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HIV cannot be cured by current antiretroviral therapy (ART) because it persists in

a transcriptionally silent form in long-lived CD4+ cells. Leading efforts to develop a

functional cure have prioritized latency reversal to expose infected cells to immune

surveillance, coupled with enhancement of the natural cytolytic function of immune

effectors, or “kick and kill.” The most clinically advanced approach to improving

the kill is therapeutic immunization, which aims to augment or re-focus HIV-specific

cytolytic T cell responses. However, no vaccine strategy has enabled sustained

virological control after ART withdrawal. Novel approaches are needed to overcome

the limitations of natural adaptive immune responses, which relate to their specificity,

potency, durability, and access to tissue reservoirs. Adoptive T cell therapy to treat

HIV infection was first attempted over two decades ago, without success. Since

then, progress in the field of cancer immunotherapy, together with recognition of

the similarities in tumor microenvironments and HIV reservoirs has reignited interest

in the application of T cell therapies to HIV eradication. Advances in engineering of

chimeric antigen receptor (CAR)-transduced T cells have led to improved potency,

persistence and latterly, resistance to HIV infection. Immune retargeting platforms have

incorporated non-neutralizing and broadly neutralizing antibodies to generate Bispecific

T cell Engagers (BiTEs) and Dual-Affinity Re-Targeting proteins (DARTs). T cell receptor

engineering has enabled the development of the first bispecific Immune-mobilizing

monoclonal T Cell receptors Against Viruses (ImmTAV) molecules. Here, we review

the potential for these agents to provide a better “kill” and the challenges ahead for

clinical development.

Keywords: HIV reservoirs, T cells, CAR (chimeric antigen receptor) T cells, dual affinity re-targeting (DART), T cell

receptor (TCR), clinical trial, kick and kill

INTRODUCTION

Long-lived cells that harbor replication-competent HIV are responsible for viral persistence during
antiretroviral therapy (ART). Within the first few days of infection, HIV-1 inserts into its host
cell genome, primarily in CD4+ T cells that are transitioning from an activated to a quiescent
state (1–4). Other cell populations of lymphoid, myeloid, and stromal origins also contribute
to HIV reservoirs; however, the mechanisms involved are less well-understood, in part due to
the challenges of sampling tissues (5). The persistence of these reservoirs has been explained
by clonal proliferation of T cells and the existence of sanctuary sites, which may be both the
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cause and consequence of inadequate antiretroviral drug
penetration and ineffective adaptive immune responses (6–11).
The lack of a unique and reliable marker of these diverse
reservoirs has significantly encumbered the development of
strategies to provide either a sterilizing cure, in which all
forms of HIV are eliminated from the body, or a functional
cure (remission), defined by long-term control of HIV and
preserved immune competence after ART withdrawal (12, 13).
Only one person has achieved a sterilizing cure and cases of
sustained antiretroviral-free HIV control remain rare (14, 15).
However, advances in quantification and characterization of
viral reservoirs, coupled with an unprecedented expansion in
cancer immunotherapeutics to counteract immune exhaustion
have opened up new possibilities for their application to the
eradication of HIV reservoirs (16–18). In addition, it is possible
to limit seeding of reservoirs and viral escape by initiating ART
during primary infection, which may improve the chance of
achieving a functional cure (19–21).

HOW CAN IMMUNE RETARGETING
THERAPIES OVERCOME THE FAILURE OF
NATURAL IMMUNE RESPONSES TO
ELIMINATE HIV RESERVOIR CELLS?

Several barriers to clearance of HIV reservoirs by the host
immune response need to be considered when assessing the
potential benefits and limitations of T cell retargeting agents:
(1) low or absent viral antigen expression during ART; (2)
viral heterogeneity resulting from mutational escape; (3) T cell
dysfunction and/or exhaustion; (4) the inaccessibility of reservoir
cells (22–25).

