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E�ect of inotropic agents on
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Introduction: Tissue hypoxia and insu�cient energy delivery is one of the

mechanisms behind the occurrence of several complications in acute brain

injured patients. Several interventions can improve cerebral oxygenation;

however, the e�ects of inotropic agents remain poorly characterized.

Methods: Retrospective analysis including patients su�ering from acute brain

injury and monitored with brain oxygen pressure (PbtO2) catheter, in whom

inotropic agents were administered according to the decision of the treating

physician’s decision; PbtO2 values were collected before, 1 and 2h after

the initiation of therapy from the patient data monitoring system. PbtO2

“responders” were patients with a relative increase in PbtO2 from baseline

values of at least 20%.

Results: A total of 35 patients were included in this study. Most of them

(31/35, 89%) su�ered from non-traumatic subarachnoid hemorrhage (SAH).

Comparedwith baseline values [20 (14–24)mmHg], PbtO2 did not significantly

increase over time [19 (15–25) mmHg at 1 h and 19 (17–25) mmHg at

2 h, respectively; p = 0.052]. A total of 12/35 (34%) patients were PbtO2

“responders,” in particular if low PbtO2 was observed at baseline. A PbtO2

of 17 mmHg at baseline had a sensibility of 84% and a specificity of 91% to

predict a PbtO2 responder. A significant direct correlation between changes

in PbtO2 and cardiac output [r = 0.496 (95% CI 0.122 to 0.746), p = 0.01; n

= 25] and a significant negative correlation between changes in PbtO2 and

cerebral perfusion pressure [r = −0.389 (95% CI −0.681 to −0.010), p = 0.05]

were observed.

Conclusions: In this study, inotropic administration significantly increased

brain oxygenation in one third of brain injured patients, especially when tissue

hypoxia was present at baseline. Future studies should highlight the role of

inotropic agents in the management of tissue hypoxia in this setting.

KEYWORDS

hemodynamics, acute brain injury, cerebral blood flow, brain oxygenation, inotropic
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Introduction

Cerebral hypoxia is a major cause of secondary brain

injury that can be observed in a relevant proportion of

patients with acute brain injury (ABI), including patients with

traumatic brain injury (TBI), subarachnoid hemorrhage (SAH)

and intracerebral hemorrhage (ICH) (1–5). Indeed, low brain

tissue oxygenation (PbtO2), which can be measured at bedside

using an intraparenchymal probe placed into the “at-risk” areas,

has been associated with cerebral anaerobic metabolism, as well

as with an increased risk of mortality and poor functional

outcome in these patients (6–12).

Low PbtO2 values have been observed in different

conditions, such as reduced cerebral blood flow (CBF) and/or

cerebral perfusion pressure (CPP), intracranial hypertension

(IH), hypoxemia, anemia, altered microcirculation or excessive

cellular metabolism (13). As such, several therapeutic strategies

have been developed to optimize brain oxygenation into

a complex and protocolized algorithm, which encompasses

vasopressors (i.e., to increase CPP), treatments of IH (i.e.,

osmotic therapy), red blood cells transfusions or increased

inspired oxygen fraction (FiO2), temperature control and

sedation (i.e., to decrease cerebral oxygen consumption) (14–

18).

In case of reduced CBF, one of the most commonly used

intervention is the increase in CPP (i.e., induced hypertension)

with normovolemia; in patients suffering from SAH, this

intervention can increase regional perfusion in the presence of

cerebral vasospasm and neurological deterioration (19). Among

TBI patients, this strategy can increase tissue oxygenation

and reduce intracranial pressure, if cerebral autoregulation

is preserved (14, 15, 20). In patients with ICH, although

it is generally recommended to control blood pressure to

avoid hematoma expansion (21), increased CPP was associated

with higher PbtO2 values in those patients with poor clinical

condition at presentation (18, 22).

