
of the single-predictor and MLMG models (see Supplemental Material 
and Fig. S4 for more-complete information). 

3.3. Scenario set 3: when cohort data is appropriate 

Thus far, I have highlighted the limitations of cohort for estimating 
multiple growth processes (e.g., age and practice) that are highly 
colinear, and how accelerated designs can be leveraged to address these 
limitations. At the risk of undermining this relatively straightforward 
point, I then considered scenarios where a cohort-type design would be 
capable of disentangling colinear growth processes of interest. However, 
these scenarios specifically build on the principles of an accelerated 
design (i.e., planned missingness), which enables proper estimation. 
Consider the previous scenarios. Here, experience (i.e., repeated as-
sessments) is consistent across individuals such that each person is 
measured at every level of the predictor (unplanned missingness aside). 
In contrast, age is distributed across individuals such that each person is 

Table 2 
Estimated Effects for Growth Models from Scenario Set 1: Additive Effects.   

Cohort Design Accelerated Design  

Mean Est. Std. Err. Min Max Std. Bias Prop. Sig.(adj.) Mean Est. Std. Err. Min Max Std. Bias Prop. Sig.(adj.) 

Additive Effects            
ρgrowth  .998 .000 .997 .998   .379 .015 .338 .434   
VIF 202.2 10.7 169.2 238.8   1.17 .016 1.13 1.23   
γage (mis)  .598 .026 .502 .686 11.32 1 .365 .022 .293 .450 2.91 1 
σ (mis)  1.00 .028 .921 1.09 − .016  1.03 .033 .922 1.14 ¡.811  
̅̅̅̅̅̅̅τ00

√
(mis)  .497 .051 .305 .660 − .049  .492 .052 .215 .657 − .124  

γage  .316 .364 − .968 1.42 .045 .123 (.071) .299 .024 .222 .383 − .049 1 (1) 
γprac  .283 .365 0.825 1.56 − .045 .091 (.053) .300 .051 .147 .478 .002 1 (1) 
σ  .999 .028 .921 1.09 − .026  1.00 .032 .904 1.09 − .003  
̅̅̅̅̅̅̅τ00

√ .497 .051 .307 .660 − .051  .493 .058 .244 .651 − .116  
Quadratic Effects of Age           

ρgrowth  .998 .000 .997 .998   .379 .015 .334 .427   
VIF 202.7 10.2 171.62 244.29   1.17 .016 1.13 1.22   
γage (mis)  .599 .026 .506 .684 11.67 1 (1) .367 .026 .277 .453 2.57 1 (1) 
γage2 (mis)  − .101 .022 − .160 − .030 − .047 .999 (.996) − .100 .007 − .125 − .080 − .051 1 (1) 
vertex (mis) 3.12 .790 1.73 9.67 2.06  1.83 .129 1.49 2.45 2.58  
σ (mis)  1.00 .029 .919 1.10 .039  1.03 .033 .912 1.13 .783  
̅̅̅̅̅̅̅τ00

√
(mis)  .499 .053 .325 .673 − .018  .497 .062 .270 .667 − .052  

γage  .312 .382 − .887 1.50 .031 .112 (.063) .300 .027 .217 .398 − .015 1 (1) 
γage2  − .101 .022 − .160 − .031 − .048 .999 (.992) − .100 .007 − .129 − .080 − .042 1 (1) 
γprac  .289 .382 − .909 1.49 − .029 .109 (.050) .299 .053 .112 .475 − .013 1 (.999) 
vertex 1.63 2.10 − 5.57 16.40 .060  1.50 .128 1.08 1.95 − .029  
σ  1.00 .029 .917 1.10 .026  .999 .031 .885 1.10 − .028  
̅̅̅̅̅̅̅τ00

√ .499 .053 .322 .674 .029  .498 .057 .296 .650 − .043  

Note: Mean Est. is the expected parameter value across replicants and the Std. Err is the standard deviation of the sampling distribution. The proportion significant 
(Prop. Sig) represents the number of inferential tests that return a significant result for each parameter (unadjusted first, adjusted in parentheses). Std. Bias is the 
standardized bias estimate; values > .25 are bolded and represent unacceptable bias. The proportion significant only includes significant results where the inference is 
correct (e.g., significant negative effects are not included of the population parameter is positive). Rhos (ρgrowth) represent the correlation between growth predictors, 
VIF represents variance inflation factor, gammas (γ) represent the fixed effects, “vertex” represents the implied inflection point in the trajectory, sigma (σ) is the square- 
root of the residual random variance, and tau (τ00) is the person-level random variance (square-root shown for consistency). The (mis) denotes parameters from the 
mis-specified (i.e., age-only) model. 

E.M. McCormick                                                                                                                                                                                                                                



Developmental Cognitive Neuroscience 51 (2021) 101001

7

Table 3 
Estimated Effects for Growth Models from Scenario Set 2: Interference Effects.   

Cohort Design Accelerated Design  

Mean Est. Std. Err. Min Max Std. Bias Prop. Sig.(adj.) Mean Est. Std. Err. Min Max Std. Bias Prop. Sig.(adj.) 

Habituation Effects            
ρgrowth  .998 .000 .997 .998   .379 .015 .333 .426   
VIF 201.6 10.6 169.7 234.9   1.17 .015 1.12 1.22   
γage (mis)  .001 .025 − .081 .084 ¡12.17 .021 .233 .022 .1169 .302 ¡3.02 1 
σ (mis)  1.00 .028 .905 1.08 .049  1.03 .033 .913 1.12 .795  
̅̅̅̅̅̅̅τ00

√
(mis)  .493 .053 .281 .660 − .124  .494 .062 .265 .665 − .101  

γage  .312 .291 − .809 1.56 .030 .109 (.065) .299 .025 .233 .369 − .040 1 (1) 
γprac  − .312 .391 − 1.54 .791 − .030 .112 (.061) − .299 .051 − .464 − .115 .024 1 (.999) 
σ  1.00 .028 .905 1.08 .031  1.00 .032 .887 1.09 − .009  
̅̅̅̅̅̅̅τ00

√ .493 .053 .279 .664 − .124  .495 .057 .285 .652 − .095  
SNR Effects            

ρgrowth  .998 .000 .997 .998   .379 .014 .338 .423   
VIF 202.4 10.3 169.4 237.6   1.17 .015 1.13 1.22   
γage (mis)  − .001 .205 − .080 .090 11.51 .023 − .233 .023 − .296 − .149 2.92 1 
σ (mis)  .999 .029 .886 .108 − .028  1.03 .035 .929 1.13 .734  
̅̅̅̅̅̅̅τ00