Viral latency is a state of reversible non-productive infection
within a cell, which permits immune evasion. The rationale
for using latency-reversing agents, the kick in “kick and kill,”
is to initiate viral gene transcription and protein synthesis,
thus removing protection from immune surveillance (26–28).
However, recent developments in characterizing the molecular
composition of the reservoir suggest that this may be overly
simplistic. The vast majority of latently infected cells harbor
defective proviruses, yet they may be transcriptionally active;
translation of open reading frames with intact gag and nef
sequences can lead to protein synthesis and susceptibility to
killing by CD8+ T cells in vitro (29–31). Boosting of CD8+
T cells by therapeutic vaccination, with or without latency
reversal, has not been successful in reducing viral reservoirs.
This may reflect targeting of irrelevant epitopes, persistent
T cell dysfunction and limited potency of LRAs (32–35).
Furthermore, cells harboring intact and inducible proviruses may
be inherently resistant to CD8+ T cell killing (36). Individuals
who spontaneously control HIV have smaller latent reservoirs
and display functionally superior CD8+ T cell responses,
providing a model for functional cure (37, 38). However, loss
of controller/non-progressor status is frequent, possibly due to
ongoing viral replication in tissue sites that are inaccessible to
cytolytic T cells (39–41).

In this review, we discuss the potential for T cell retargeting
therapies to bring about a functional cure by overcoming
the hurdles outlined above, namely, overcoming low antigen
expression through affinity enhancement of antigen receptors,
mobilizing sufficient numbers of effectors targeting conserved
or non-escaped viral epitopes, recruiting functionally intact
cells, and exploiting technologies to optimize tissue penetration
and persistence (Figure 1). In addition, we examine the safety
implications and the challenges for delivering these therapies
to patients. Although adoptive T cell therapy, with or without
TCR gene transfer, was the forerunner of these technologies and
new adapted approaches are showing promise, this is beyond the
scope of the discussion and is comprehensively covered elsewhere
(42, 43).

CHIMERIC ANTIGEN RECEPTOR (CAR) T
CELLS

CAR technology has evolved over more than two decades. It
provides a means to re-programme T cells to recognize cell
surface proteins through gene transfer of synthetic chimeric
antigen receptors (CAR) (monoclonal antibodies) fused to a T
cell activation domain. While the repertoire of potential CAR
targets is smaller than that of T cell receptors, antigen recognition
is not HLA-restricted, which is an advantage over conventional
adoptive T cell therapy. Furthermore, CARs exploit healthy T
cells that do not display the immune exhaustion phenotype
typical of HIV-specific T cells in chronic infection.

The first anti-HIV CAR comprised the extracellular region of
CD4 fused to a CD3ζ signaling domain (CD4ζ-CAR), conferring
specificity for HIV-infected cells through binding of CD4 to the
envelope protein, gp120. However, despite evidence of antiviral
efficacy in vitro, CD4ζ-CAR T cells infusions hadminimal impact
on plasma viraemia in ART-naïve subjects or on viral reservoirs
in ART-suppressed patients (44, 45). Modest cytolytic function
in vivo, limited persistence due to poor proliferative capacity
and susceptibility to HIV infection may have contributed to
these disappointing results. Improvements in the technology
were achieved through successive modifications in the signaling
domains to enhance anti-tumor activity: second- and third-
generation CARs were produced by addition of one or more
costimulatory domains such as 4-1BB, CD28 and ICOS (46–48).
Second-generation CD19-specific CARs achieved spectacular
response rates in the treatment of B cell malignancies (albeit
with high levels of toxicity) leading to their approval by the
US Food and Drug Administration and paving the way for the
development of more effective HIV-specific CARs (49–51). A
re-engineered CD4 CAR containing the 4-1BB domain showed
significantly enhanced antiviral potency in vitro and greater
capacity to proliferate and prevent HIV spread in a humanized
mousemodel than the first-generation version (52). In addition, a
large number of broadly neutralizing antibodies (bNAbs), which
target regions of vulnerability in the viral envelope, have since
been identified as potential CAR candidates (53).

Achieving sustained virological control after ART cessation
will likely require repeated infusions of CAR T cells or strategies
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FIGURE 1 | Schematic showing chimeric antigen receptor (CAR) T cell, dual affinity retargeting (DART) and immune-mobilizing monoclonal T cell receptor against

viruses (ImmTAV) antigen recognition domains (antibodies or T cell receptors shown as blue ovals) and their respective targets on HIV-infected cells. The CAR is fused

to one or more intracellular signaling domains. DARTs and ImmTAVs initiate signaling in T cells through cell surface CD3 via an anti-CD3 single chain variable fragment

(scFv) which is fused to the antibody/TCR by a flexible linker (black line).

to prolong their persistence in vivo. One approach is to engineer
the expression of CD4ζ CAR in hematopoietic stem cells (HSC).
Modified HSC-derived CAR T cells were shown to engraft,
proliferate, and display antiviral activity in a humanized mouse
model of HIV infection; however, in a non-human primate
model only transient and partial control of viral replication was
observed after SHIV challenge and withdrawal of ART (54, 55).