Interestingly, the effects of inotropes, such as dobutamine

(a β1 agonist) and milrinone (a phosphodiesterase-3 inhibitor)

on brain oxygenation remains unknown. These drugs have

been proposed as “second-line” agents to improve CBF and

CPP in acute brain injury patients (19, 23), or as a support

therapy in those suffering from neurogenic heart failure (24–

26). Therefore, the aim of this study was to assess the effect of

inotropic agents on PbtO2 after an acute brain injury.

Methods

Study design

This is a single center retrospective analysis of prospectively

collected data conducted at Erasme University Hospital,

Brussels, Belgium. All adults patients (>18 years old) admitted

to the Intensive Care Unit of Erasme hospital from January

2015 to February 2022, due to acute brain injury (SAH, TBI

or ICH), who survived at least 24 h were eligible for inclusion.

The study protocol was approved by the local ethics committees

(SRB2022006). Data collection and analyses were carried out

in accordance with relevant scientific and ethical guidelines

and regulations.

Inclusion criteria and exclusion criteria

We included eligible patients who were monitored

with intracranial pressure (ICP) and PbtO2 and who

received inotropic treatment (i.e., either by dobutamine or

milrinone) during monitoring, according to the treating

physician’s decision. We excluded patients who had

malfunctioning/unreliable PbtO2 readings or unavailable data.

Patient’s management

Current guidelines for the management of TBI (20), SAH

(27), and ICH (21) were implemented in clinical practice;

invasive multimodal neuro-monitoring, including PbtO2, was

included according to a recent consensus (28) and considered as

“standard of care” for acute brain injury patients with a Glasgow

Coma Score (GCS)<9 and requiring intracranial pressure (ICP)

monitoring. PbtO2 catheter was preferably placed into the “at

risk” area, i.e., close to the injured/contused area in TBI and ICH

patients and in the region at risk (vascular territory of the artery

harboring the aneurysm) or with demonstrated initial or delayed

hypoperfusion on brain imaging for SAH.

Data collection

Physiological variables as well as ICP and PbtO2, were

measured in real-time and collected prospectively. Cerebral

perfusion pressure (CPP) was calculated as the difference

between mean arterial pressure (MAP) and ICP; MAP was

zeroed at level of left atrium. Intracranial hypertension was

defined by the observation of ICP values above 20 mmHg for

at least 5min at any time. Brain tissue hypoxia was defined as a

PbtO2 < 20 mmHg. At baseline (immediately before the start of

inotropic therapy), 1 and 2 h after the start of inotropes, the 20-

min mean value of the following variables was collected: PbtO2,

MAP, heart rate (HR), ICP, CPP, body temperature, arterial

oxygen saturation (SaO2), central venous oxygen saturation

(SvcO2), cardiac output (CO), pH, PaCO2, PaO2, blood lactate

and blood glucose levels. Vasopressors and inotropic doses were

also recorded. We also calculated the 1PbtO2 defined as the

difference between PbtO2 values at 2 h and at baseline; similarly,

the 1CO, 1ICP, 1CPP, and 1PaCO2 were also computed.
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We also recorded demographics and the presence of

comorbidities, the Sequential Organ Failure Assessment

(SOFA) (29) and the Acute Physiology and Chronic Health

Evaluation (APACHE) II scores (30) on admission, as well

as the GCS score (31) on admission, the use of mechanical

ventilation, vasopressor and renal replacement therapy (RRT).

The occurrence of neurological complications, such as epilepsy,

hydrocephalus, rebleeding, delayed cerebral ischemia and

intracranial hypertension, was collected.

Hospital mortality and the Glasgow Outcome Scale (GOS)

(32) at 6 months was also reported, either collected from the

medical charts or via the general practitioner. Unfavorable

neurological outcome was defined as GOS of 1–3.

Outcomes

The primary outcome of the study was the changes in

PbtO2 within 2 h after the initiation of inotropic therapy. PbtO2

increase was calculated as the difference between the highest

mean PbtO2 values, measured at 1 or 2 h after the initiation

of inotropic therapy, and the baseline PbtO2 value; PbtO2

“decrease” was identified as a difference value <0, “stable”

PbtO2 as a difference = 0 and “increase” as a difference >0. A

“significant” increase was defined as > 20% from the baseline.