√
(mis)  .498 .055 .294 .709 − .031  .498 .061 .292 .657 − .039  

γage  − .300 .377 − 1.53 .913 .000 .107 (.064) − .300 .024 − .378 − .222 − .016 1 (1) 
γprac  .300 .377 − .917 .155 .001 .104 (.062) .301 .052 .150 .492 .022 1 (1) 
σ  .999 .029 .887 1.08 − .041  .998 .033 .907 1.09 − .047  
̅̅̅̅̅̅̅τ00

√ .498 .055 .294 .708 − .032  .498 .057 .317 .646 − .027  

Note: Mean Est. is the expected parameter value across replicants and the Std. Err is the standard deviation of the sampling distribution. The proportion significant 
(Prop. Sig) represents the number of inferential tests that return a significant result for each parameter (unadjusted first, adjusted in parentheses). Std. Bias is the 
standardized bias estimate; values > 0.25 are bolded and represent unacceptable bias. The proportion significant only includes significant results where the inference is 
correct (e.g., significant negative effects are not included of the population parameter is positive). Rhos (ρgrowth) represent the correlation between growth predictors, 
VIF represents variance inflation factor, gammas (γ) represent the fixed effects, sigma (σ) is the square-root of the residual random variance, and tau (τ00) is the person- 
level random variance (square-root shown for consistency). The (mis) denotes parameters from the mis-specified (i.e., age-only) model. 

Fig. 4. Interfering Age and Exposure Effects: Example replicants for Cohort (A) and Accelerated (B) designs. Distribution of parameter estimates across replicants are 
presented for mis-specified models where age is the sole predictor (C & D), and properly-specified models where age and exposure are included (E & F). Only a MLMG 
model with accelerated data showed unbiased and precise beta estimates. Generating parameters for each predictor are denoted by vertical dashed lines. 
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only measured on a subset of the levels of the predictor. While this re-
quires an assumption that some degree of exchangeability exists across 
individuals with no age overlap (i.e., age convergence; Sliwinski et al., 
2010), it allows for a decoupling of the two predictors in the sample. For 
a cohort design to achieve this decoupling, these features of sampling 
approach need to be reversed; that is, individuals are measured at all 
levels of the age predictor but not the experience predictor. In this way, 
these designs are accelerated, but with respect to the experience vari-
able, not age. 

3.3.1. Staggered school-based interventions 
Here I simulated an application of this idea, where individuals are 

measured in a cohort fashion based on age, but some intervention is 
applied differentially across subjects (Cook & Ware, 1983). For example, 
perhaps we are interested in piloting how an intervention might boost 
reading proficiency across early education. Due to resource limitations, 
it might not be possible to apply treatment to all students across the 
study period, and therefore, we might start the intervention randomly 
across measurement occasions. Here I simulated a positive linear effect 
of both age and the intervention on reading proficiency (γ’s = 0.3), but 
a decelerating interaction effect (γ’s = − 0.1), suggesting that inter-
vening later in school is less effective. Previously I simulated cohort data 
to follow a lab-based assessment design where individuals are measured 
in tight clusters around discrete ages. However, in a school-based 
setting, we would expect individuals to be uniformly distributed in 
terms of age within grade, and I adopted this design for these 

simulations. I simulated a 4- and 5-wave observation condition to probe 
the effects of study duration on the challenge of multicollinearity (more 
observations should induce higher correlations between the growth 
processes). While thus far I have only focused on a relatively simple 
random variance structure (only a level 1 residual and level 2 random 
intercept), MLMGMs can accommodate further random effects just as 
well as other MLMs. To highlight this fact, I also included a random 
effect of age (σage = .15). 

The MLMGM in this scenario recovered all parameters appropriately 
(i.e., unbiased and precise estimates), demonstrating the ability to have 
designs which are accelerated (i.e., planned missing) with respect to 
alternative growth processes (Fig. 5). There were minimal differences 
between the 4- and 5-wave simulations with respect to appropriate 
parameter estimation (see Table 4 for full details). The correlations 
between age and intervention stage were slightly inflated for the 5-wave 
simulations (Mρ = .554, SE = .025) compared with the 4-wave design 
(Mρ = .532, SE = .024), and the false negative rate was larger but still 
well-controlled (5 wave: age = 0%, intervention = .2%, interaction =
1.7 %; 4 wave: 0% for all predictors) due to greater variance inflation (5 
wave: MVIF = 1.45, SE = .059; 4 wave: MVIF = 1.40, SE = .050). The key 
novelty here is that the data are ostensibly structured as cohort data 
(which failed in previous examples), but because we have induced 
missingness in the other growth process (i.e., intervention), the MLMGM 
model is able to obtain unbiased and efficient estimates. 

Fig. 5. Treatment and Age Effects: Example replicants for 5-wave (A) and 4-wave (B) designs. Distributions of parameter estimates across replicants (C & D), and 
random effects of age (E & F) are presented for properly-specified models. Both models recovered parameters well. Generating parameters for each predictor are 
denoted by vertical dashed lines. 
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3.3.2. MLMGMs as a subset of TVC models 
These results highlight the link between MLMG models and a general 

class of longitudinal models with time-varying covariates (TVCs). 
Indeed, replacing intervention in the previous design with a different 
covariate (e.g., stress or anxiety) would be representative of a traditional 
single-growth process multi-level model (Curran and Bauer, 2011). For 
instance, if we were interested in how depressive symptoms change 
across age during adolescence and included stress as a TVC of interest, 
this would follow a similar form to the MLMGMs I have demonstrated 
previously. However, there are some key differences between these 
predictors. First, the non-age growth process predictors (e.g., practice, 
intervention) are monotonic and intrinsically related to age (i.e., accu-
mulating exposure does not decrease across age). While a general TVC 
can be correlated with age (i.e., stress also increases during adoles-
cence), stress is not constrained to monotonic growth (e.g., stress may 
increase between wave 1 and 2, but decrease between 2 and 3). Addi-
tionally, the stress predictor will be subject to measurement error, 
whereas the MLMGM predictors I have considered thus far are truly 
fixed and known (e.g., number of exposure events), although this may 
not always be the case. 

I simulated data to follow this form, where adolescent depressive 
symptoms are modeled as a function of age, stress, and their interaction. 
I also included a random effect of age, mimicking the intervention sce-
nario above. To create a better comparison with the MLMGM simula-
tions, I simulated stress to show age-related increases, but unlike the 
MLMGM, I included a random error term in the model for the stress 
predictor (σerror = .5; Fig. 6B). Results showed that this error introduced 
bias into the estimate of the age predictor (Biasstd = 1.89, SE = .068), but 
not the estimates for the stress or interaction predictors (compare Fig. 6C 
with Fig. 5C &D; see Table 4). Aside from this bias introduced by the 
measurement error in the TVC (see Curran and Bauer, 2011 for more on 
this issue), this model performs like an MLMGM, highlighting the firm 
grounding of the current approach in previous methods. 