A further consideration is to protect modified T cells
from HIV infection. The safety and efficacy of zinc finger
nuclease disruption of CCR5, the co-receptor for viral entry
into CD4+ T cells has been demonstrated in a clinical trial:
modified autologous CD4+ T cells had a mean half-life of
48 weeks during ART and were maintained for longer than
unmodified CD4+ T cells after ART withdrawal (56). To
generate functional HIV-resistant CAR T cells, site-directed
megaTAL nuclease-mediated CCR5 gene disruption has been
successfully combined with targeted delivery of an adeno-
associated virus CAR cassettes to the CCR locus using homology-
directed recombination/repair (HDR), which achieves highly
efficient integration (57). Simultaneous CCR5 gene disruption
and expression of single chain variable fragments (scFv) of HIV-
specific broadly neutralizing antibodies (bNAb) coupled to a
second-generation co-stimulatory domain in primary human T
cells endowed themwith the capacity to suppress viral replication
in vitro (57, 58). However, feasibility of manufacture for clinical
application has yet to be demonstrated.

B cell follicles in lymphoid tissue are a sanctuary site for
HIV replication, which occurs preferentially in T follicular helper
cells, due to exclusion of CD8+ T cells that lack expression of

the follicular homing chemokine receptor CXCR5 (59). Haran
et al. successfully co-expressed CXCR5with an antiviral bispecific
CAR comprising rhesus CD4 domains fused tomannose-binding
lectin, which targets carbohydrate residues on the viral envelope.
SIV CAR/CXCR5-expressing T cells were able to suppress SIV
replication in vitro and to migrate to B cell follicles in lymphoid
tissue explants (60).

Two clinical trials of CAR T cell therapy in HIV-positive ART-
treated subjects are ongoing or due to recruit: one is evaluating
a bNAb (VRC01)-based CAR, VC-CAR-T (NCT03240328) and
the other, a CD4 CAR modified for HIV resistance by ZFN
disruption of CCR5 and conjugation of the C34 peptide to the
CXCR4 N-terminus (NCT03617198) (61).

BISPECIFIC ANTIBODIES

Bispecific antibodies (bsAb) have emerged as a more scalable
alternative to CAR T cell therapy. Originally developed to
overcome the limitations of monoclonal antibodies for cancer
therapy, the first generation bsAb platform, bispecific T cell
engagers (BiTEs), comprised a tumor-specific variable fragment
and a CD3-specific fragment joined by a single peptide linker.
This format enabled redirection of effector T cells to eliminate
tumor cells bearing the target antigen (62). Blinatumomab
(CD19xCD3) was the first BiTE to be licensed by the FDA for
clinical use, initially in the treatment of acute lymphoblastic
leukemia [reviewed in (63)]. The BiTe format was improved by
addition of a disulphide bond to stabilize the variable domains
of the two antigen-binding moieties; the resulting Dual-Affinity

Frontiers in Immunology | www.frontiersin.org 3 December 2018 | Volume 9 | Article 2861

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Yang et al. Enhancing T-Cells for HIV Cure

Re-Targeting protein (DART) has extended storage and serum
stability (64). CD19xCD3 DARTs showed enhanced potency in
directing B cell lysis over a single-chain format molecule with the
same specificities, likely due to a higher association rate and target
affinity (65).

HIV-specific BiTes and DARTs have recently been developed
and tested in vitro. The BiTEs consisted of a scFV derived from
either of the HIV gp120-specific bNAbs B12 and VRC01, the
scFv of the antibody 17b, with or without two CD4 extracellular
domains, CD4 (1+2); all were fused to an anti-human CD3ε
scFV (66). The parent antibodies target conserved epitopes
in Env. These constructs were tested for their capacity to
suppress HIV replication in peripheral blood mononuclear cells
or macrophages cultured with autologous CD8+ T cells. The B12
BiTe was the most potent, achieving >90% HIV inhibition at a
concentration 10-fold lower than the other BiTes. Of note, the
CD4(1+2) BiTE promoted infection of CD8+/CD4- T cells in
vitro, possibly due to effects on gp120 conformation, whereas the
other constructs did not.