Patients that experienced a significant increase were defined as

“responders.” Secondary outcomes included the identification of

factors associated with a significant PbtO2 increase.

Statistical analysis

Descriptive statistics were computed for all variables.

Normality was assessed using the Kolmogorov-Smirnov test.

Non-gaussian continuous variables were described as median

and interquartile range [IQRs] and compared using Mann-

Whitney test (independent variables) or Friedman/Wilcoxon

test (repeated measures of related variables); normally

distributed variables were expressed as mean (±SD) and

compared using Student t-test. Categorical variables were

described as proportions (%) and compared using Chi square

or Fisher’s exact test. A logistic regression of physiological

variables at baseline was conducted to assess factors associated

with a significant PbtO2 increase after inotropic therapy. The

independence of errors, presence of multicollinearity and

of influential outlier assumptions were checked; none were

violated. The area under the receiver operator characteristic

(AUROC) was computed to identify the optimal cut-off value

(i.e., best sensitivity and specificity—Youden’s index) of baseline

PbtO2, baseline ICP and baseline CPP to predict a significant

increase of PbtO2 after inotrope infusion. We performed a

correlation analysis using Spearman’s test between 1PbtO2 and

1CO, 1ICP, 1CPP, and 1PaCO2. The R coefficient and the

95% confidence interval were computed for all correlations. We

also performed a linear regression analysis with 1PbtO2 as the

dependent variable and 1CO, 1ICP, 1CPP, and 1PaCO2 as

covariates. All statistical analyses were performed using SPSS

27.0 for MacIntosh. A p-value <0.05 was considered significant.

Results

Characteristics of the study participants

On a total of 157 patients monitored over the study period,

35 patients were eligible for our study. The characteristics of

the study population are shown in Supplementary Table 1. Most

patients presented with SAH (31/35, 89%); SAH patients had

predominantly a poor grade status at presentation [WFNS 4

or 5: 23/31(74%)] and a high radiological scale [mFisher 3

or 4: 29 (94%)]. The median age was 55 (46–62) years, with

a slight predominance of male patients (18/35, 51%). The

median GCS on admission was 9 (3–13) and the most common

complication was the occurrence of intracranial hypertension.

Ninety-one percent of patients experienced at least one episode

of brain tissue hypoxia over the ICU stay. All patients received

dobutamine as the studied inotrope except one patient who

received milrinone. Overall, in-hospital mortality was 57%;

71% of patients had an unfavorable neurological outcome at

6 months.

Inotropic agents and brain oxygenation

An increase in PbtO2 was observed in 22/35 patients (63%);

of those, 12 (55% of patients with PbtO2 increase and 34% of

the whole cohort) experienced a significant PbtO2 increase from

baseline (responders). In 4 patients, PbtO2 did not change while

it decreased in 9 patients (26%).

There was a non-significant change in PbtO2 after the

initiation of the inotropic agents, as shown in Table 1 and

Figure 1 (p = 0.052). Also, a significant increase in heart rate

and in cardiac output was observed after inotropic agents’

administration; no changes in CPP values were observed. The

doses of dobutamine are reported in Table 2; milrinone was

given at 0.375 mcg/kg∗min.

There was a significant direct correlation between 1PbtO2

and 1CO [r = 0.496 (95% CI 0.122 to 0.746), p = 0.01; n =

25] and a significant negative correlation between 1PbtO2 and

1CPP [r = −0.389 (95% CI −0.681 to −0.010), p = 0.05],

as shown in Supplementary Figure 1. There was a weak non-

significant correlation between 1PbtO2 and 1ICP [r = 0.26

(95% CI −0.151 to 0.597)]. Linear regression analysis described

the association of 1PbtO2 and 1CPP [beta coefficient −0.274

(95% CI −0.130 to 0.041)], adjusted for 1ICP [beta coefficient

0.018 (95% CI −0.139 to 0.148)], 1PaCO2 [beta coefficient

Frontiers inNeurology 03 frontiersin.org

https://doi.org/10.3389/fneur.2022.963562
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Coppalini et al. 10.3389/fneur.2022.963562

TABLE 1 Changes in main variables from baseline values after inotropic agents administration.