3.4. Scenario set 4: disentangling puberty and age effects 

The inability to jointly model the effects of pubertal hormones and 
chronological age has been a stumbling block for developmental science 
in understanding a range of phenomenon of interest (e.g., risk-taking 
and reward-seeking behavior). Previous work (Blakemore et al., 2010; 
van Duijvenvoorde et al., 2019; Wierenga et al., 2018) has highlighted 
these challenges and called for implementing research designs which 
can address these limitations. One potential solution posed by Blake-
more and colleagues (2010) was to recruit individuals at the same age, 
but different pubertal development status, and then follow them longi-
tudinally. This idea fits perfectly into the framework of MLMGMs that I 
have presented thus far, if we think of this design as having planned 
missingness with respect to puberty instead of age. That is, individuals 
are measured across all levels of age, but not all levels of puberty. To 
demonstrate the ability of multi-level multi-growth models to capture 
these unique effects, I constructed a model to disentangle the impact of 
pubertal development and age on reward sensitivity across adolescence. 

I considered a number of factors when constructing the simulations 
of age and puberty effects to better reflect the real-world nature of pu-
bertal trends. I built ground-truth pubertal trajectories for each set of 
simulates from a sigmoid function (van Duijvenvoorde et al., 2019; 
Wierenga et al., 2018): 

p =
1

1 + e− k∗(x− z) (6)  

Here, p is the level of puberty development where 0 < p < 1 (lower 
bound = pre-puberty, upper bound = post-puberty), z is the mid-point of 
the trajectory (p = .5), k is the shape parameter which governs the 
steepness of the pubertal curve (steeper curves related to a shorter 
window of pubertal development), and x ranges from -4 to 4 around the 
mean age of the sample (Mage = 12 for all simulations). I drew individual 
values for the location parameter from a truncated normal distribution 
with mean 0 and bounds at -3 and 3 (NT[0, σ, − 3,+3 ]), and values for 
the shape parameter from a gamma distribution (Γ[10, 3]) to produce 
more relatively slow (> 2 years for complete transition) pubertal 

Table 4 
Estimated Effects for Growth Models from Scenario Set 3: Cohort Models.   

5-Wave Design 4-Wave Design  

Mean Est. Std. Err. Min Max Std. Bias Prop. Sig.(adj.) Mean Est. Std. Err. Min Max Std. Bias Prop. Sig.(adj.) 

Intervention Model            
ρgrowth  .554 .025 .474 .634   .532 .024 .450 .602   
VIF 1.45 .059 1.29 1.67   1.40 .050 1.25 1.57   
γage  .301 .028 .222 .389 .043 1 (1) .300 .031 .186 .406 .003 1 (1) 
γtx  .301 .055 .145 .495 .027 1 (1) .301 .052 .094 .469 .026 .999 (.998) 
γint  − .101 .015 − .152 − .048 − .053 1 (1) − .100 .022 − .156 − .026 − .001 .994 (.983) 
σ  .501 .017 .444 .556 .034  .499 .018 .446 .565 − .057  
̅̅̅̅̅̅̅τ00

√ .999 .060 .825 1.17 − .012  .997 .055 .831 1.19 − .046  
̅̅̅̅̅̅̅τ11

√ .149 .019 .080 .203 − .053  .148 .030 .001 .223 − .060  
TVC Model            

ρgrowth        .410 .030 .297 .502   
VIF       1.20 .036 1.10 1.34   
γage        .429 .068 .185 .742 1.89 1 (1) 
γstress        .300 .042 .168 .426 − .004 1 (1) 
γint        − .101 .035 − .236 .018 − .026 .829 (.700) 
σ        .500 .019 .444 .557 − .001  
̅̅̅̅̅̅̅τ00

√ .999 .055 .810 1.18 − .026  
̅̅̅̅̅̅̅τ11

√ .148 .029 .021 .221 − .054  

Note: Mean Est. is the expected parameter value across replicants and the Std. Err is the standard deviation of the sampling distribution. The proportion significant 
(Prop. Sig) represents the number of inferential tests that return a significant result for each parameter (unadjusted first, adjusted in parentheses). Std. Bias is the 
standardized bias estimate; values > 0.25 are bolded and represent unacceptable bias. The proportion significant only includes significant results where the inference is 
correct (e.g., significant negative effects are not included of the population parameter is positive). Rhos (ρgrowth) represent the correlation between growth predictors, 
VIF represents variance inflation factor, gammas (γ) represent the fixed effects, sigma (σ) is the square-root of the residual random variance, and tau (τ00) is the person- 
level random variance (square-root shown for consistency). The (mis) denotes parameters from the mis-specified (i.e., age-only) model. 
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trajectories. I simulated a correlated multivariate distribution for the 
location and shape parameters such that simulates who started puberty 
earlier were more likely to have protracted pubertal time-courses and 
those who initiated puberty relatively late had faster transitions through 
puberty (Marti-Henneberg and Vizmanos, 1997). Examples of underly-
ing pubertal trajectories for each condition are shown below 
(Fig. 7A.1–A.4) for descriptive purposes. 

I explored a number of variations in order to assess how MLMGMs 
might be used to disentangle the effects of puberty. In addition to the 
differences between cohort and accelerated (with respect to age) de-
signs, I also varied the degree of variability in the midpoints of pubertal 
trajectories and the rate of sampling. For conditions with high pubertal 
variability, I set σ = 1.5 when drawing location parameters, and σ = .5 
for low variability conditions. I defined high-sampling as an observation 
each 6 months, and low sampling as the traditional annual observation 
design. By centering both sampling designs around a mean of 12, this 
condition highlights the influence of the tails of puberty trajectories 
(where little change is occurring) on the ability to accurately estimate 
parameters of interest. Finally, while sampling from the underlying 
pubertal trajectories (e.g., hormonal assays) would be ideal from a 
measurement perspective, pubertal research in practice often relies on 
much coarser measurement categories (e.g., Tanner Stages; Marshall 
and Tanner, 1969, 1970). To reflect this reality, I defined cut-off values 
to transform the true pubertal measures into 5 stages. Values less than 
.05 reflected Tanner Stage 1 (pre-puberty), values .05 ≤ p < .35 reflected 
Tanner Stage 2 (early puberty), values .35 ≤ p < .65 reflected Tanner 

Stage 3 (middle puberty), values .65 ≤ p < .95 reflected Tanner Stage 4 
(late puberty), and values greater than .95 reflected Tanner Stage 5 
(post-puberty). I fit model with both the true and transformed Tanner 
scores to assess the impact of this transformation on parameter recovery. 
Based on prior work, this coarsening should introduce bias into the 
model based on attenuated correlations between the variables (Bollen 
and Barb, 1981; Taylor et al., 2006). For all models, I simulated reward 
sensitivity (e.g., ventral striatum response) to have no main effect of age 
(γage = 0), a strong effect of puberty (γpuberty = 2), and a negative 
interaction effect (γint = − 0.5) such that the impact of puberty on 
reward sensitivity is blunted at older ages. It is important to note that 
while the relationship between age and puberty is clearly non-linear 
(indeed I generated values from a truly non-linear model), the rela-
tionship between puberty and the outcome is linear, allowing for these 
effects to be modeled as usual in a linear model framework. 