Sung et al. reported the development of an HIVxCD3 DART
comprising a non-neutralizing mAb against Env (A32 or 7B2)
and a humanized anti-CD3 mAb. These HIVxCD3 DARTs
were able to redirect ex vivo polyclonal CD8+ T cells from
both HIV-seronegative and ART-suppressed HIV-seropositive
donors to kill HIV-infected CD4+ T cells. Reduction in virus
recovery even without the addition of CD8+ T cells (infected
CD4+ T cells and DARTs only) was observed, which suggested
that the DARTs could also recruit cytotoxic CD4+ T cells.
The DARTs did not induce T cell activation or lysis in the
absence of Env (67). Sloan et al. also developed a panel of
HIVxCD3 DARTs based on the bNAbs PGT121 and PGT145, in
addition to the nNAbs A32 and 7B2. These DARTs redirected
CD8+ T cell killing of HIV-infected resting primary cells
with low Env expression. Using ex vivo PBMCs from patients
on suppressive ART a combination of two HIV DARTs was
able to significantly reduce viral RNA in culture supernatants
after 14 days in 3/4 subjects, suggesting that a subset of
HIV reservoir cells may express enough Env to be targeted
(68). In a third study, exposure of PBMC from ART-treated
subjects to an HIV DART based on the VRC07 bNAb (VRC07-
αCD3) was reported to upregulate cell surface Env. This was
accompanied by a reduction in CD4+ T cells containing HIV
DNA, suggesting that the DART both activated HIV reservoir
cells and targeted them for cytolysis. In addition, short-term
safety of a VRC07-rhesus CD3 DART was demonstrated in
simian-human immunodeficiency virus-infected ART-treated
macaques; importantly, no viral rebound was observed despite
the possibility of viral reactivation by the DART (69). Based on
pre-clinical work of Sung and Sloan, MacroGenics registered the
first clinical trial of an HIV DART, MGD014, which will assess
safety, tolerability and effects of the latent reservoir in ART-
treated subjects (NCT03570918). A critical question is whether a
combination of DARTsmay be needed in order to achieve clinical
benefit, given that viral escape driven by the selective pressure
of anti-Env bNAbs was observed in a clinical trial in involving
bNAb monotherapy followed by analytical ART interruption
(70).

BISPECIFIC T CELL RECEPTORS

A limitation of CAR T cells and bsAb therapies is their specificity
for cell surface antigens. TCRs have the capacity to recognize
intracellular proteins in the form of cell surface HLA class
I-bound peptides. Soluble bispecific agents that combine T
cell receptors (TCRs) with anti-CD3 effector function exploit
both the vastly greater array range of potential targets (up
to 9-fold more than antibodies) and the scalability of bsAb.
Furthermore, picomolar affinity for the desired peptide-HLA
(pHLA) complex can be achieved through targeted mutations
in the complementarity-determining regions using phage display
technology, generating molecules with higher potency than
typical affinity-enhanced antibodies [(71), reviewed in (72)].
A stable soluble molecule is generated by truncation of the
transmembrane domains and incorporation of a disulphide bond
between the alpha and beta chains. The TCR is fused to an
anti-CD3 scFV for redirection of T cells (as per BiTes and
DARTS). Immune-mobilizing monoclonal TCRs Against Cancer
antigens (ImmTAC) were shown to recruit non-cancer antigen-
specific T cells to form an immunological synapse resulting in
T cell activation and specific tumor cell lysis in vitro and in vivo
(73, 74). The first ImmTAC to enter clinical trials is targeted to the
melanoma antigen, gp100 and is in pivotal trials for the treatment
of uveal melanoma (75) (NCT03070392).

The ImmTAC platform technology has been applied to
HIV, specifically to the Gag protein, which is both highly
conserved and abundant in infected cells, in contrast to Env.
The first Immune-mobilizing monoclonal TCR Against Viruses
(ImmTAV) was designed to target the HLA-A∗0201-restricted
Gag p17 epitope, SLYNTVATL (SL9) and known escape mutants
(76). We reported that the HIV-specific ImmTAV molecule
was able to redirect CD8+ T cells to kill Gag+ cells at
nanomolar concentrations and low effector/target ratios. As
with the bsAbs, the ImmTAV molecules were able to redirect
CD8+ T cells from both HIV-seronegative and HIV-positive
ART-suppressed donors to eliminate reservoir cells harboring
inducible viruses (77).