Variables Baseline 1-hour 2-hour Value

PbtO2 , mmHg 20 (14–24) 19 (15–25) 19 (17–25) 0.052

Hb, g/dL 11 (9.7–12.6) 10.4 (9.4–12.3) 10.3 (9.3) 0.72

MAP, mmHg 118 (106–132) 120 (109–132) 119 (98–131) 0.16

CPP, mmHg 109 (93–118) 110 (98–120) 109 (88–120) 0.38

ICP, mmHg 13 (7–16) 12 (8–19) 10 (7–17) 0.16

HR, bpm 86 (75–110) 93 (80–107) 104 (86–109.6) 0.01

Temperature, ◦C 37.0 (35.8–37.5) 36.9 (35.7–37.3) 37 (35.6–37.4) 0.80

pH 7.41 (7.35–7.46) 7.43 (7.36–7.45) 7.42 (7.37–7.44) 0.06

PaO2 , mmHg 110 (92–148) 108 (88–129) 112 (94–135) 0.13

PaCO2 , mmHg 42 (39–47) 43 (37–46) 43 (39–49) 0.02

Lactate, mmol/L 1.1 (0.8–1.4) 1.1 (0.8–1.7) 1.2 (0.9–1.8) 0.23

SaO2 , % 99 (98–99) 99 (98–99) 99 (98–99) 0.84

Glucose, mg/dL 135 (119–174) 154 (117–188) 163 (133–199) 0.04

SvO2 , %* 79.7 (75.3–83) 78.4 (74–82) 83.9 (83.3–87.6) 0.37

CO, L/min* 6.1 (5.0–8.0) 7 (5.9–8.4) 7.45 (6.6–8.6) 0.001

Norepinephrine, mcg/kg/min 0.4 (0.14–1.4) 0.43 (0.17–1.53) 0.36 (0.16–1.59) 0.29

Dobutamine, mcg/kg/min – 4 (3–5) 5 (3–5) 0.001

Values are presented as median (IQR). Values in bold represent statistical significance.

PbtO2 , brain tissue oxygenation partial pressure; Hb, hemoglobin; MAP, mean arterial pressure; CPP, cerebral perfusion pressure mmHg; ICP, intracranial pressure; HR, heart rate; bpm,

beats per minute. SaO2 , Oxygen saturation; PaO2 , Oxygen partial pressure; PaCO2 , Carbon dioxide partial pressure. *n= 25 (n= 7 for responders and n= 18 for non-responders).

−0.038 (95% CI −0.026 to 0.021)] and 1CO [beta coefficient

0.371 (95% CI−0.054 to 1.306)].

PbtO2 responders

Main differences in collected variables at baseline

between responders and non-responders are presented in

Supplementary Table 2. Responders had more frequently

seizures and rebleeding than non-responders; also, PbtO2

and CPP were significantly lower, while ICP higher, than

non-responders at baseline. No significant changes in measured

variables over time were observed between groups, except a

higher requirement in norepinephrine in the “responders”

group when compared to the others (Supplementary Table 3).

No statistically significant difference in hospital mortality and

neurological outcome at 6 months between responders and

non-responders was observed (Supplementary Table 2); no

multivariable analysis was performed due to the limited sample

size. Among survivors (n = 15), responders [GOS 4 (4, 5)]

had numerically higher GOS at 6 months than non-responders

[GOS 4 (3, 4)—p = 0.30]. No differences in mFisher and WFNS

score on admission between responders and no responders were

observed (Supplementary Table 2).