Results confirmed that the MLMGM worked to disaggregate the ef-
fects of puberty and age with high fidelity when the design was cohort 
with respect to age and accelerated with respect to puberty. A high 
sampling rate (i.e., biannual observations), coupled with a high degree 
of variability in pubertal timing (Fig. 7B.1) showed the greatest ability to 
de-couple the age and puberty predictors, with between-predictor cor-
relations near those seen in the age-practice scenarios (Mρ = .345, SE =
.024). A slower sampling approach (i.e., annual observations) inflated 
these correlations (Fig. 7B.3; Mρ = .599, SE = .025), however, with 
sufficient power, these effects can still be estimated reliably (i.e., false 
negative rates were low at the simulated effect sizes). Low pubertal 

Fig. 6. Effects from a TVC Model: Example replicant for trajectories of depression (A) and stress (B) across early adolescence. Distributions of fixed effects (C) and 
random age effect (D) parameter estimates are plotted. Generating parameters for each predictor are denoted by vertical dashed lines. The random measurement 
error in the stress predictor caused inflation in the parameter estimate of the age predictor in the model (black histogram in C). 
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variability (Fig. 8B.2 & B.4) presented more significant challenges, 
although the high (Mρ = .750, SE = .019) versus low (Mρ = .898, SE =
.007) sampling strategy was still relatively more able to attenuate the 
inter-predictor correlation. As in previous simulations, the high corre-
lations do not introduce bias into the parameter estimates, but rather 
inflate standard errors leading to increases in false positives (for full 
details, see Tables 5–8). Across most conditions, an accelerated design 
(with respect to age) increased the correlations between age and puberty 
predictors relative to the respective cohort design, with the exception of 
the case where there is low pubertal variability and slow sampling. For 
conciseness, I displayed pubertal curves and parameter recovery for the 
cohort design results only (Fig. 7); however, full details for both model 
types are provided elsewhere (see Tables 5–8; Figs. S5–S8). 

The models with pubertal values sampled from the true underlying 
trajectories (Fig. 8A.1–A.4) showed unbiased parameter estimates for 
both the main effects and the interaction term (Fig. 7C.1–C.4). In 
contrast, coarsening the continuous trajectories into an ordinal Tanner 
Stage predictor introduced some bias into pubertal parameter estimates 
as expected (Fig. 7D.1–D.4), except in the high variability, high sam-
pling condition (Biasstd = − .087, SE = .023). Interestingly this bias was 
not uniformly in one direction across all conditions. However, the bias 
introduced to the estimate of the Tanner Stage effect was minor in 
comparison to the bias introduced into the age parameter estimates 
(Biasstd range = 4.45–8.20). The biases for the interaction estimates 
(Biasstd range = − .210 to .283) were marginally problematic as well. 
Overall, the same principles that lead to successful model performance 
in previous scenarios held here by considering data to be accelerated 
with respect to puberty. However, differences due to sampling time and 
measurement error highlight additional challenges that will need to be 

overcome in real-world applications of these models to disentangle ef-
fects of puberty and age. As a general comment, models fit to the 
accelerated data showed inferior performance in the Tanner Stage 
models, showing higher inter-growth process correlations without 
improving estimate biases. 

4. Discussion 

A key challenge for the study of change over time is disentangling 
effects of correlated predictors across time. While this challenge is not 
unique to longitudinal designs, they are uniquely problematic since 
predictors like age, experience, and puberty monotonically increase 
across time. Even if the true effects of these predictors are nonlinear (e. 
g., quadratic), standard modeling approaches necessitate that linear 
terms also be included. When these linear terms are too highly colinear, 
they can introduce significant problems for proper estimation of model 
parameters and impact the substantive conclusions about inflection 
points and sensitive periods in developmental trajectories. However, 
simply excluding one of the correlated predictors threatens the internal 
validity of the model and introduces significant bias into the retained 
parameters except under very restrictive assumptions (i.e., the true ef-
fect of the excluded predictor is zero). Fortunately, leveraging a natural 
extension of linear mixed-effects growth models in combination with 
appropriate sampling designs offers a solution to these challenges. Here I 
outlined a multi-level, multi-growth model (MLMGM) form and high-
lighted how it can be flexibly used across a number of scenarios to 
address questions from substantive developmental theory. 

Fig. 7. Effects from the Puberty Models: Example replicant for underlying (A) and observed (B) trajectories of pubertal development. Distributions of fixed effects are 
plotted for models where the puberty predictor is sampled from the continuous puberty curves (C) and models where puberty is assessed by the transformed Tanner 
Stage values (D). This tranformation introduced substantial bias into the age predictor estimates, whereas no bias was introduced when using the underlying values. 
Only data from the cohort model are shown. 
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4.1. Quantifying the effects of repeated exposure 

The strength of repeated-measures designs (i.e., the ability to assess 
within-person change), can simultaneously be a threat to internal val-

idity. That is, individuals may change in their response to an instrument 
(e.g., survey, fMRI task) due to being assessed multiple times indepen-
dent of changes that are due to developmental effects (Bell, 1953; Pal-
more, 1978; Telzer et al., 2018). Whether because of familiarity or 

Table 5 
Estimated Effects for Puberty Models: High Variability, Fast Sampling.   

Cohort Design Accelerated Design  

Mean Est. Std. Err. Min Max Std. Bias Prop. Sig.(adj.) Mean Est. Std. Err. Min Max Std. Bias Prop. Sig.(adj.) 