The potential for ImmTAC and ImmTAV molecules to
overcome low antigen expression was demonstrated by using
tagged versions of the relevant TCRs to quantify pHLA
complexes on cancer cells and virus-infected cells, respectively.
These analyses showed that as few as 10 epitopes per cell could
be quantified (77, 78). However, with such high TCR affinities
the risk of off-target reactivity to self-peptide mimics must
be carefully assessed in order to define a therapeutic window
and avoid serious toxicity (79). Furthermore, conventional non-
human toxicology testing is of limited predictive value, since TCR
binding to peptide targets only occurs in the context of HLA
class I molecules. This has been addressed by the development
of comprehensive in silico and ex vivo human tissue analyses for
pre-clinical safety evaluation (72). To date, ImmTAC molecules
have been developed only for HLA-A02-restricted targets as this
family of alleles is dominant in most ethnic groups across the
world and is the best characterized. However, there is potential to
extend the platform to other HLA alleles, which would broaden
population coverage further.
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FUTURE DIRECTIONS

Over the past 5 years, the kick and kill concept has been tested in
several clinical trials, with disappointing results. However, these
studies have helped to refine our understanding of the dynamics
and distribution of latent HIV reservoirs and have highlighted
that each component of the strategy needs to be optimized. The
licensing of CAR T cell and BiTe therapies is a reflection of
astonishing progress in T cell-based immunotherapies for cancer
in recent years. Forthcoming trials of HIV-specific versions of
these agents will seek to assess whether clinically meaningful
reductions in cellular reservoirs can be achieved with an
“upgraded” kill. These trials could provide valuable insight into
the levels of antigen required to sensitize cells to elimination by
affinity-enhanced antibodies and TCRs, with and without latency
reversal. The presence of archived CD8+ T cell escape mutants is
perhaps the most obvious challenge for T cell retargeting therapy.
Engineering specificity toward functionally constrained epitopes
may mitigate against both past and future viral escape; however,
we anticipate that combinations of agents will be needed, in
an analogous fashion to combination ART. Furthermore, the
efficiency of killing will depend on the functional capacity of non-
HIV-specific T cells, which may be compromised in chronic HIV
infection even after long-term ART (77, 80). This may require
correction by immune checkpoint receptor blockade or other
forms of immunomodulation.

Long-term follow-up of trial participants will be necessary
to ascertain the requirement for repeated or continued
administration of T cell retargeting therapy, a key consideration
for its utility in clinical practice. Safety is also paramount since
the risk/benefit ratio for people with well-controlled HIV is
much higher than for individuals with cancer, who may have

few treatment options. Early data suggested that gene-edited
CD4+ cell infusions are well-tolerated. The risk of cytokine
release syndrome (CRS) with CAR T cell administration in
virologically suppressed patients is expected to be lower than that
observed during treatment of malignancies, since Env is a non-
self antigen and CRS is related to high (tumor) antigenic load.
Furthermore, HIV BiTes and DARTs are based on monoclonal
antibodies with an established safety profile. The exceptionally
high affinity of ImmTAVs for pHLA will require cautious dose
escalations in first-in-human trials. However, a major advantage
of soluble agents over cellular therapies is that they are cleared
within hours, enabling exposure in vivo to be tightly controlled.
Human CD3 scFv has a short binding half-life (minutes) due
to a nanomolar binding affinity. Experience with blinatumomab
indicates this molecule does not cause off-target activation. On
the other hand, on-target activation of CD4+ T cells by CD3 scFv
could have the potential to spread infection, which highlights
the need to protect uninfected cells by administration with
effective ART, ideally including an integrase inhibitor. Lastly,
retargeting therapies should be affordable and accessible to
patients across the world. The soluble “single vial” bispecific
agents have an advantage over cellular therapies with respect to
cost and feasibility of manufacture at scale. A possible model
for sustainable low-cost production is the recently announced
strategic partnership between the International AIDS Vaccine
Initiative and the Serum Institute of India, which aims to ensure
global access to monoclonal antibody therapies (81).
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