In a multivariable model, lower baseline PbtO2 was

associated with higher probability of a significant PbtO2 increase

after inotropic treatment (Table 2). The AUROC for baseline

PbtO2 (Figure 2) to predict a significant PbtO2 increase was

0.85 (95% CIs 0.70–1.00). The baseline PbtO2 cut-off that better

discriminated between responders and non-responders was 17

mmHg, with a sensibility of 84% and a specificity of 91% to

predict a significant PbtO2 increase. The AUROC for CPP and

ICP and response to predict a significant PbtO2 increase were

0.72 (95% CIs 0.50–0.94—best cut-off of 99mm Hg) and 0.76

(95% CIs 0.60–0.92—best cut-off of 14 mmHg), respectively. In

SAH patients, a multivariable model adjusted for poor grade on

admission (WFNS 4 or 5) and mFisher, lower baseline PbtO2

was associated with a higher chance of response to inotropes

(Supplementary Table 4).

Discussion

In this study including mostly SAH patients, we observed

that the administration of inotropic agents was associated with

an increase in brain oxygenation in 63% of patients; however,

only half of those experienced a significant PbtO2 increase

from baseline. The response to inotropic agents was greater

in patients with lower PbtO2 values at baseline. There was a

positive correlation between 1PbtO2 and 1CO and a negative

correlation between 1PbtO2 and 1CPP.

The relationship between cardiac output and cerebral blood

flow is complex and difficult to study in clinical practice

(33). The use of inotropes to improve brain hemodynamics

and oxygenation comes from the hypothesis of a so-called

“cardio-cerebral coupling” (34, 35), where an increase in cardiac
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FIGURE 1

Brain tissue oxygenation (PbtO2) values at baseline (before

initiation of inotropes—T0), at 1 (T1) and 2 (T2) hours after the

introduction of inotropic continuous infusion in the overall

population (A) and in responders and non-responders (B).

P-value was calculated by Friedmann test.

output could promote a proportional increase in CBF, in

particular in case of impaired autoregulation and ischemia

(36), both being common features of acute brain injury (37).

We observed a positive correlation of PbtO2 changes with

CO changes, suggesting the higher was the effects on global

hemodynamics, the highest the changes in brain oxygenation.

Also, CPP was reduced by the administration of dobutamine,

probably due to its vasodilatory via β2 receptors, but this did

not result in impaired cerebral hemodynamics. This might

suggest the importance of systemic hemodynamics monitoring

to adequately understand the effects of increasing CO on brain

oxygenation (38) and the relevance of an “hyperdynamic”

approach, rather than “hypertensive” one, to manipulate

cerebral hemodynamics in ABI patients.

Previous studies conducted in SAH patients found that fluid

boluses to improve CO yielded a positive correlation between

changes in cardiac output and PbtO2 (39–41); to the best of our

knowledge, this is the first study to assess the impact of inotropic

agents on brain oxygenation in ABI patients. In experimental

model of SAH, administration of dobutamine increased global

FIGURE 2

Receiver Operator Curve (ROC) of baseline brain oxygen

pressure (PbtO2) to predict a significant PbtO2 increased after

therapy.

TABLE 2 Logistic regression multivariable analysis to predict a significant PbtO2 increase after inotropic treatment.

Univariable OR (95% CI) Multivariable OR (95% CI) p-value

Baseline PbtO2 , mmHg 0.79 (0.66–0.93) 0.82 (0.68–0.98) 0.03

Baseline ICP, mmHg 1.19 (1.02–1.39) 1.20 (0.97–1.48) 0.10

Baseline CPP, mmHg 0.96 (0.92–0.99) 0.97 (0.92–1.02) 0.25

PbtO2 , brain tissue oxygen partial pressure; ICP, intracranial pressure; CPP, cerebral perfusion pressure; OR, odds ratio; CI, confidence interval.

Frontiers inNeurology 05 frontiersin.org

https://doi.org/10.3389/fneur.2022.963562
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Coppalini et al. 10.3389/fneur.2022.963562

CBF, which was initially reduced because of an induced brain

injury, and resulted into a lower prevalence of DCI and better

functional outcomes (42). Moreover, dobutamine may provide,

through its effects on �2-receptors, some vasodilatory effects

and protect vascular smooth cell muscle against the occurrence

of vasospasm in an in vitro study (43). Furthermore, adding

dobutamine and nimodipine to the management of cerebral

vasospasm in SAH patients compared to nimodipine alone

tended to improve the outcome of these patients (43).