Puberty Model            
ρgrowth  .345 .024 .272 .423   .548 .037 .419 .653   
VIF 1.14 .022 1.08 1.22   1.44 .084 1.21 1.74   
γage (mis)  .500 .045 .364 .644 11.13 1 (1) .432 .035 .308 .548 12.41 1 (1) 
γage2 (mis)  − .116 .075 − .382 .152 5.14 .287 (.196) − .088 .022 − .155 − .024 18.74 .980 (.970) 
σ (mis)  .592 .017 .543 .660 5.30  .564 .018 .507 .619 3.48  
̅̅̅̅̅̅̅τ00

√
(mis)  .869 .042 .727 1.00 8.80  .836 .043 .684 .980 7.87  

γage  − .001 .039 − .127 .121 − .021 .051 (.013) − .001 .035 − .121 .108 − .039 .060 (.024) 
γpuberty  2.00 .085 1.71 2.30 .017 1 (1) 2.00 .098 1.71 2.31 − .003 1 (1) 
γint  − .500 .091 − .814 − .235 − .005 1 (1) − .498 .067 − .710 − .249 .036 1 (1) 
σ  .500 .015 .458 .545 − .026  .500 .016 .451 .551 .012  
̅̅̅̅̅̅̅τ00

√ .497 .033 .396 .602 − .087  .497 .031 .387 .601 − .084  
Tanner-Stage Model            

ρgrowth  .350 .023 .284 .427   .556 .036 .438 .665   
γage  .402 .082 .148 .736 4.90 .999 (.996) .387 .064 .177 .573 6.04 1 (1) 
γtanner  .503 .023 .418 .577 .117 1 (1) .498 .026 .420 .572 − .087 1 (1) 
γint  − .130 .024 − .215 − .054 − .225 1 (.999) − .125 .018 − .181 − .054 − .023 1 (1) 
σ  .500 .015 .458 .545 − .026  .500 .016 .451 .551 .012  
̅̅̅̅̅̅̅τ00

√ .497 .033 .396 .602 − .087  .497 .031 .387 .601 − .084  

Note: Mean Est. is the expected parameter value across replicants and the Std. Err is the standard deviation of the sampling distribution. The proportion significant 
(Prop. Sig) represents the number of inferential tests that return a significant result for each parameter (unadjusted first, adjusted in parentheses). Std. Bias is the 
standardized bias estimate; values > .25 are bolded and represent unacceptable bias. The proportion significant only includes significant results where the inference is 
correct (e.g., significant negative effects are not included of the population parameter is positive). Rhos (ρgrowth) represent the correlation between growth predictors, 
VIF represents variance inflation factor, gammas (γ) represent the fixed effects, sigma (σ) is the square-root of the residual random variance, and tau (τ00) is the person- 
level random variance (square-root shown for consistency). The (mis) denotes parameters from the mis-specified (i.e., age-only) model. 

Table 6 
Estimated Effects for Puberty Models: Low Variability, Fast Sampling.   

Cohort Design Accelerated Design  

Mean Est. Std. Err. Min Max Std. Bias Prop. Sig.(adj.) Mean Est. Std. Err. Min Max Std. Bias Prop. Sig.(adj.) 

Puberty Model            
ρgrowth  .750 .019 .691 .808   .832 .013 .787 .871   
VIF 2.29 .150 1.92 2.87   3.26 .224 2.63 4.13   
γage (mis)  .915 .040 .794 1.05 23.02 1 (1) .606 .034 .483 .721 17.59 1 (1) 
γage2 (mis)  − .178 .079 − .426 .090 4.09 .655 (.548) − .096 .024 − .185 − .021 16.84 .988 (.978) 
σ (mis)  .556 .017 .502 .608 3.33  .564 .018 .506 .628 3.50  
̅̅̅̅̅̅̅τ00

√
(mis)  .633 .038 .507 .754 3.52  .611 .036 .497 .749 3.10  

γage  .000 .068 − .227 .226 .003 .048 (.015) .002 .049 − .139 .175 .049 .063 (.027) 
γpuberty  2.00 .130 1.52 2.45 .026 1 (1) 2.00 .130 .149 2.34 − .022 1 (1) 
γint  − .501 .121 − .924 − .160 − .010 .992 (.954) − .499 .074 − .794 − .269 .016 1 (1) 
σ  .500 .015 .451 .548 .028  .500 .016 .445 .550 − .012  
̅̅̅̅̅̅̅τ00

√ .498 .033 .392 .595 − .058  .500 .031 .405 .596 − .014  
Tanner-Stage Model            

ρgrowth  .728 .018 .664 .788   .838 .013 .794 .882   
γage  .554 .124 .196 .981 4.45 .998 (.987) .434 .078 .168 .733 5.56 1 (.999) 
γtanner  .444 .037 .323 .563 ¡1.52 1 (1) .468 .037 .348 .566 ¡.878 1 (1) 
γint  − .115 .034 − .219 − .007 .283 .928 (.833) − .121 .019 − .189 − .065 .231 1 (1) 
σ  .500 .015 .451 .548 .028  .500 .016 .445 .550 − .012  
̅̅̅̅̅̅̅τ00

√ .498 .033 .392 .595 − .058  .500 .031 .405 .596 − .014  

Note: Mean Est. is the expected parameter value across replicants and the Std. Err is the standard deviation of the sampling distribution. The proportion significant 
(Prop. Sig) represents the number of inferential tests that return a significant result for each parameter (unadjusted first, adjusted in parentheses). Std. Bias is the 
standardized bias estimate; values > .25 are bolded and represent unacceptable bias. The proportion significant only includes significant results where the inference is 
correct (e.g., significant negative effects are not included of the population parameter is positive). Rhos (ρgrowth) represent the correlation between growth predictors, 
VIF represents variance inflation factor, gammas (γ) represent the fixed effects, sigma (σ) is the square-root of the residual random variance, and tau (τ00) is the person- 
level random variance (square-root shown for consistency). The (mis) denotes parameters from the mis-specified (i.e., age-only) model. 
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practice with a task, changing sensitivity of certain questionnaire items 
(e.g., drug use), or increased comfort with the testing environment, the 
effect of repeated exposure can introduce bias into estimates of devel-
opmental trajectories (Salthouse, 2014). I began by outlining a number 

of scenarios where this bias is highlighted. Except in scenarios where the 
true of effect of repeated exposure was zero, the presence of these effects 
posed challenges at multiple stages of model estimation and interpre-
tation. However, merely including relevant predictors does not 

Table 7 
Estimated Effects for Puberty Models: High Variability, Slow Sampling.   

Cohort Design Accelerated Design  

Mean Est. Std. Err. Min Max Std. Bias Prop. Sig.(adj.) Mean Est. Std. Err. Min Max Std. Bias Prop. Sig.(adj.) 

Puberty Model            
ρgrowth  .599 .025 .521 .679   .615 .025 .502 .701   
VIF 1.57 .073 1.38 1.86   1.61 .079 1.34 1.97   
γage (mis)  .456 .025 .382 .537 18.50 1 (1) .415 .026 .329 .486 16.01 1 (1) 
γage2 (mis)  − .106 .024 − .176 − .037 16.72 .995 (.987) − .084 .014 − .129 − .041 29.96 1 (1) 
σ (mis)  .666 .020 .606 .730 8.12  .658 .020 .590 .702 7.56  
̅̅̅̅̅̅̅τ00

√
(mis)  .736 .042 .609 .873 5.64  .744 .041 .604 .889 5.98  

γage  .000 .025 − .083 .072 − .009 .056 (.018) .000 .026 − .084 .084 .001 .065 (.023) 
γpuberty  2.00 .084 1.71 2.26 .027 1 (1) 2.00 .085 1.73 2.28 − .031 1 (1) 
γint  − .498 .048 − .660 − .337 .042 1 (1) − .501 .045 − .640 − .346 − .028 1 (1) 
σ  .499 .015 .456 .557 − .039  .499 .016 .447 .546 − .076  
̅̅̅̅̅̅̅τ00

√ .497 .032 .387 .589 − .082  .501 .031 .402 .613 .046  
Tanner-Stage Model            

ρgrowth  .606 .024 .534 .677   .623 .025 .510 .707   
γage  .381 .046 .207 .546 8.20 1 (1) .382 .044 .233 .521 8.76 1 (1) 
γtanner  .516 .023 .439 .600 .689 1 (1) .512 .023 .447 .586 .505 1 (1) 
γint  − .128 .013 − .169 − .080 − .205 1 (1) − .127 .012 − .167 − .092 − .211 1 (1) 
σ  .499 .015 .456 .557 − .039  .499 .016 .447 .546 − .076  
̅̅̅̅̅̅̅τ00

√ .497 .032 .387 .589 − .082  .501 .031 .402 .613 .046  

Note: Mean Est. is the expected parameter value across replicants and the Std. Err is the standard deviation of the sampling distribution. The proportion significant 
(Prop. Sig) represents the number of inferential tests that return a significant result for each parameter (unadjusted first, adjusted in parentheses). Std. Bias is the 
standardized bias estimate; values > .25 are bolded and represent unacceptable bias. The proportion significant only includes significant results where the inference is 
correct (e.g., significant negative effects are not included of the population parameter is positive). Rhos (ρgrowth) represent the correlation between growth predictors, 
VIF represents variance inflation factor, gammas (γ) represent the fixed effects, sigma (σ) is the square-root of the residual random variance, and tau (τ00) is the person- 
level random variance (square-root shown for consistency). The (mis) denotes parameters from the mis-specified (i.e., age-only) model. 

Table 8 
Estimated Effects for Puberty Models: Low Variability, Slow Sampling.   

Cohort Design Accelerated Design  

Mean Est. Std. Err. Min Max Std. Bias Prop. Sig.(adj.) Mean Est. Std. Err. Min Max Std. Bias Prop. Sig.(adj.) 

Puberty Model            
ρgrowth  .898 .007 .875 .917   .853 .007 .829 .876   
VIF 5.21 .334 4.28 6.30   3.67 .160 3.19 4.29   
γage (mis)  .656 .018 .598 .710 37.49 1 (1) .552 .025 .453 .625 21.72 1 (1) 
γage2 (mis)  − .132 .022 − .201 − .048 16.52 1 (1) − .087 .017 − .146 − .041 24.59 1 (1) 
σ (mis)  .586 .018 .526 .638 4.89  .633 .019 .570 .704 7.09  
̅̅̅̅̅̅̅τ00

√
(mis)  .535 .037 .414 .649 .943  .533 .037 .430 .656 .900  

γage  .000 .045 − .122 .176 − .004 .046 (.018) − .001 .036 − .101 .123 − .023 .053 (.018) 
γpuberty  2.00 .129 1.56 2.36 .002 1 (1) 2.00 .107 1.62 2.33 .024 1 (1) 
γint  − .499 .060 − .680 − .284 .014 1 (1) − .500 .050 − .663 − .342 .005 1 (1) 
σ  .499 .015 .457 .555 − .039  .500 .016 .442 .549 − .005  
̅̅̅̅̅̅̅τ00

√ .497 .033 .398 .606 − .089  .498 .032 .399 .609 − .060  
Tanner-Stage Model            

ρgrowth  .897 .008 .870 .920   .861 .008 .836 .884   
γage  .441 .064 .239 .622 6.91 1 (1) .383 .053 .228 .554 7.28 1 (1) 
γtanner  .467 .037 .353 .591 ¡.904 1 (1) .510 .030 .406 .591 .323 1 (1) 
γint  − .122 .015 − .171 − .064 .218 1 (1) − .123 .013 − .166 − .075 .172 1 (1) 
σ  .499 .015 .457 .555 − .039  .500 .016 .442 .549 − .005  
̅̅̅̅̅̅̅τ00

√ .497 .033 .398 .606 − .089  .498 .032 .399 .609 − .060  

Note: Mean Est. is the expected parameter value across replicants and the Std. Err is the standard deviation of the sampling distribution. The proportion significant 
(Prop. Sig) represents the number of inferential tests that return a significant result for each parameter (unadjusted first, adjusted in parentheses). Std. Bias is the 
standardized bias estimate; values > .25 are bolded and represent unacceptable bias. The proportion significant only includes significant results where the inference is 
correct (e.g., significant negative effects are not included of the population parameter is positive). Rhos (ρgrowth) represent the correlation between growth predictors, 
VIF represents variance inflation factor, gammas (γ) represent the fixed effects, sigma (σ) is the square-root of the residual random variance, and tau (τ00) is the person- 
level random variance (square-root shown for consistency). The (mis) denotes parameters from the mis-specified (i.e., age-only) model. 
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necessary ameliorate all of these challenges. Traditional 
cohort-longitudinal designs, where all individuals are assessed at every 
age levels (Fig. 1B), limit the utility of including predictors of repeated 
exposure because the high correlation between age and assessment (Mρ 
≈ .998) prevents obtaining unique effects with any precision, or 
detecting significant effects when they do exist (i.e., standard errors are 
highly inflated). I showed that only MLMGMs combined with 
accelerated-longitudinal designs could reliably recover the underlying 
model generating parameters under commonly-encountered retest 
conditions. I highlight how this approach can address several specific 
confounds in assessing developmental effects. 