Similarly, a study by Levy et al. found that dobutamine

administration was able to clinically reverse vasospasm in

78% of patients, together with a significant increase in

cardiac output (44). Also, in SAH patients with cerebral

vasospasm, dobutamine effectively and significantly increased

CBF, measured with Xenon-CT scan, independently from

changes in blood pressure and similarly to norepinephrine (45).

As for dobutamine, intravenous milrinone can also improve

cardiac function after SAH (46) and reverse symptoms due to

clinical deterioration caused by DCI inmost cases (47), although

no data on cerebral oxygenation are available.

It has been suggested that cerebral hemodynamics after

an acute brain injury could be assessed using non-invasive

monitoring, such as cerebral blood flow velocities or cerebral

autoregulation indices. Nevertheless, cerebral autoregulation

or CBF velocities cannot evaluate the adequacy of tissue

oxygenation. As CPP target is routinely based on PbtO2

or other monitoring tools using vasopressors, our findings

suggest that tissue hypoxia can be present in some ABI

patients in the absence of elevated ICP and that systemic

targets, including CPP or CO, should be individualized

according to cerebral demand (15). As inotropic agents are

not superior to norepinephrine alone to improve outcome

in ABI patients at risk of cerebral ischemia (48), our results

suggest that inotropic agents could be considered as a “second-

line” therapy to improve brain oxygenation when initial CPP

optimization with vasopressors has failed. Interestingly, the

more significant effects on tissue oxygenation were observed

in those patients with baseline tissue hypoxia, as reported for

CPP augmentation or red blood cells transfusions (15, 17,

39).

This study has several limitations. First, this study has an

important selection bias since the decision to start inotropes

was based on the attending physician’ opinion in the absence

of an established protocol and due to its retrospective nature

we could not determine what were the criteria used. Moreover,

we included a very small number of patients, since inotropic

treatment were used only in selected cases; therefore, this

study is only hypothesis generating. Second, this is a single

center study, which limits the generalization of our results.

Third, we had only one patient who received milrinone and

no comparison between the effects of different inotropes was

possible. Additionally, milrinone was used in a lower dose than

usually recommended for the treatment of refractory DCI (bolus

of 0.1–0.2 mg/kg and continuous infusion of 0.75 mcg/kg/min

up to 2.5 mcg/kg/min) (49, 50); however, in the case included

in our cohort, this dose was sufficient to increase CO and

improve PbtO2. Forth, we did not assess the clinical impact

of inotropic administration, only its physiological effects on

brain oxygenation; whether optimizing PbtO2 in TBI patients

improves outcome remains to be demonstrated. Fifth, we did

not take into consideration the exact positioning of the probes,

i.e., some of those might have been placed into normally

appearing areas, where no potential benefits from hemodynamic

manipulation would have been expected. Sixth, we could not

assess the correlation between cardiac output and PbtO2 changes

in the subgroup analysis because of several missing CO values.

Seventh, responders required higher doses of epinephrine after

the start of inotropic treatment; therefore, we cannot exclude

that the improvement in PbtO2 was due to the increased dose

of vasopressors in addition to inotropic agents. Similarly, there

was a slight increase in CO2 concomitant to the inotropic

administration, which can also induce vasodilation and acts

as important confounder. Finally, most of patients had SAH;

whether this strategy is effective also in other forms of acute

brain injuries remains to be further studied.

Conclusions

In this study, the administration of inotropic agents

could increase brain tissue oxygenation in nearly 65%

of patients; however, only half of them had a significant

PbtO2 increase. Baseline tissue hypoxia could predict

this significant PbtO2 increase after the initiation

of therapy. The effects on brain oxygenation were

proportional to changes in cardiac output. Further

prospective studies are needed to explore the impact of

inotropic therapy on brain oxygenation and outcome in

this setting.
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