4.1.1. Bias from omitted predictors 
Across all of the presented scenarios, I first fit models that follow 

conventional practices (Curran et al., 2010; Duncan et al., 1996; Herting 
et al., 2018; Sliwinski et al., 2010; Soden et al., 2015; Telzer et al., 
2018), where only the effects of age are assessed as a growth process in 
the model (i.e., single-growth models). These models highlighted the 
various challenges that can arise from omitting relevant predictors. In 
cohort data, the effect of repeated measures (e.g., practice, habituation) 
was almost completely absorbed into the parameter estimates for age 
due to the high correlations between predictors (Frees, 2001; Kim and 
Frees, 2006). Depending on the nature of the two effects, this led to 
serious over- or under-estimation of the true age effect. However, the 
bias in the accelerated design is substantially lower than in the cohort 
data (standardized values of ~ 3 versus ~ 11.5) due to the attenuation of 
the correlations between predictors (Mρ ≈ .380). 

However, the key advantage of this attenuation is that it allows for 
even greater validity in modeling developmental trajectories, since both 
age and the repeated measure predictor can be included in the same 
model. When including these multiple growth predictors, the model 
appropriately estimates the independent effects of age and repeated 
exposure from accelerated data. While effects are unbiased in the 
aggregate with multiple predictors in the cohort data, the parameters 
from any one replicant (i.e., study) may be quite biased due to instability 
in the estimates, and the likelihood for false-negatives is high (> 85 %) 
due to inflated standard errors (> 14 times as large as if predictors were 
uncorrelated). As demonstrated by the simulation results, failure to ac-
count for these omitted effects could lead to biased estimates and 
contribute to a lack of reproducibility and generalization of effects 
across studies if the effects of repeated exposure vary between measures, 
populations, or other assessment parameters. 

4.1.2. Bias in models with higher-order effects 
The issue of high correlations between predictors impacts linearly 

related independent variables, however, there are any number of situ-
ations where the relationship between growth predictors and outcomes 
of interest might be expected to be non-linear, or some combination of 
linear and non-linear effects. Because of the centering method for 
creating product terms (i.e., interactions or polynomials; Aiken et al., 
1991), the predictors for these higher order effects will be uncorrelated 
with the linear terms in the model. The simulations with a quadratic 
effect of age demonstrate this (see Supplemental Material for complete 
details), as this term is estimated without bias and with high precision in 
both cohort and accelerated models (Fig. S4). Unfortunately, including 
correlated linear predictors are still necessary to properly model any 
higher-order effects, nor does it solve issues for model-implied features 
of the developmental trajectories. These implied features can include the 
rate of the linear trend, or where the quadratic or interaction inflection 
(i.e., vertex) occurs within the overall developmental trajectory. 
Because of the instability in the linear term, the properly specified 
quadratic effect can still lead to implied inflections that vary widely. For 
instance, the implied vertex in the mis-specified (i.e., age-only) model 
using a cohort design ranged across 5 years (15–20), and in the 
properly-specified model, across more than a full decade. Because real 
studies do not have the benefit of obtaining a sampling distribution, 

results from any one study could lead to radically different substantive 
conclusions based on parameter instability. This complication could 
further decrease replicability of effects across samples, even though the 
point estimates of product term effects could be nearly identical. 

4.2. Generalizing the idea of accelerated designs 

While distinguishing between experience- (e.g., practice, habitua-
tion, etc.) and age-related changes in outcomes of interest is a persistent 
issue, the utility of the MLMGM generalizes to many modeling contexts. 
Experience effects are often treated as a nuisance variable ((Ferrer et al., 
2004; Rabbitt et al., 2001) but see (McCormick et al., 2021)) that con-
taminates the developmental effect. As such, MLMGMs can be used to 
partial out variance associated with repeated assessment. In other con-
texts, both growth processes may be of interest and the focus can be on 
characterizing trajectories across both levels of time. In many of these 
scenarios, accelerated designs (as typically conceived) may be impos-
sible or undesirable. Nevertheless, the MLMGM framework can be 
leveraged. The key insight to understand how MLMGMs separate 
different growth effects; by measuring all individuals across the full 
range of one growth predictor, but on only a subset of the levels of the 
other predictor. In the age/experience simulations, every individual is 
measured at three occasions (i.e., across all levels of the experience 
predictor) but on only a subset of ages. This fits perfectly within a 
generalized framework of planned missingness in study design (Little 
and Rhemtulla, 2013; Rhemtulla and Little, 2012). Under this broad 
framework, researchers have flexibility in defining planned missing 
designs for many sets of correlated growth processes. To highlight this 
flexibility, I presented one such example, where individuals are 
measured at all levels of age (within the scope of the study), which re-
sults in a cohort data frame, but where the levels of the intervention vary 
across individuals at any given timepoint. As such, researchers can uti-
lize both accelerated and cohort longitudinal designs in implementing 
this modeling framework, depending on the theoretical question at 
hand. 

I also showed how the MLMGM is a special case of a general growth 
model with a time-varying covariate (TVC) with a model distinguishing 
effects of age and stress on depression (Curran and Bauer, 2011). 
However, the multi-growth model introduces challenges that may not 
impact more general TVC models. TVCs, like stress, can fluctuate 
non-monotonically across measurement occasions, even when there is a 
general trend across age (e.g., stress generally increases across the 
transition to adolescence). In contrast, the predictors in 
growth-processes (including age, experience, and puberty) cannot 
decrease from one measurement occasion to the other, which drives the 
need to leverage accelerated designs to attenuate otherwise near-perfect 
multi-collinearity. The advantage of these multiple-growth predictors, 
relative to other TVCs, is that there can potentially be very low – or 
non-existent – measurement error (although this may not always be the 
case) since the number of assessments or interventions for each indi-
vidual is truly fixed and known. This set of scenarios, where planned 
missingness occurs in a growth predictor other than age is a rich target 
for novel and innovative future work and where existing cohort datasets 
can be used to empirically test the types of effects I have presented here. 

4.3. Using multi-level, multi-growth models to address developmental 
theory 

Finally, I applied the principles derived from the first three sets of 
scenarios to demonstrate an approach for disentangling the effects of 
pubertal and age-related development. This challenge is a long-standing 
one in the developmental literature (Blakemore et al., 2010; van Duij-
venvoorde et al., 2019), and interestingly, results suggest that data 
needed to address this gap likely already exist. In particular, I showed 
that cohort designs could be leveraged to estimate both age and puberty 
effects with reasonably low correlations, especially when sampling 
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occurs more often than typical annual visits (Mρ = .345). However, even 
though annual observations increased this correlation (Mρ = .599), a 
sufficiently powered design can overcome these challenges (the current 
simulations had 188 individuals measured four times) with standard 
errors being only ~1.25 times larger than expected. In the universe of 
longitudinal studies, similar data likely exists and will with increasing 
frequency in the coming years (e.g., the ABCD study) for a range of 
theoretical questions. The limiting factor may be the variability of pu-
bertal trajectories within the observation period, which is difficult to 
account for at the onset of data collection. In simulations with low pu-
bertal variability, the correlations between age and puberty were highly 
inflated, especially with slower (i.e., annual) observations (Mρ = .898). 
One strategy for addressing this limitation could be to sub-sample in-
dividuals from a larger study to maximize the amount of pubertal 
variability, although this would have to be done carefully to ensure that 
the properties of the sub-sample match the larger study characteristics, 
and avoid selecting on the outcome (Elwert and Winship, 2014). Of 
course, this could be further complicated by the likely need to separate 
out effects by groups (e.g., gender), but in principle the same approach 
could be done for each group if ad hoc sampling techniques did not (by 
chance or design) result in high levels of pubertal variability. Alterna-
tively, high-density sampling attenuated the correlation between pre-
dictors even with low pubertal variability, offering researchers multiple 
avenues for building these models. 

While the MLMGM framework was able to appropriately capture 
pubertal and age-related effects when using measurements of the un-
derlying trajectory, coarse categorization of those values to an ordinal 
scale (representing Tanner Stages) introduced bias into both the esti-
mated effect of Tanner Stage and uniformly inflated the estimate of age 
based on attenuating correlations among predictors (Bollen and Barb, 
1981; Taylor et al., 2006). Importantly, this bias was not due to mean-
ingful differences in the correlations between the growth predictors (see 
Tables 5–8). This suggests that age effects in models using Tanner Stage 
as a predictor may need to be interpreted with caution, as they may be 
biased upwards. The bias in the Tanner Stage estimate itself was smaller 
and directionally inconsistent across simulation conditions (Fig. 7D), 
but also suggests that unlike the effect of stress in the TVC scenario, the 
coarse categorization also impacts the estimate of the pubertal effect. 
These results suggest that continuous measures of puberty (e.g., hor-
mone concentrations) are likely to be more reliable in their effect esti-
mates, despite the near perfect correlation between the underlying 
puberty measure and the Tanner Stage (Mρ = .965–.985). While 
continuous measures of puberty are often more expensive and can be 
challenging to collect, these results suggest that they are likely necessary 
for maintaining internal validity. 

Finally, while not the main focus of the pubertal analyses, I did assess 
how the use of an accelerated design (with respect to age) impacted 
results (see Tables 5–8 for details; Figs. S5–S8). In general, these models 
performed similarly to those fit to cohort data and were able to deliver 
unbiased estimates for the models using underlying pubertal trajec-
tories, despite an inflated correlation between the puberty and age 
predictors, as well as increasing standard errors for all estimates. 
However, it is important to note that while the accelerated design 
simulated reflects common practice, it could be modified to minimize 
this correlation. For example, instead of planning the missingness 
around puberty, researchers could use an accelerated (i.e., missing age) 
design and measure individuals across the complete range of puberty 
instead, or sub-sample from a large accelerated study to approximate 
this design. This is obviously a more challenging design to realize than 
one where researchers can simply track age, given the variability in 
timing and rate of pubertal development and potentially complicated 
relationships between underlying maturation and easily-identifiable 
physical markers. Nevertheless, some theoretical questions may 
require individuals sampled across the full range of puberty, making a 
focused study of this nature extremely valuable. 

4.4. Future work 

While the current study suggests that MLMGMs offer a promising 
framework for simultaneously modeling growth processes that co-occur 
across time, there remain two avenues for future work to explore. As I 
have hopefully demonstrated with a small subset of potential scenarios, 
these models can be applied to understand a wide array of substantive 
theoretical questions. In addition to being useful for testing novel 
questions, MLMGMs could be used to re-visit previous data where 
simultaneous growth processes were not considered (i.e., age-only 
models; see (McCormick et al., 2021) for an example). Additionally, 
the findings here highlight the clear importance of sampling design for 
fitting models appropriately in longitudinal data. While this is hardly a 
new revelation (Bell, 1953; Kraemer et al., 2000; Louis et al., 1986; 
Palmore, 1978; Van’t Hof et al., 1977), it bears repeating due to the 
crucial role design plays in reducing correlations between growth pre-
dictors and keeping standard errors appropriately narrow. With these 
considerations in mind, I hope that the current work can help guide 
analysis of current data, as well as motivate new data collection with 
planned missing designs to disentangle multiple growth processes that 
occur across time. 

From a methodological perspective, there are additional steps that 
could broaden our knowledge about how MLMGMs perform across a 
variety of conditions that are less ideal, but nevertheless common. For 
instance, while I attempted to choose sample sizes that would reason-
ably reflect reality and avoid potential issues of power, the sample sizes 
encountered in practice likely vary widely (e.g., > 1000 might be 
reasonable for a school-based survey study, but < 100 might be more 
typical of neuroimaging studies). In particular, future work should seek 
to characterize the boundary conditions where correlations between 
growth predictors are too inflated for a given sample size to yield 
satisfactory inferential performance. While this work can build off 
principles with work done with correlated predictors in general (Shieh 
and Fouladi, 1991), the unique characteristics of growth predictors (e.g., 
monotonic across time) may require innovative designs and tailored 
solutions to decouple them. Additionally, while the accelerated design 
takes advantage of planned missingness, longitudinal studies are often 
subject to more pernicious missing data mechanisms, including attrition 
and other non-random processes (Enders, 2011; Schafer and Graham, 
2002). Finally, growth factors in the scenarios that I explored all varied 
at each measurement occasion at level 1. For instance, age or puberty 
was necessarily different at each observation (although the degree to 
which they changed might differ). However, it seems possible that 
growth factors might change differentially across time and potentially 
enter as predictors at different levels of the model. An example could 
arise if researchers were interested in modeling changes within-session 
in addition to between-session growth, where age would be consistent 
across all levels of the within-session observations. One potential issue is 
that nesting under a predictor like age or wave might cause estimation or 
inferential problems that are not entirely clear. Additional work will be 
needed to clarify this point. 

4.5. Conclusions 

I proposed a natural extension of the multi-level growth model to 
accommodate estimating multiple growth process simultaneously: the 
multi-level, multi-growth model (MLMGM). To deal with the correla-
tions between growth predictors (e.g., age and repeated exposure), I 
demonstrated how accelerated-longitudinal designs could attenuate 
these predictor relationships through planned missingness. I further 
generalized the idea of accelerated designs to show that you could plan 
missingness in growth predictors other than age (e.g., treatment) and 
how these models behaved similarly to general growth models with 
time-varying covariates. Finally, I demonstrated how MLMGMs could be 
used to address the thorny substantive question of simultaneously esti-
mating the disparate impacts of puberty and age on behavior and 
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cognition. Taken together, this work motivates innovation in develop-
mental designs and modeling of trajectories across time across a broad 
domain of empirical research. 
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